Supplementary Materials: Cardiac Stem Cell Secretome Protects Cardiomyocytes from Hypoxic Injury Partly via Monocyte Chemotactic Protein-1-Dependent Mechanism

Chi-Yeon Park, Seung-Cheol Choi, Jong-Ho Kim, Ji-Hyun Choi, Hyung Joon Joo, Soon Jun Hong and Do-Sun Lim

Figure S1. Phenotypic characterization of Sca-1+/CD31+ CSCs^{*hTERT*}. Sca-1+/CD31+ CSCs^{*hTERT*} were analyzed by immunostaining (**A**) and flow cytometry (**B**) with different cell surface antibodies. Scale bars = $20 \mu m$.

Figure S2. Comparison of paracrine factors secreted from primary Sca-1+ CSCs and Sca-1+/CD31– CSCs^{hTERT}. (**A**) CMs secreted from primary Sca-1+ CSCs and Sca-1+/CD31– CSCs^{hTERT} were subjected to a mouse cytokine antibody array detecting 21 cytokines in duplicate. Solid lined boxes indicate differentially secreted paracrine factors, VEGF (marked by number 7) and IL-6 (marked by number 15) between primary Sca-1+ CSCs (**A**) and Sca-1+/CD31– CSCs^{hTERT} (**B**); (**C**) VEGF and IL-6 secreted from primary Sca-1+ CSCs and Sca-1+/CD31– CSCs^{hTERT} (**B**); (**C**) VEGF and IL-6 secreted presented as fold changes for individual cytokines, taking primary Sca-1+ CSCs as a one-fold value.

Clone Number	Cell Number					
	Day 1	Day 5	Day 6	Day 7	Day 8	Day 12
1	1	2	3	_	_	_
2	1	5	6	14	16	17
3	1	6	11	24	44	>200
4	1	2	1	1	_	_
5	1	2	3	8	9	_
6	1	1	1	_	_	_
7	1	1	2	4	1	-
8	1	11	19	30	51	>200
9	1	2	1	1	1	_
10	1	2	2	2	2	3
11	1	7	14	19	38	105
12	1	4	2	_	_	_
13	1	5	10	32	50	29
14	1	4	3	3	-	_
15	1	3	9	4	2	-
16	1	9	13	19	30	89
17	1	10	23	29	88	>200
18	1	6	21	15	16	_
19	1	_	_	-	-	_
20	1	3	8	10	9	7

Table S1. Selection of *hTERT*-immortalized Sca-1+ CSC lines by limiting dilution.