Next Article in Journal
Differential Apoptosis Radiosensitivity of Neural Progenitors in Adult Mouse Hippocampus
Next Article in Special Issue
Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants
Previous Article in Journal
TSPO Ligand-Methotrexate Prodrug Conjugates: Design, Synthesis, and Biological Evaluation
Previous Article in Special Issue
Metabolic Fingerprinting to Assess the Impact of Salinity on Carotenoid Content in Developing Tomato Fruits
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2016, 17(6), 923; doi:10.3390/ijms17060923

Metabolic Responses of Poplar to Apripona germari (Hope) as Revealed by Metabolite Profiling

State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
The Key Laboratory of Forest Protection, State Forestry Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
These authors contributed equally to this work.
Author to whom correspondence should be addressed.
Academic Editor: Ute Roessner
Received: 18 April 2016 / Revised: 15 May 2016 / Accepted: 20 May 2016 / Published: 20 June 2016
(This article belongs to the Special Issue Metabolomics in the Plant Sciences)
View Full-Text   |   Download PDF [3236 KB, uploaded 20 June 2016]   |  


Plants have developed biochemical responses to adapt to biotic stress. To characterize the resistance mechanisms in poplar tree against Apripona germari, comprehensive metabolomic changes of poplar bark and xylem in response to A. germari infection were examined by gas chromatography time-of-flight mass spectrometry (GC–TOF/MS). It was found that, four days after feeding (stage I), A. germari infection brought about changes in various metabolites, such as phenolics, amino acids and sugars in both bark and xylem. Quinic acid, epicatechin, epigallocatechin and salicin might play a role in resistance response in bark, while coniferyl alcohol, ferulic acid and salicin contribute resistance in xylem. At feeding stages II when the larvae fed for more than one month, fewer defensive metabolites were induced, but levels of many intermediates of glycolysis and the tricarboxylic acid (TCA) cycle were reduced, especially in xylem. These results suggested that the defense strategies against A. germari might depend mainly on the early defense responses in poplar. In addition, it was found that bark and xylem in infected trees accumulated higher levels of salicylic acid and 4-aminobutyric acid, respectively, these tissues displaying a direct and systemic reaction against A. germari. However, the actual role of the two metabolites in A. germari-induced defense in poplar requires further investigation. View Full-Text
Keywords: induced resistance; poplar; insects; Apripona germari; metabolomics induced resistance; poplar; insects; Apripona germari; metabolomics

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Wang, L.; Qu, L.; Zhang, L.; Hu, J.; Tang, F.; Lu, M. Metabolic Responses of Poplar to Apripona germari (Hope) as Revealed by Metabolite Profiling. Int. J. Mol. Sci. 2016, 17, 923.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top