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Abstract: The challenge of effectively delivering therapeutic agents to brain has led to an entire field
of active research devoted to overcome the blood brain barrier (BBB) and efficiently deliver drugs
to brain. This review focusses on exploring the facets of a novel platform designed for the delivery
of drugs to brain. The platform was constructed based on the hypothesis that a combination of
receptor-targeting agent, like transferrin protein, and a cell-penetrating peptide (CPP) will enhance
the delivery of associated therapeutic cargo across the BBB. The combination of these two agents in a
delivery vehicle has shown significantly improved (p < 0.05) translocation of small molecules and
genes into brain as compared to the vehicle with only receptor-targeting agents. The comprehensive
details of the uptake mechanisms and properties of various CPPs are illustrated here. The application
of this technology, in conjunction with nanotechnology, can potentially open new horizons for the
treatment of central nervous system disorders.

Keywords: cell-penetrating peptide (CPPs); transferrin; blood brain barrier (BBB);
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1. Introduction

Over recent years, there has been a considerable progress in the field of neuroscience leading
to an improved understanding of disorders of the central nervous system (CNS). In contrast, the
development of successful strategies for treating these disorders is limited due to the protective
function of the blood brain barrier (BBB). The concept of the BBB originated in late 19th and early 20th
centuries, when Paul Ehrlich and his colleagues discovered that some dyes could stain the brain cells
after direct injection into brain, but were not able to penetrate brain after peripheral administration [1].
A parallel study revealed that bile salts induced seizures after direct injection into brain, but did
not show any related symptoms after peripheral administration [2,3]. Since then, there have been
comprehensive efforts to provide a scientific definition of BBB and to elucidate the mechanisms of
the transport of different molecules across this barrier [4–7]. More restrictively, BBB is defined as the
microvasculature of brain that is composed of endothelial cells having tight intracellular junctions and
the absence of any fenestrae [4].

However, the vascular BBB does not explain all facets of conceptual BBB. The choroid plexus
with cerebrospinal fluid, referred to as the cerebrospinal fluid barrier (CSFB), is another important
gateway to reach brain parenchyma [8,9]. The entry of any molecule into brain, after parenteral
administration, is largely controlled by BBB and CSFB [7]. However, the CSFB faces a ventricle that
flushes the drug, injected in the back of the ventricle, back into the blood [10,11]. Moreover, there are
about 100 billion capillaries with a surface area of 20 m2 that contribute to the formation of BBB [12].
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Therefore, BBB is universally considered the most important barrier in restricting the transport of
molecules into brain [13]. There has been an increasing incidence of the use of cell-penetrating
peptides (CPPs) in the transport of therapeutic molecules into brain. CPPs are short cationic peptides
(less than 30 amino acids) that have the ability to transport extracellular molecular cargo into the cells.
These peptides are capable of entering the cells without producing cytolytic effects. In addition, they
effectively bypass P-glycoprotein (P-gp) in the BBB and are therefore used as vectors for the delivery
of drugs that are substrates for P-gp [14]. The CPPs are primarily considered to be transported via
energy-dependent pathways, but the exact mechanism is not yet fully understood. While for some
CPPs, endocytosis is the exclusive mechanism of uptake, for others, it is an alternative mechanism [15].
The use of CPPs is based on the fact that these peptides can be linked to the therapeutically-active
molecules and can be transported across the cell membrane. This linkage can either be covalent or
non-covalent. Various cargo molecules and delivery agents have been delivered into the cells using
CPPs, e.g., proteins, small drug molecules, nucleic acids, liposomes and nanoparticles. The major
challenge of using CPPs as transporters of therapeutic molecules is their non-targeting disposition.
The combination of these CPPs with receptor- or protein-targeting moieties can actively deliver the
molecules of interest into desired cells in sufficient concentrations [16–18].

2. Role of the Blood Brain Barrier in Reducing the Penetration of Molecules into Brain

The high impermeability and selectivity of the blood brain barrier prevents the transport of many
drugs and other therapeutic molecules into brain [19,20]. The delivery of therapeutic agents across
BBB has engendered substantial interest over the past few decades [9,21,22]. BBB possesses unique
biological characteristics that contribute to restricting the movement of molecules to brain (Figure 1):

(1) Brain endothelial cells lack fenestrations, have very few pinocytotic vesicles and a larger number
of mitochondria [23–25].

(2) The occurrence of an intricate complex of transmembrane proteins (e.g., occludins, claudins),
forming intimate intracellular connections, called tight junctions (TJ).

(3) The expression of different transport proteins on brain endothelial cells, like p-glycoproteins
(efflux transporters) and multidrug resistance proteins (MRPs) [10,26].

(4) The synergistic influence of astrocytes, pericytes, astrocytic perivascular end feet, macrophages
and neurons on BBB functions [27–29].

The immune barrier of brain is formed by tightly-packed endothelial cells, perivascular
macrophages and mast cells and is further reinforced by the macroglial cells. This barrier limits
the passage of external immune cells, especially lymphocytes, across BBB [30–34].

This unique environment of CNS presents a formidable barrier to the delivery of a wide number
of therapeutic molecules to brain. With the exception of small lipophilic drug molecules having
a molecular mass of less than 400–600 Da, most of the drugs in circulation do not penetrate the
BBB [34,35]. More than 98% percent of the drugs are halted mid-development due to poor brain
permeability [36]. Furthermore, recent statistics from the National Cancer Institute show about
22,910 new cases of brain tumor leading to 13,700 deaths, each year. In addition, neuro-degenerative
diseases like Alzheimer’s disease have become the most common cause of dementia among the
elderly and have been reported to affect about 5% of Americans over the age of 65 and 20% over the
age of 80 years [37]. These factors have triggered extensive efforts, by scientists across the globe, in
developing safe and efficient vectors for the delivery of therapeutics to brain. Viruses are equipped with
different molecular mechanisms to overcome these hurdles and can, therefore, serve as efficient delivery
vectors [38]. Yet, the potential application of viruses as delivery agents and their further investigation in
clinical research is impeded by the associated immune response and cytotoxicity, thereby accentuating
the need for the synthesis of safe and efficient non-viral delivery vectors. Multidisciplinary approaches
involving biology, nanotechnology and biophysics need to be considered to accomplish the goal of
improving the delivery of therapeutic drugs and genes across BBB [7].
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Certain inflammatory conditions of brain, for example Alzheimer’s disease, multiple sclerosis,
tumors and stroke, have been known to increase the permeability of BBB. Various inflammatory
mediators associated with these CNS disorders can modulate the tight junctions and enhance the
passage of molecules across brain endothelium. Apart from the modulation of tight junctions on the
endothelium, other closely-associated cells, such as pericytes, astrocytes, mast cells, glial cells and
neurons, are also reported to be involved in inflammatory reactions [39]. Many inflammatory agents,
like bradykinin, serotonin and histamine, increase leakage across blood brain barrier by increasing
both endothelial permeability and vessel diameter, thereby causing cerebral edema.

Lopez-Ramirez et al. [40] recently reported that a molecule called “microRNA-155” is responsible
for cleaving epithelial and endothelial cells. This cleavage can create microscopic gaps in the
endothelium, leading to increased permeability of BBB. This discovery has opened a completely
new platform for developing therapies that can help penetrate the BBB and deliver potential agents for
the treatment of CNS disorders [40].

3. Cell-Penetrating Peptides

Cell-penetrating peptides (CPPs) are short cationic or amphipathic peptides that have the ability
to transport the associated molecular cargo (e.g., peptides, proteins, oligonucleotides, liposomes,
nanoparticles, bacteriophages, etc.) inside the cells [16]. Biological evolution has conferred certain
proteins with an ability to penetrate the cell membrane due to the presence of specific peptide sequences,
called protein transduction domains [41]. The peptide sequences constituting these domains carry
basic amino acids and possess cell-penetrating properties; thus, these peptides are referred to as
cell-penetrating peptides (CPPs). Over the past decade, there has been a vibrant increase in the
application of these CPPs for the delivery of cargo molecules inside the cells [42]. These peptide
sequences have been utilized for the delivery of various molecules, like proteins, nucleic acids,
liposomes and nanoparticles, across the cell membrane [43–47]. The profound interest evoked by the
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CPPs among scientists is not only attributed to their ability of crossing the cell membrane via receptor
and energy-independent processes, but also their capacity to efficiently internalize the associated
biomolecules without compromising their biocompatibility [48]. Various CPPs, such as poly-L-arginine
(PR), transactivator of transcription peptide (TAT) [49] and penetratin, have been conjugated to the
delivery vectors to improve the delivery of therapeutic molecules [50–52].

3.1. Poly-L-Arginine

Polyarginine is a synthetic cationic peptide consisting of eight or more arginine residues and
has been used to facilitate the intracellular translocation of a wide variety of molecular cargo [16,17].
This cell-penetrating peptide has been used for the delivery of cargo, such as liposomes, nucleic acids,
nanoparticles, etc., into the cells. Kibria et al. [50] showed that dual modification of liposomes with
polyarginine and cyclic RGD (Arg-Gly-Asp) peptide significantly increased the transfection efficiency of
liposomes in integrin α(v)β(3)-expressing cells. Later, Opanasopit et al. [53] demonstrated considerable
improvement in the transfection efficiency of liposomes after coating with poly-L-arginine. A previous
report provided a deeper insight into the interaction of cationic peptides with the phospholipid bilayer
during the surface adsorption of positively-charged amino acids onto the liposomal surface [54]. The
results showed that the adsorption of cationic amino acids, like arginine, was not only driven by
electrostatic interactions, but also by polarization forces and caused surface rearrangements in the
phospholipid membrane. Zhang et al. [55] showed that siRNA-containing octaarginine-modified
liposomes efficiently inhibited the targeted gene and significantly reduced the tumor cell proliferation.

3.2. HIV-1 Trans-Activator of Transcription Peptide

TAT is a protein encoded by the TAT gene of HIV-1. TAT was discovered with the emergence of
various CPPs of natural (AntP/penetratin) and synthetic (mastoparan/transportan) origin that have
been alternatively termed as protein transduction domains (PTDs) [56,57]. Over recent years, TAT
peptide has gained significant attention in the field of nucleic acids and drug delivery. A previous study
compared the transfection efficiencies of the SLN gene delivery vector and polyethylenimine (PEI),
in vitro and in vivo. The presence of TAT significantly enhanced the gene expression of SLNs in different
cell lines as compared to the PEI nanoparticles [58]. Another group of scientists reported efficient gene
delivery using TAT peptide-functionalized polymeric nanoparticle complexes into undifferentiated and
differentiated SH-SY5Y cells [59]. TAT peptide-modified liposomes showed considerable improvement
in the delivery of plasmid-encoding green fluorescent protein (pGFP) to human brain tumor U-87
cells in vitro and in an intracranial tumor mice model [60]. TAT-modified liposomes synthesized
with small quantities of the cationic lipid, dioleoyl trimethylammonium propane (DOTAP) showed
substantially higher gene expression levels in mouse fibroblast NIH3T3 and cardiac myocyte H9C2
cells and lower cytotoxic potential as compared to the commercially available transfecting reagent
Lipofectin® [45,61]. Despite the large area of application of the TAT peptide, the exact mechanism of its
cellular internalization still appears controversial. Variable results illustrating different mechanisms of
uptake can result from variation in different experimental factors, like the wide range of the sequences
of TAT peptide used, variable cell lines and different protocols for the investigation of the mechanism
of entry, which can influence the mechanism of internalization of TAT peptide.

3.3. Penetratin

Penetratin is a 16-amino acid basic cationic CPP, derived from the antennapedia homeodomain,
which is capable of inducing the cell uptake of a large variety of molecular cargo [61]. The
peptide is translocated across the cell membranes by the third α-helix of the homeodomain of
antennapedia, known as penetratin. Previous biophysical studies have shown that even though
the entry of this peptide requires initial binding to the cell membrane, binding and translocation are
differentially affected by the amphiphilic nature and net charge of the peptide. Furthermore, the
internalization of penetratin is affected by the lipid composition of the plasma membrane [62,63].
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A group of researchers showed that the presence of negatively-charged lipids in the membrane
promote the transfer of penetratin from a hydrophilic to a hydrophobic environment likely via
charge neutralization. They showed that the transfer of penetratin can also occur in the absence
of the negatively-charged lipid by adding DNA oligonucleotides, by the same mechanism. Their
findings further confirmed that charge neutralization and phase transfer represented only the initial
step of internalization, while further uptake required the presence of tryptophan at position 6 of the
peptide [64]. A previous study showed enhanced accumulation of penetratin-functionalized PEG-(poly
lactic acid) (PLA) nanoparticles in rat brain and low uptake by non-specific organs, as compared to the
protamine-conjugated nanoparticles [65]. Another group of researchers showed improved transfection
efficiency of penetratin-conjugated polymethacrylates as compared to PEI-polymethacrylates and
comparable to the gene expression of Lipofectamine® [66]. Conjugation of penetratin with elastin like
polypeptides showed maximum reduction in growth and proliferation of human ovarian carcinoma
cells (SKOV-3) and HeLa cells [67].

3.4. Mastoparan

Mastoparan is a 14-residue peptide from wasp (Vespula lewisii) venom and belongs to a class of
peptides that are more amphipathic [68,69]. This peptide has been used in the construction of 21-residue
peptide transportan 10 (TP10), which has been widely investigated in the delivery of cargo like
proteins into cells [70]. The use of this amphiphilic peptide is restricted due its cytolytic effects [71–73].
Previous reports have indicated the application of mastoparan peptide for mitochondrial delivery,
causing increased apoptosis of tumor cells [74,75]. Yamada et al. reported that the peptide caused
increased permeability of the mitochondrial membrane, causing the leakage of components from the
mitochondrial matrix, eventually leading to apoptosis of tumor cells [76]. Another report showed that
the presence of mastoparan peptide, transportan 10 (TP10), significantly increased the transfection
efficiency of PEI. Furthermore, a low concentration (0.6 nM) of TP10 conjugates with DNA showed
efficient gene expression in HeLa cells and murine fibroblast C3H 10T1/2 cells [77].

Despite the significant advantage of using CPPs for increasing the transport of molecular cargo
across the cellular barriers, these highly-efficient carriers have had controversy due the associated
toxicity at high concentrations. The delivery of small molecules, vectors and other protein and nucleic
acid drugs that are associated with poor brain penetration can be efficiently transported across BBB
via adsorptive-mediated transcytosis (AMT). However, the non-specific uptake of the CPP or cationic
proteins can result in higher accumulations in blood vessels and peripheral organs. In addition, the
toxicity and immunogenicity associated with chemical modifications of proteins can pose a challenge
to the practical application of these agents in improving brain delivery. Previous studies have reported
membrane toxicity and tissue inflammation using CPPs and cationic albumin nanoparticles [15].
A recent report has indicated that it is non-toxic up to a concentration of 100 µM; however, after,
peptide-bound TAT demonstrated significant and chain length-dependent toxicity irrespective of the
sequence of peptide [73]. Another study indicated toxicity associated with a very high dose of the
TAT46–60 peptide [78].

4. Adsorptive-Mediated Transcytosis

The growing evidence indicating the success of the transport of therapeutic molecules into brain
via cationic proteins and cell-penetrating peptides (CPPs) has conveyed significant importance to
AMT as the route for the delivery of molecules across BBB. Table 1 illustrates commonly-used CPPs
with their features. Despite the variation in length and sequence of amino acids, these peptides share
some common features, like their amphipathic nature, net positive charge, theoretical hydrophobicity
and helical moment, the ability to interact with lipidic membranes and to adopt a distinct secondary
structure upon association with lipids [71]. Adenot et al. have previously reported an increase in the
penetration of various chemotherapeutic agents across BBB in in situ and in vitro cell-based models,
after conjugation with SynB3 CPP [79]. They reported an increase in brain delivery of doxorubicin
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by a factor of 30, benzylpenicillin by a factor of seven, paclitaxel by a factor of 22, dalargin by a
factor of 18 and morphine 6-glucoronide by a factor of 50 without disrupting the function of BBB.
Another study reported a significant increase in the uptake of dalargin after conjugation with SynB on
intravenous injection into mice [80]. In addition, TAT-conjugated nanoparticles and liposomes have
been used for the delivery of therapeutic agents across BBB. Qin et al. reported enhanced penetration of
cholestrol-PEG2000-TAT into brain as compared to cholesterol-PEG2000 and conventional cholesterol
liposomes [22]. Sharma et al. reported enhanced penetration of CPP-transferrin liposomes into
brains of adult Sprague Dawley rats as compared to transferrin-conjugated and conventional plain
liposomes [16,17]. A recent study demonstrated significantly (p < 0.001) higher accumulation of
penetratin-functionalized PEG-PLA nanoparticles in rats as compared to the low molecular weight
protamine nanoparticles [65].

Apart from the CPPs, cationic proteins have also been employed to increase the penetration of
therapeutic agents across BBB via an adsorptive-mediated mechanism. Poduslo and Curran [81]
demonstrated that polyamine modification of proteins (albumin, insulin and IgG) dramatically
increased their penetration across BBB. The permeability of insulin increased by 1.7–2.0-fold; albumin
increased by 54–165-fold; and IgG increased by 111–349-fold [81]. A previous study compared cationic
bovine serum albumin-conjugated PEG-PLA nanoparticles (CBSA-NP) with the native bovine serum
albumin-conjugated NP (BSA-NP) and unconjugated nanoparticles (NP) for brain delivery in mice [82].
The results demonstrated that the penetration of CBSA-NP increased by 2.3-fold as compared to NP.
Although cationic proteins have shown considerable improvement in the delivery of molecules or
delivery vectors across BBB, toxicity or immunogenicity associated with this chemical modification
cannot be ruled out [37].

However, one of the difficulties for brain delivery is the poor ability of the formulation to
escape from endosomes, which leads to the degradation or accumulation of drug moieties inside
brain endothelial cells. This can be overcome by either the use of a pH-sensitive formulation or the
use of cationic molecules [83,84]. The mechanism behind the use of the pH-sensitive formulation
is the destabilization of the endosomal membrane by fusogenic peptides. The fusogenic peptides
undergo conformational changes upon the change in pH, which leads to lipid merging and ultimately
endosomal membrane fusion [85,86]; while in the case of cationic molecules, the binding of cationic
molecules to the endosomal membrane causes thinning of the chain region and creates an internal
membrane tension. This tension in the membrane is strong enough to create pores in the endosomal
membrane [87]. It has been reported earlier that caveolin-1 protein assists in transcytosis across the
endothelial layer [16,88].

Table 1. Features of some naturally-occurring cell-penetrating peptides [14,71,89,90].

CPP Amino Acid Sequence Net Charge Cell Lysis Activity

pAntp43–68 (Penetratin) RQIKIWFQNRRMKWKK +8 No
SynB1 RGGRLSYSRRFSTSTGR +6 Yes

SBP MGLGLHLLVAAALQGAWSPKKKRKV +6 No
SynB3 RRLSYSRRRF +6 -

Transportan GWTLNSAGYLLGKINLKALAALAKKIL +4 No
FBP GALFLGWLGAAGSTMGAWSQPKKKRKV +6 -

TAT48–60 GRKKRRQRRRPPQ +8 No

CPP, cell-penetrating peptide.

5. Receptor-Mediated Transcytosis

Receptor-mediated transcytosis (RMT) overcomes the limitation of the non-specific uptake by
peripheral tissues and blood vessels, thus reducing the side effects associated with AMT. Upregulation
of certain receptor types in a diseased condition further enhances the opportunity for active targeting
of therapeutic molecules to specific sites and tissues, e.g., transferrin receptors are overexpressed on
brain endothelium, and the receptor expression is significantly upregulated in tumor conditions [46,91].
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Cargo molecules, like proteins, peptides and delivery vectors, can be linked with an active targeting
ligand and transported across BBB via RMT. Therefore, this approach is also called as the Trojan horse
approach [12,92]. Increased understanding of BBB biology and genomics has led to the discovery of a
large number of transporters and receptors that can be used for the delivery of molecules across BBB.
In general, there are three steps involved in RMT [12,92]:

(1) Endocytosis of the molecules on the luminal (blood) side after binding of the ligand to the
targeted receptor.

(2) Movement of the molecules across the endothelial cytoplasm.
(3) Exocytosis of the drug/ligand-attached drug or delivery vector on the abluminal (brain) side.

The second step sometimes leads to endosomal/lysosomal degradation of the drug molecules or
cargo. This fate is overcome by using pH-sensitive liposomes or cationic peptides/molecules [83,84].
Certain targeting ligands, like diphtheria toxin, have endosomal escaping ability [93]. Advantageously,
the lysosomal/endosomal escaping phenomenon is not required for brain delivery and successful
transport of small drug molecules, liposomes, nanoparticles and polymeric complexes to brain [93–97].

Transferrin receptors are the most commonly-targeted receptors for the delivery of therapeutic
agents to brain. The role of transferrin receptors in BBB transport is given below.

Transferrin Receptors

Transferrin receptors (TfR) are the widely-studied systems for the RMT of delivery vectors and
therapeutic agents across BBB. The receptor is a transmembrane glycoprotein with two subunits of
90 kDa that are linked by a disulfide bridge, and each of these subunits can bind to one molecule
of transferrin [98]. In addition to the BBB, this TfR is also expressed on hepatocytes, monocytes,
erythrocytes, intestinal cells, epithelial cells of choroid plexus and neurons. TfRs on BBB mediate the
transport of iron bound to transferrin into the brain. Nanoparticles, liposomes and therapeutic drug
molecules can be conjugated to either transferrin protein or transferrin monoclonal antibody (OX-26).
The TfR-targeted monoclonal antibody binds to a different site as compared to transferrin protein
and, therefore, is less likely to interfere with the endogenous transferrin in circulation. A recent study
reported an improvement in the expression of luciferase gene in C6 glioma cells, primary hippocampal
neurons and primary cortical neurons on transfection with transferrin-modified cationic liposomes,
as compared to conventional plain liposomes. However, the transfection levels were low with the
conjugation of transferrin protein. There low transfection levels with the transferrin-conjugated
delivery vector were attributed to the high concentration of transferrin protein in circulation, which
competes with the transferrin on the nanoparticle system [99]. Another limitation of using transferrin
as a delivery system is that exogenously-supplied transferrin can lead to an overdose of iron transport
into brain. In order to avoid the limitations of using transferrin as a delivery system, transferrin
receptor-targeted antibodies have been used that bind to a receptor binding site differently compared
to the transferrin protein. Different antibodies that have been evaluated include OX26 (anti-rat TfR
monoclonal antibody), R17-217 and 8D3 (anti-mouse TfR monoclonal antibody) were all examined.
Comparison of the brain uptake of R17-217 and 8D3 revealed a higher uptake of 8D3 (3.1% injected
dose/gram of tissue) as compared to R17-217 (1.7% injected dose/gram of the tissue) [100]. Ulbrich et al.
investigated the distribution and brain targeting properties of human serum albumin nanoparticles
conjugated to transferrin protein or transferrin monoclonal antibodies (OX26 or R17-217) for the
delivery of loperamide (does not cross BBB) [101]. The results demonstrated significant anti-nociceptive
effects with loperamide-loaded human serum albumin HSA nanoparticles after covalent modification
with transferrin or antibodies (OX-26 or R17-217). The study also showed enhanced transport of
transferrin monoclonal antibody-modified nanoparticles across BBB as compared to the IgG2a antibody
or transferrin-modified nanoparticles, thus further confirming the efficacy of monoclonal antibodies
over transferrin protein for the delivery of therapeutic agents to brain [101]. A recent report showed
a comparison of different targeting ligands in improving the transport of molecules to brain. Five



Int. J. Mol. Sci. 2016, 17, 806 8 of 18

different targeting ligands were compared for their ability to target brain, both in vitro and in vivo:
transferrin, R17-217 (against TfR), COG 133 (against low density lipoprotein receptor (LDLR) and
lipoprotein receptor protein (LRP)), angioprep-2 (against LRP) and cross-reacting material (CRM) 197
(against diphtheria toxin receptor (DTR)). The in vitro results showed that only R17-217 and CRM197
were observed to be associated with human endothelial cells, and only R17-217 showed enhanced
brain uptake of liposomes in Balb/c mice at all time points after intravenous injection [102]. The
authors studied the distribution of 3H-labelled liposomes in brain capillaries using the capillary
depletion method and observed that the distribution of R17-217 liposomes was 10-times more than
the untargeted liposomes. In addition, R17-217 liposomes were the only ones whose concentration
was maintained in the brain over a period of 6 h and was 0.18% of the injected dose/gram of tissue
after 12 h. The authors also suggested that the higher accumulation of this antibody in comparison to
the other groups could be due the higher molecular weight and higher affinity of the antibody to the
receptors, leading to a stronger brain targeting ability and a lower rate of elimination [102]. Although
the targeting ligand has a significant contribution in improving the delivery of molecules to brain,
there are other parameters, like matrix material, particle size, surface properties and the density and
conformation of targeting ligand, that also play an important role in brain delivery. A recent study
performed by Sharma et al. also showed higher accumulation of transferrin-CPP-modified liposomes
in rat brain after 24 h of intravenous administration [17]. The authors proposed a dual mechanism
for improved and targeted delivery of transferrin-modified liposomes (Figure 2). The conjugation
of CPP with transferrin liposomes enhanced the penetration of transferrin liposomes into brain by
overcoming receptor saturation versus the transferrin-conjugated or untargeted liposomes. Transferrin
(Tf) has been evaluated to be an important target for delivery to brain. However, more studies need
to be conducted in order to fully understand the function and performance of targeting ligands. The
expression of TfR on brain endothelial cells was observed to decrease in brain ischemia [103]. In
contrast, the expression was observed to be decreased in the hippocampus of patients with AD, as
compared to normal humans [104,105]. However, there was a marked increase in the expression of
transferrin receptors during brain injury and after intra-cerebral hemorrhage [106].
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Figure 2. Uptake of liposomes by cells via a dual-mechanism involving receptor targeting and
cell penetration.

Several studies have been performed to show the overexpression of TfR on brain endothelial
cells [107,108]. The TfR is expressed, with 10,000–100,000 molecules per cell commonly found on
proliferative brain endothelial (bEnd.3) cell lines in culture [109,110]. Such a high density of TfR
at BBB will facilitate the greater transport of drug encapsulated and surface-modified with Tf and
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CPP liposomes across the BBB. Additionally, an immunohistochemical evaluation of normal brain
tissue and tumor biopsy revealed a differential staining pattern for TfRs on brain endothelial cells of
normal and tumor tissue, indicating a higher level of expression in tumor-associated brain endothelial
cells [111].

Various in vitro cell culture-based and in situ models have been used in the past to study the
transport of molecules across the barrier layer. Despite the simplicity of the construction of the in vitro
models, these models are limited by the lack of features, like cell-cell interactions generated in in situ
models (e.g., induction, signaling, etc.). Traditionally, the transport of dyes, such as Evans Blue-albumin
and fluorescein, measuring the permeability coefficient of the brain endothelium for small radiolabeled
molecules, such as sucrose and mannitol, have been used [16,39]. More recently, microelectrode
techniques, cable analysis and transendothelial electrical resistance (TEER) instruments have been
used to determine the resistance across the endothelial barrier [16].

6. Nanocarriers for Delivery across BBB

These are nanoscale carriers for the delivery of therapeutic drugs or other molecules and consist
of particles in the size range of 100–1000 µm [112]. These nanocarrier systems include polymeric
nanoparticles and lipid-based particles, e.g., liposomes and solid lipid nanoparticles. This emerging
class of delivery systems can be easily customized to transport desired therapeutic agents to specific
tissues in the body. With the rapid development in polymer chemistry and nanotechnology coupled
with an increased understanding of the molecular biology of brain and various receptor systems
that can be used to target brain, the development of nanocarriers for delivery to brain has gained
the increasing attention of scientists across the world. They can be surface modified for targeting
specific receptors, can carry the therapeutic drugs and molecules in sufficient amounts and provide
a controlled/targeted release of the therapeutic agent. Ideal nanocarriers should have the following
properties for the delivery of drugs/therapeutic agents across BBB [113,114]:

(1) They should be biodegradable, non-toxic and biocompatible.
(2) They should preferably have a size of less than 200 nm.
(3) They should not aggregate/dissociate in blood and should be stable in circulation.
(4) They should be non-immunogenic.
(5) They should have a targeting moiety coupled for delivery across BBB via receptor/adsorptive

transcytosis or monocytes and macrophages.
(6) The drug (small molecules, peptides, proteins, nucleic acids) carried should be stable, and the

drug release should be tunable.

A large variety of nanocarriers have been developed so far; however, only polymeric nanoparticles
and amphiphilic lipids forming liposomes have been extensively exploited for the delivery of
therapeutic agents to brain [115]. Table 2 shows various nanocarriers for drug and gene delivery
to brain. Several polymeric and liposomal delivery systems for the treatment of brain disorders
have reached clinical trials. The University of Regensburg in collaboration with Essex Pharma
(Schering-Plough) has successfully completed phase 2 of clinical trials for PEGylated liposomal
doxorubicin and prolonged temozolomide in combination with radiotherapy in the treatment of
glioblastoma [7,116]. Another PEGylated doxorubicin formulation surface modified with glutathione
is currently in phase I/II clinical trials in the Antoni van Leeuwenhoek hospital, the Netherlands.
Non-amphiphilic colloidal drug carriers, like dendrimers and micro-emulsions, are still at relatively
early stages of development.
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Table 2. Examples of drug and gene delivery vectors for transport across BBB.

Nanoparticles for Brain Delivery Properties References

Bolaamphiphilic cationic vesicles High serum stability, efficient cell uptake and improved
brain targeting [117,118]

Poly(lactide-co-glycolide)
(PLGA) nanoparticles

Biocompatible, biodegradable, efficient cellular uptake
and delivery of therapeutic agents into cells [119,120]

Angiopep-conjugated nanoparticles
Internalization by brain capillary endothelial cells,
efficient cell uptake, transport across BBB
and gene expression

[121,122]

CPP-modified Tf-liposomes Biocompatible, efficient cell uptake, transfection,
transport across BBB in vitro and in vivo [16–18]

RVG peptide-conjugated nanocarriers High serum stability, biocompatibility, efficient
transfection in vitro and in vivo [123,124]

Solid lipid nanoparticles Biocompatible, efficient cell uptake and drug delivery
in vitro, efficient brain delivery in vivo [125–127]

TAT-liposomes Efficient cell uptake, low cytotoxicity, improved brain
targeting and penetration [22,128]

Surfactant-coated nanoparticles Efficient brain penetration and
improved therapeutic efficacy [129–131]

Antibody-conjugated nanoparticles Significantly enhanced brain delivery, biocompatible,
improved therapeutic efficacy [132–134]

6.1. Liposomes

Liposomes are lipid vesicles that have an inner aqueous core surrounded by a phospholipid
bilayer. The pulsating development of targeted nanoparticulate systems has allowed efficient
delivery of therapeutic agents to brain [51]. Various nano-constructs, like liposomes, dendrimers,
lipid-polymeric nanoparticle systems and nanocapsules, have been evaluated in the recent past for
the delivery of desired cargo to the target site [135–139]. The versatility of liposomes, their ability
to efficiently protect the encapsulated therapeutic agent in circulation and the simplicity of surface
engineering provide a substantial advantage to the liposomal delivery vectors over other nanoparticle
systems [140,141]. These liposomes can be conjugated to proteins for targeting specific receptors.
Furthermore, sterically-stabilized liposomes, surface modified with polyethylene glycol (PEG), show a
reduction in clearance by the reticuloendothelial system and immunogenic response of the targeting
proteins [142,143]. Low elimination by the liver and spleen increases the circulation time of liposomes
and improves the bioavailability of encapsulated molecules for therapeutic action [144,145].

Functionalization with Ligands for Synergizing the Transport across BBB

Liposomes can be functionalized with one or more ligands for improving the delivery of the
encapsulated drug or plasmid to specific cells. Conjugating to multiple ligands can help perform
multiple functions, e.g., one vector can facilitate brain tissue targeting, and another ligand can induce
cellular uptake and/or intracellular translocation to specific cell compartments, like the nucleus for
delivery of pDNA [146].

Conventional liposomes, composed of cholesterol and phospholipids, suffer from high plasma
clearance and low transport across BBB. These liposomes can be surface modified with different ligands,
like proteins, peptides and antibodies, for targeting specific receptors [147]. Xiang et al. showed
increased tumor transport of chlorotoxin-modified PEGylated liposomes loaded with doxorubicin
and greater inhibition of the tumor growth as compared to the unmodified liposomes [148]. In
another study, Ying et al. [149] evaluated dual-targeting liposomes surface functionalized with
p-aminophenyl-α-D-mannopyranoside and transferrin for crossing the BBB. The dual-modified
liposomes showed enhanced transport across in vitro BBB and significantly decreased the C6 glioma
tumor volume in rat models [149]. A recent report showed the comparison of five different targeting
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ligands (transferrin, RI7217, COG133, angiopep-2 and CRM197) in improving the brain delivery of
liposomes [102]. RI7217 is the antibody targeted to mouse transferrin receptors; COG133 is an apo-E
mimetic peptide targeted to the low density lipoprotein receptors (LDLR) on the surface of BBB;
angiopep-2 can bind to the LDLR-related protein on the brain endothelial cells; and CRM197 can bind
to the diphtheria toxin receptor (DTR). The results indicated that only CRM197 was able to bind to the
brain endothelial receptors in vitro, while RI7217 showed maximum uptake into brain in vivo.

7. Conclusions and Future Prospects

The multi-ligand nanocarriers bear the potential to serve as safe and efficient non-viral vectors for
the transport of desired therapeutic molecules across the BBB.

Specifically, a combination of CPP and receptor-targeting protein (e.g., transferrin) can serve
as a promising platform for the design of novel drug and gene delivery vectors. In this review, we
have described various challenges involved in the successful transport of therapeutic agents to brain.
Transferrin is the most common receptor targeted for delivery of small molecules or proteins across
BBB [16]. A combination of the receptor targeting properties of this protein and the efficient cell
penetration property of the CPPs has shown significant improvement in brain delivery as compared to
only single ligand receptor-targeting agents [17]. This platform can be further manipulated to employ
different targeting ligands, like receptor binding amino acid sequences of antibodies and proteins
for delivery to desired cells. These specific receptor binding sequences, in combination with short
chain CPP sequences, are anticipated to augment the targeting and cellular delivery of lipid-based
nanocarriers across different cellular barriers [17]. This approach could therefore be used to target
numerous receptors, such as insulin, neuronal nicotinic acetyl choline, vascular endothelial growth
factor receptors, etc., for the treatment of diseases, like diabetes, Alzheimer’s disease, schizophrenia
and tumors.
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