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Abstract: Herein, we reported on a series of synthetic nitric oxide-releasing enmein-type diterpenoid
hybrids (9a–i). All the target compounds showed potent antibacterial activity against selected
Gram-positive bacteria S. aureus and B. subtilis. The antiproliferative activity against human tumor
K562, MGC-803, CaEs-17 and Bel-7402 cells, and human normal liver cells L-02 was tested and the
structure activity relationships (SARs) were also concluded. Compounds 9b and 9d showed the best
activity against S. aureus and B. subtilis with the same minimal inhibitory concentrations (MICs) of 4
and 2 µg/mL, respectively. The derivative 9f displayed IC50 values of 1.68, 1.11, 3.60 and 0.72 µM
against the four cancer cell lines above and 18.80 µM against normal liver cells L-02; meanwhile, 9f
also released a high level of NO at the time point of 60 min of 22.24 µmol/L. Furthermore, it was
also found that 9f induced apoptosis via the mitochondria-related pathway and arrested cell cycle of
Bel-7402 cells at S phase. These findings might be important to explore new chemical entities for the
main causes of in-hospital mortality of S. aureus infection, combined with a solid tumor.
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1. Introduction

Bacterial infections, causing deadly diseases, have increased at an alarming rate [1,2]. The development
of drug resistance among the infectious bacterial strains and absence of effective preventive measures
have become the two major driving forces for design and identify suitable active new chemical
entities. On the other hand, cancer, uncontrolled, rapidly proliferating, abnormal cells, is now the
second leading cause of human deaths, and the high mortality rate engages with the rising number
of diverse cancer types [3]. These have triggered research aiming to find new lead structures that
may be beneficial in the design of novel antitumor agents [4,5]. Patients with neoplastic disorders
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are subjected to chemotherapeutic treatment, and susceptible to microbial infections due to the poor
immunity [6]. For example, Staphylococcus aureus is a pathogen responsible for the main causes of
in-hospital mortality [7]. Therefore, the discovery of new novel potent antibacterial and antitumor
chemical entities is challenging work for medicinal chemists [8–11].

A potential solution is to explore innovative natural scaffolds from natural sources [12,13].
Among numerous exploited medicinal plants, the Isodon species are traditionally used as antitumor
and antibacterial folk medicine and have many complex and bioactive diterpenoids [14,15]. They have
recently received great attention from researchers from many research fields [16–18]. In this context,
enmein-type ent-kauranoids, one of the important and main classes of diterpenoids from the plants of
Isodon species with antitumor and antibacterial activities, are worthy of intensive investigation.

Nitric oxide (NO) is an endogenous, small and reactive molecule, which has various physiological
and biological properties [19–21]. High concentration of NO is cytotoxic to tumor cells by inducing
tumor cell apoptosis, sensitizing drug-resistant tumor cells, and inhibiting tumor metastasis, and
so on [22,23]. NO also exhibits antimicrobial activity and kills bacteria through lipid peroxidation,
DNA cleavage, and protein dysfunction. The multiple bactericidal pathways of NO make it a potent
broad-spectrum antimicrobial agent with low risk [24–26]. Thus, NO-donating groups are good
pharmacophores for both antitumor and antibacterial agents.

On the basis of the above, we developed a series of new enmein-type ent-kauranoid derivatives
containing furozan-based NO-donors. The antibacterial potency, antiproliferative activity and NO
releasing ability of target compounds were tested. Furthermore, the preliminary antitumor mechanisms
were also disclosed.

2. Results and Discussion

2.1. Chemistry

Diphenylsulfonylfuroxan (4) was obtained in a three-step sequence starting from benzenethiol
(1), and was then treated with corresponding diol to afford monophenylsulfonylfuroxans (5a–c).
Furoxan-based NO donors intermediate 6a–i were obtained from the condensation of 5a–c with
corresponding anhydride. Enmein-type ent-kauranoid derivative 8 was synthesized from oridonin
(7) by treatment with sodium periodate in water. Target NO donor/enmein-type ent-kauranoid
hybrids 9a–i were designed and synthesized from 8 with 6a–i in the presence of DMAP/EDCI in DCM.
Flash chromatography was used only at the last step of the synthetic route of each target compound
(Scheme 1) [22,27].

2.2. Antimicrobial Activity

The antibacterial activity of NO donor/enmein-type ent-kauranoid hybrids 9a–i against the
Gram-negative bacterium Escherichia coli (ATCC 25922), Gram-positive bacterium Staphylococcus aureus
(ATCC 29213) and Bacillus subtilis (CMCC 63501), and the fungus Monilia albicans (ATCC 10231) was
first disclosed and summarized in Table 1. Parent compound enmein-type 6,7-seco-ent-kauranoid
8 showed the minimum inhibitory concentration (MIC) above 100 µg/mL and derivatives 9a–i
exhibited antibacterial activity against gram-positive bacterium S. aureus and B. subtilis to some
extent. In the S. aureus strain, 9a–i exhibited similar or stronger antibacterial activity than 7,
which meant that structural modifications introduced going in the right direction, improving its
biological properties. In the B. subtilis strain, 9b–d and 9i were even more potent than positive
control chloromycetin. Thus, the introduction of NO-donor substituent groups at the 14-position
of enmein-type 6,7-seco-ent-kauranoid could improve antimicrobial activity against S. aureus and
B. subtilis. However, almost all of them were inactive (MIC > 100 µg/mL) against E. coli and M. albicans,
and target compounds selectively inhibited Gram-positive bacteria S. aureus and B. Subtilis.
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Scheme 1. Synthesis of NO donor/enmein-type ent-kauranoid hybrids 9a–i. Reagents and conditions: 
(a) ClCH2COOH, NaOH(aq), 140 °C, 2 h; (b) 30% H2O2, AcOH, rt, 3 h; (c) fuming HNO3, 90 °C, 4 h; 
(d) diol, THF, 30% NaOH, 0 °C, 4–8 h; (e) triethylamine, succinic anhydride, DMAP, rt, 1 h; (f) NaIO4, 
H2O, rt, 6 h; (g) 6, EDCI, DMAP, rt, 12 h. 

Table 1. The antimicrobial activity of the synthesized compounds (MIC μg/mL). 

Compound E. coli S. aureus B. subtilis M. albicans 
7 >100 32 32 >100 
8 >100 >100 >100 >100 

9a >100 16 64 >100 
9b >100 4 2 >100 
9c >100 8 4 >100 
9d >100 4 2 >100 
9e >100 16 16 >100 
9f >100 32 64 >100 
9g >100 16 16 >100 
9h >100 16 16 >100 
9i >100 16 2 >100 

Chloromycetin 4 4 8 NT 1 
Fluconazole NT NT NT 4 

1 NT, not test. 

The most promising compounds 9b and 9d exhibited the strongest antibacterial activity among 
9a–i with MICs of 4 and 2 μg/mL against S. aureus and B. subtilis. The substituents (R1 and R2) of 9b 
were (CH2)2 and (CH2)3, respectively, while the substituents were (CH2)3 and (CH2)2 of 9d. 
Coincidentally, two of the most active compounds, 9b and 9d, had the same total linkage length of 
five carbons (CH2)5. The linkages between NO donor and parent compound always affected the 
biological activity. Different lead compounds had their own favorable linker [22,23,28,29]. 

Scheme 1. Synthesis of NO donor/enmein-type ent-kauranoid hybrids 9a–i. Reagents and conditions:
(a) ClCH2COOH, NaOH(aq), 140 ˝C, 2 h; (b) 30% H2O2, AcOH, rt, 3 h; (c) fuming HNO3, 90 ˝C, 4 h;
(d) diol, THF, 30% NaOH, 0 ˝C, 4–8 h; (e) triethylamine, succinic anhydride, DMAP, rt, 1 h; (f) NaIO4,
H2O, rt, 6 h; (g) 6, EDCI, DMAP, rt, 12 h.

Table 1. The antimicrobial activity of the synthesized compounds (MIC µg/mL).

Compound E. coli S. aureus B. subtilis M. albicans

7 >100 32 32 >100
8 >100 >100 >100 >100

9a >100 16 64 >100
9b >100 4 2 >100
9c >100 8 4 >100
9d >100 4 2 >100
9e >100 16 16 >100
9f >100 32 64 >100
9g >100 16 16 >100
9h >100 16 16 >100
9i >100 16 2 >100

Chloromycetin 4 4 8 NT 1

Fluconazole NT NT NT 4
1 NT, not test.

The most promising compounds 9b and 9d exhibited the strongest antibacterial activity among
9a–i with MICs of 4 and 2 µg/mL against S. aureus and B. subtilis. The substituents (R1 and R2)
of 9b were (CH2)2 and (CH2)3, respectively, while the substituents were (CH2)3 and (CH2)2 of 9d.
Coincidentally, two of the most active compounds, 9b and 9d, had the same total linkage length of five
carbons (CH2)5. The linkages between NO donor and parent compound always affected the biological
activity. Different lead compounds had their own favorable linker [22,23,28,29].
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2.3. Antiproliferative Activity

The antiproliferative activity of 9a–i against four human cancer cell lines K562 leukemia cell line,
MGC-803 gastric cancer cell line, CaEs-17 esophageal cancer cell line, and Bel-7402 hepatoma cell line,
and human normal liver cells L-02 was evaluated by MTT assay (Table 2). All the target molecules 9a–i
were stronger than oridonin 7 with IC50 values below 1.33 µM and lower than Taxol (1.89 µM) against
Bel-7402 cell line. The most potent 9f with IC50 of 0.72 µM was 1-fold stronger than Taxol. While, target
compounds were not so sensitive to CaEs-17 cells with IC50 ranging from 3.60 to 5.13 µM. IC50 values
against MGC-803 cell line were a little weaker than Taxol, between 1.11 to 1.83 µM. For K562 cell line,
the antiproliferative activity of all the derivatives was weaker than Taxol. Most NO donor derivatives
showed cytotoxic selectivity between tumor and normal liver cells to some extent, with IC50 values
ranging from 10.36 to 19.87 µM against L-02 normal liver cells. These results confirmed previous
reports [28,29] that some NO donating derivatives showed less cytotoxicity to normal cells.

Table 2. Antiproliferative activity of the synthesized compounds (IC50 µM).

Compound K562 MGC-803 CaEs-17 Bel-7402 L-02 SI 2

7 4.76 ˘ 0.32 5.69 ˘ 0.39 11.03 ˘ 1.02 7.48 ˘ 0.53 18.26 ˘ 0.81 2.4
8 8.11 ˘ 0.76 14.21 ˘ 1.22 30.84 ˘ 2.09 32.96 ˘ 2.19 24.37 ˘ 1.59 0.7

9a 2.47 ˘ 0.16 1.83 ˘ 0.16 5.12 ˘ 0.42 1.33 ˘ 0.10 10.36 ˘ 0.61 7.7
9b 2.31 ˘ 0.21 1.62 ˘ 0.08 4.83 ˘ 0.30 1.20 ˘ 0.08 16.73 ˘ 0.17 13.9
9c 1.93 ˘ 0.10 1.34 ˘ 0.13 3.76 ˘ 0.37 0.83 ˘ 0.06 19.87 ˘ 0.18 23.9
9d 2.15 ˘ 0.12 1.50 ˘ 0.10 4.98 ˘ 0.42 1.23 ˘ 0.08 13.58 ˘ 1.31 11.0
9e 1.92 ˘ 0.09 1.29 ˘ 0.12 4.27 ˘ 0.35 0.92 ˘ 0.05 17.20 ˘ 0.77 18.6
9f 1.68 ˘ 0.12 1.11 ˘ 0.05 3.60 ˘ 0.12 0.72 ˘ 0.04 18.80 ˘ 1.25 26.1
9g 2.26 ˘ 0.08 1.43 ˘ 0.08 5.13 ˘ 0.22 1.27 ˘ 0.11 11.57 ˘ 0.39 9.1
9h 2.11 ˘ 0.16 1.49 ˘ 0.11 4.68 ˘ 0.31 1.08 ˘ 0.05 12.09 ˘ 1.08 11.1
9i 1.86 ˘ 0.18 1.25 ˘ 0.10 3.82 ˘ 0.19 0.78 ˘ 0.04 14.57 ˘ 0.86 18.6

Taxol 1 0.41 ˘ 0.02 0.85 ˘ 0.06 0.43 ˘ 0.03 1.89 ˘ 0.09 3.73 ˘ 0.17 1.9
1 Taxol was used a positive control. Data were means ˘ SD of three experiments; 2 SI: selectivity index. It was
calculated as: SI = IC50, L-02/IC50, Bel-7402.

In most cases against the selected tumor cell lines, among the derivatives 9a–i, when the
substitution R1 was the same (9a–c, 9d–f and 9g–i) and R2 was changed among (CH2)2, (CH2)3,
and o-C6H4 in each group, compounds (9c, 9f and 9i) with R2 of aromatic group of o-C6H4 showed
stronger activity than corresponding ones with alkyl groups (9a, 9b, 9d, 9e, 9g and 9h). Between alkyl
substituents (CH2)2 and (CH2)3 in R2, the latter one (9b, 9e and 9h) was favorable. For example, 9i with
the same R1 of (CH2)4 as 9g and 9h, and R2 of o-C6H4, showed slightly lower IC50 values of 1.25, 1.86,
3.82 and 0.78 µM against K562, MGC-803, CaEs-17 and Bel-7402 tumor cells, respectively. When the
substitution R2 was the same and R1 was changed among (CH2)2, (CH2)3, and (CH2)4, compounds
showed statistically equal IC50 values.

2.4. NO-Releasing Ability

The NO-releasing ability of 9a–i was determined by Griess assay at 100 µM and measured at
the time point of 10, 20, 30, 40, 50 and 60 min (Figure 1). The concentrations of released NO for all
synthetic hybrids increased with time and were more than 20 µmol/L (except 9c) at the time point of
60 min. High NO releasing ability might, at least to a certain extent, contribute to antiproliferative and
antibacterial activities [23,26]. The most promising NO-releasing enmein-type 6,7-seco-ent-kauranoid
derivative was 9f with the highest selectivity index (SI) value of 26.1. It was chosen for intensive
mechanism study on hepatoma Bel-7402 cell line.
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Cell cycle arrest is an important sign for inhibition of proliferation and the series of events that 
take place in a cell leading to its division and replication. Some NO donating hybrids exhibited cell 
cycle arrest properties [28]. As the inhibitory effect of 9f on cell proliferation was observed, we next 
assessed the effect on the cell cycle distribution of Bel-7402 cells by flow cytometry (Figure 2). 
Treatment of Bel-7402 cells with 9f at 0.25, 0.5 and 1 μM resulted in a remarkable increase in the 
percentage of cells in S/G2 phase from 25.51% of control group to 31.78%, 45.33%, and 49.78%, 
respectively. Compound 9f could influence Bel-7402 cell cycle progression at low micromolar 
concentrations in a dose-dependent manner. 
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Figure 1. NO-releasing ability of compounds 9a–i.

2.5. Influence of 9f on the Bel-7402 Cell Cycle

Cell cycle arrest is an important sign for inhibition of proliferation and the series of events that take
place in a cell leading to its division and replication. Some NO donating hybrids exhibited cell cycle
arrest properties [28]. As the inhibitory effect of 9f on cell proliferation was observed, we next assessed
the effect on the cell cycle distribution of Bel-7402 cells by flow cytometry (Figure 2). Treatment of
Bel-7402 cells with 9f at 0.25, 0.5 and 1 µM resulted in a remarkable increase in the percentage
of cells in S/G2 phase from 25.51% of control group to 31.78%, 45.33%, and 49.78%, respectively.
Compound 9f could influence Bel-7402 cell cycle progression at low micromolar concentrations in a
dose-dependent manner.
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2.6. Induction of Apoptosis by 9f

To examine the potent cancer cell antiproliferative effect of 9f on Bel-7402 cells, the number of
apoptotic cells was monitored using flow cytometry. The total percentage of apoptotic cells (early and
late, Q2 + Q4) was 7.88% treated with a vehicle alone. In comparison with the control group, 2.76-, 4.54-,
and 8.01-fold percentages of apoptotic cells were observed when different concentrations (0.25, 0.5
and 1 µM) of 9f were added to Bel-7402 cells. As shown in Figure 3, compound 9f caused significant
induction of apoptosis in a dose-dependent manner in Bel-7402 cells and resulted in 21.74%, 35.78%
and 63.15% apoptotic cells, respectively.
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2.7. 9f Induced Mitochondrial Depolarization

In the field of cancer, cellular apoptosis plays a very important role. The loss of mitochondrial
membrane potential is a key event during drug-induced apoptosis. In order to investigate the
mitochondria related effect of 9f, the fluorescent probe JC-1 (Keygen, KGA601, Nanjing, China)
was used to detect the changes on mitochondrial membrane potential. Before Bel-7402 cells were
stained with JC-1, cells were incubated with 0, 0.15, 0.3, and 0.6 µM of 9f. Then, the flow cytometry
analysis was carried out to determine the cell numbers with collapsed mitochondria in different
cell groups (Figure 4). The percentage of apoptotic cells increased in a dose-dependent fashion
and showed 4.62%, 8.81%, 21.82% and 25.98%, respectively. These results together with Annexin-V
and PI double stain apoptosis assay confirmed that 9f could induce apoptosis in a Bel-7402 cells
mitochondria-related pathway.
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3. Materials and Methods

3.1. Chemistry

3.1.1. General

All commercially available solvents and reagents were purchased from a local commercial supplier
(Yuwang Chemical Industries, Ltd., Shenyang, China) and used directly. Melting points (m.p.) were
tested using micro melting point apparatus XT-4 (Taike, Beijing, China) and not corrected. Infrared (IR)
spectra were recorded on a Nicolet Impact 410 instrument (Thermo Fisher Scientific, Waltham,
MA, USA) using a KBr pellet. 1H and 13C NMR spectra were taken (TMS as internal standard)
on a Bruker AV-300 (Bruker Corp., Karlsruhe, Germany) or ACF 500 spectrometer (Bruker Corp.,
Karlsruhe, Germany) in CDCl3. Low resolution mass spectra (MS) were carried out using FTMS-2000
(Thermo Fisher Scientific, Waltham, MA, USA). High resolution mass spectra (HR-MS) were obtained
with Agilent QTOF 6520 (Agilent Technologies China, Beijing, China).

3.1.2. General Procedure to Synthesize 9a–i

Compound 8 (72 mg, 0.2 mmol) was dissolved in 15 mL of dichloromethane and mixed with 6a–i
(0.24 mmol), EDCI and DMAP, stirring at room temperature for 8 h. When the reaction was finished
(monitored by TLC), the reaction mixture was poured into 10% HCl (about 15 mL), and then extracted
three times (each 10 mL) with dichloromethane. The organic phases were combined together, washed
with water (about 15 mL) and saturated brine (about 15 mL), sequentially, then dried over anhydrous
Na2SO4, and evaporated to dryness in reduced pressure. At the last step, the product was purified by
flash column chromatography (CH2Cl2/MeOH v/v 300:1) to obtain the target molecules.
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Compound 9a: white solid, 48% yield: m.p. 92 ˝C–94 ˝C; IR (KBr) υmax 3439, 2959, 2025, 1723, 1615,
1553, 1450, 1371, 734, 685 cm´1; 13C NMR (CDCl3, 100 MHz), δ (ppm) 198.07, 172.91, 172.69, 167.22,
158.99, 147.86, 138.18, 135.83, 129.89 (ˆ2), 128.68 (ˆ2), 120.53, 110.61, 101.90, 76.18, 74.67, 74.09, 68.13,
61.46, 60.34, 53.93, 49.96, 48.60, 40.77, 37.16, 33.12, 33.03, 31.72, 31.13, 29.89, 23.33, 23.16, 19.74; 1H NMR
(CDCl3, 300 MHz), δ (ppm) 8.07 (2H, d, J = 7.5 Hz, 21,61-Ar–H), 7.78 (1H, d, J = 7.5 Hz, 41-Ar–H), 7.64
(2H, t, J = 7.5 Hz, 31,51-Ar–H), 6.20 (1H, s, 6-OH), 5.74 (1H, s, 17-CH2), 5.62 (1H, s, 17-CH2), 5.32 (1H, s,
6-CH), 4.47~4.65 (6H, m, overlapped, 1-CH, 14-CH, 25,26-CH2), 4.05, 3.92 (each 1H, dd, JA = JB = 9.6 Hz,
20-CH2), 3.16 (1H, d, J = 9.3 Hz, 13-CH), 2.53~2.90 (4H, m, 22,23-CH2), 2.17 (2H, m, 12-CH2), 1.97 (1H,
m, 5-CH), 1.61~1.74 (5H, m, 3,11-CH2, 9-CH), 1.45 (2H, m, 2-CH2), 1.01 (3H, s, 18-CH3), 0.95 (3H, s,
19-CH3); MS (ESI) m/z: 748.1 [M + NH4]+, 731.0 [M + H]+, 765.3 [M + Cl]´; HR-MS (ESI, M + NH4)
m/z: calcd for C34H42N3O14S: 748.2382, found: 748.2388.

Compound 9b: white solid, 46% yield: m.p. 88 ˝C–89 ˝C; IR (KBr) υmax 3442, 2954, 2025,1746, 1618,
1553, 1452, 1358, 732, 685 cm´1; 13C NMR (CDCl3, 100 MHz), δ (ppm) 198.14, 172.73, 172.65, 167.27,
158.79, 147.85, 138.12, 135.87, 129.87 (ˆ2), 128.71 (ˆ2), 120.54, 110.52, 101.87, 76.17, 74.59, 74.12, 69.04,
61.23, 60.35, 53.90, 49.93, 48.58, 40.73, 37.12, 33.00 (ˆ2), 32.89, 31.10, 29.85, 23.29, 23.13, 19.87, 19.61; 1H
NMR (CDCl3, 500 M Hz), δ (ppm) 8.00 (2H, d, J = 7.5 Hz, 21,61-Ar–H), 7.89 (1H, d, J = 7.5 Hz, 41-Ar–H),
7.74 (2H, t, J = 7.5 Hz, 31,51-Ar–H), 6.18 (1H, s, 6-OH), 5.73 (1H, s, 17-CH2), 5.55 (1H, s, 17-CH2), 5.31
(1H, s, 6-CH), 4.48~4.63 (6H, m, 1-CH, 14-CH, 26,27-CH2), 4.05, 3.92 (each 1H, dd, JA = JB = 9.0 Hz,
20-CH2), 3.14 (1H, d, J = 9.0 Hz, 13-CH), 2.38~2.73 (6H, m, overlapped, 22,23,24-CH2), 2.00 (2H, m,
12-CH2), 1.95 (1H, m, 5-CH), 1.61~1.74 (5H, m, 3,11-CH2, 9-CH), 1.45 (2H, m, 2-CH2), 1.02 (3H, s,
18-CH3), 0.95 (3H, s, 19-CH3); MS (ESI) m/z: 762.3 [M + NH4]+, 745.2 [M + H]+, 779.4 [M + Cl]´;
HR-MS (ESI, M + NH4) m/z: calcd for C35H44N3O14S: 762.2539, found: 762.2532.

Compound 9c: white solid, 45% yield: m.p. 137 ˝C–139 ˝C; IR (KBr) υmax 3443, 2954, 2025, 1757, 1727,
1617, 1553, 1450, 735, 685 cm´1; 13C NMR (CDCl3, 100 MHz), δ (ppm) 198.21, 167.15, 167.06, 166.58,
158.87, 147.65, 137.95, 135.74, 131.89, 131.71, 131.19, 130.92, 130.14, 129.76 (ˆ2), 128.87, 128.55 (ˆ2);
120.72, 110.49, 101.80, 76.24, 75.27, 74.58, 68.88, 62.45, 60.21, 53.87, 50.14, 48.76, 40.74, 37.00, 32.93, 30.97,
31.08, 29.86, 23.29, 23.07, 19.76; 1H NMR (CDCl3, 300 M Hz), δ (ppm) 8.00 (2H, d, J = 7.5 Hz, 21,61-Ar–H),
7.81 (1H, t, J = 4.5 Hz, 41-Ar–H), 7.69 (1H, t, J = 4.5 Hz, 22-Ar–H), 7.56 (3H, m, 21,23,24-Ar–H), 7.41
(2H, t, J = 7.5 Hz, 31,51-Ar–H), 6.24 (1H, s, 6-OH), 5.87 (1H, s, 17-CH2), 5.52 (1H, s, 17-CH2), 5.33 (1H, s,
6-CH), 4.40~4.76 (6H, m, 1-CH, 14-CH, 29,30-CH2), 4.07, 3.96 (each 1H, dd, JA = JB = 9.3 Hz, 20-CH2),
3.29 (1H, d, J = 9.6 Hz, 13-CH), 2.17 (2H, m, 12-CH2), 1.97 (1H, m, 5-CH), 1.52~1.80 (5H, m, 3,11-CH2,
9-CH), 1.41 (2H, m, 2-CH2), 1.02 (3H, s, 18-CH3), 0.98 (3H, s, 19-CH3); MS (ESI) m/z: 801.3 [M + Na]+;
HR-MS (ESI, M + NH4) m/z: calcd for C38H42N3O14S: 796.2382, found: 796.2376.

Compound 9d: white solid, 44% yield: m.p. 110 ˝C–112 ˝C; IR (KBr) υmax 3459, 2955, 2025, 1754, 1615,
1554, 1451, 1355, 732, 685 cm´1; 13C NMR (CDCl3, 100 MHz), δ (ppm) 197.92, 172.08, 171.73, 167.13,
158.90, 147.69, 138.01, 135.67, 129.73 (ˆ2), 128.60 (ˆ2); 120.46, 110.56, 101.76, 76.04, 74.52, 74.18, 67.91,
60.35, 60.16, 53.79, 49.79, 48.47, 40.59, 36.98, 32.88, 30.99, 29.74, 29.05, 28.65, 27.81, 23.18, 23.03, 19.70; 1H
NMR (CDCl3, 300 M Hz), δ (ppm) 8.03 (2H, d, J = 9.0 Hz, 21,61-Ar–H), 7.91 (1H, t, J = 8.1 Hz, 41-Ar–H),
7.75 (2H, t, J = 9.0 Hz, 31,51-Ar–H), 6.04 (1H, s, 6-OH), 5.74 (1H, s, 17-CH2), 5.69 (1H, s, 17-CH2), 5.19
(1H, s, 6-CH), 4.68 (2H, m, 1,14-CH), 4.45 (2H, t, J = 6.0 Hz, 25-CH2), 4.14 (2H, t, J = 6.0 Hz, 27-CH2),
3.90, 3.54 (each 1H, dd, JA = JB = 9.0 Hz, 20-CH2), 3.14 (1H, d, J = 5.4 Hz, 13-CH), 2.36~2.63 (6H, m,
22,23,26-CH2), 2.08 (2H, m, 12-CH2), 1.38~1.76 (6H, m, 3,11-CH2, 5,9-CH), 1.43 (2H, m, 2-CH2), 0.93
(3H, s, 18-CH3), 0.85 (3H, s, 19-CH3); MS (ESI) m/z: 767.3 [M + Na]+; HR-MS (ESI, M + NH4) m/z:
calcd for C35H44N3O14S: 762.2539, found: 762.2551.

Compound 9e: white solid, 42% yield: m.p. 82 ˝C–84 ˝C; IR (KBr) υmax 3458, 2955, 2025, 1738, 1615,
1554, 1451, 1358, 732, 685 cm´1; 13C NMR (CDCl3, 100 MHz), δ (ppm) 197.96, 172.78, 172.56, 167.11,
158.85, 147.73, 138.02, 135.71, 129.76 (ˆ2), 128.53 (ˆ2), 120.40, 110.47, 101.75, 76.05, 74.49, 73.96, 68.00,
61.33, 60.16, 53.79, 49.82, 48.46, 40.63, 37.01, 32.97, 32.89, 31.57, 30.99, 29.74, 27.88, 23.19, 23.03, 19.75,
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19.60; 1H NMR (CDCl3, 300 M Hz), δ (ppm) 8.02 (2H, d, J = 8.4 Hz, 21,61-Ar–H), 7.90 (1H, t, J = 7.5 Hz,
41-Ar–H), 7.74 (2H, t, J = 8.4 Hz, 31,51-Ar–H), 6.25 (1H, d, J = 2.2 Hz, 6-OH), 6.01 (1H, s, 17-CH2), 5.77
(1H, s, 14-CH), 5.68 (1H, s, 17-CH2), 5.19 (1H, d, J = 2.4 Hz, 6-CH), 4.71 (1H, m, 1-CH), 4.55 (2H, t,
J = 6.0 Hz, 26-CH2), 4.12 (2H, t, J = 6.0 Hz, 28-CH2), 3.88, 3.35 (each 1H, dd, JA = JB = 9.0 Hz, 20-CH2),
3.17 (1H, d, J = 9.3 Hz, 13-CH), 2.21~2.51 (8H, m, overlapped, 22,23,24,27-CH2), 2.07 (2H, m, 12-CH2),
1.67~1.78 (6H, m, overlapped, 3,11-CH2, 5,9-CH), 1.24 (2H, m, 2-CH2), 0.94 (3H, s, 18-CH3), 0.88 (3H,
s, 19-CH3); MS (ESI) m/z: 781.4 [M + Na]+; HR-MS (ESI, M + NH4) m/z: calcd for C36H46N3O14S:
776.2695, found: 776.2687.

Compound 9f: white solid, 28% yield: m.p. 128 ˝C–130 ˝C; IR (KBr) υmax 3445, 2956, 2025, 1758,
1723, 1616, 1554, 1451, 735, 685 cm´1; 13C NMR (CDCl3, 100 MHz), δ (ppm) 198.23, 167.13, 167.02,
166.55, 158.86, 147.67, 137.94, 135.77, 131.91, 131.67, 131.18, 130.94, 130.15, 129.76 (ˆ2), 128.85, 128.54
(ˆ2); 120.75, 110.51, 101.84, 76.27, 75.29, 74.54, 68.91, 62.48, 60.23, 53.91, 50.09, 48.78, 40.72, 37.02,
32.97, 30.99, 31.07, 29.86, 29.79, 23.30, 23.12, 19.75; 1H NMR (CDCl3, 300 M Hz), δ (ppm) 8.07 (2H, d,
J = 7.0 Hz, 21,61-Ar–H), 7.75 (2H, m, 22,41-Ar–H), 7.64 (3H, m, 21,23,24-Ar–H), 7.57 (2H, m, 31,51-Ar–H),
6.21 (1H, s, 6-OH), 5.92 (1H, s, 17-CH2), 5.56 (1H, s, 17-CH2), 5.32 (1H, s, 6-CH), 4.31~4.60 (6H, m,
overlapped, 1-CH, 14-CH, 29,31-CH2), 4.08, 3.97 (each 1H, dd, JA = JB = 9.0 Hz, 20-CH2), 3.26 (1H, d,
J = 8.7 Hz, 13-CH), 2.57~2.78 (2H, m, 30-CH2), 2.35 (2H, m, 12-CH2), 1.95 (1H, m, 5-CH), 1.42~1.78
(5H, m, 3,11-CH2, 9-CH), 1.24 (2H, m, 2-CH2), 1.03 (3H, s, 18-CH3), 0.96 (3H, s, 19-CH3); MS (ESI) m/z:
815.4 [M + Na]+; HR-MS (ESI, M + NH4) m/z: calcd for C39H44N3O14S: 810.2539, found: 810.2530.

Compound 9g: white solid, 37% yield: m.p. 85 ˝C–87 ˝C; IR (KBr) υmax 3442, 2956, 2025, 1755, 1616,
1554, 1452, 1360, 733, 685 cm´1; 13C NMR (CDCl3, 100 MHz), δ (ppm) 197.92, 172.21, 172.00, 167.09,
158.93, 147.69, 138.01, 135.67, 129.72 (ˆ2), 128.56 (ˆ2); 120.45, 110.47, 101.76, 76.03, 74.55, 74.16, 70.98,
63.86, 60.14, 53.78, 49.80, 48.46, 40.59, 36.99, 32.88, 30.99, 29.74, 29.09, 28.74, 25.18, 24.95, 23.19, 23.02,
19.73; 1H NMR (CDCl3, 300 M Hz), δ (ppm) 8.06 (2H, d, J = 7.8 Hz, 21,61-Ar–H), 7.90 (1H, t, J = 7.2 Hz,
41-Ar–H), 7.65 (2H, t, J = 7.8 Hz, 31,51-Ar–H), 6.25 (1H, s, 6-OH), 6.03 (1H, s, 17-CH2), 5.77 (1H, s,
14-CH), 5.68 (1H, s, 17-CH2), 5.19 (1H, s, 6-CH), 4.62 (1H, m, 1-CH), 4.42 (2H, m, 25-CH2), 4.07 (2H, m,
28-CH2), 3.90, 3.54 (each 1H, dd, JA = JB = 10.5 Hz, 20-CH2), 3.14 (1H, d, J = 9.6 Hz, 13-CH), 2.47~2.54
(8H, m, overlapped, 22,23,26,27-CH2), 1.66~1.81 (8H, m, overlapped, 3,11,12-CH2, 5,9-CH), 1.24 (2H, m,
2-CH2), 0.93 (3H, s, 18-CH3), 0.88 (3H, s, 19-CH3); MS (ESI) m/z: 776.3 [M + NH4]+, 793.2 [M + Cl]´;
HR-MS (ESI, M + NH4) m/z: calcd for C36H46N3O14S: 776.2695, found: 776.2693.

Compound 9h: white solid, 42% yield: m.p. 78 ˝C–80 ˝C; IR (KBr) υmax 3444, 2960, 2025, 1755, 1616,
1554, 1452, 1365, 732, 685 cm´1; 13C NMR (CDCl3, 100 MHz), δ (ppm) 198.10, 172.34, 172.11, 167.26,
159.04, 147.69, 138.16, 135.81, 129.85 (ˆ2), 128.66 (ˆ2); 120.58, 110.58, 101.85, 76.18, 74.57, 74.30, 71.11,
63.98, 60.28, 53.90, 49.92, 48.57, 40.71, 37.09, 32.98, 31.09, 29.84, 29.20, 28.86, 25.29, 25.05, 23.30, 23.13,
22.76, 19.83; 1H NMR (CDCl3, 300 M Hz), δ (ppm) 8.06 (2H, d, J = 7.2 Hz, 21,61-Ar–H), 7.77 (1H, t,
J = 7.2 Hz, 41-Ar–H), 7.63 (2H, t, J = 7.2 Hz, 31,51-Ar–H), 6.21 (1H, s, 6-OH), 5.73 (1H, s, 17-CH2), 5.57
(1H, s, 17-CH2), 5.32 (1H, m, 6-CH), 4.57 (2H, m, 1,14-CH), 4.45 (2H, t, J = 6.3 Hz, 26-CH2), 4.14 (2H,
t, J = 6.0 Hz, 29-CH2), 4.06, 3.93 (each 1H, dd, JA = JB = 9.3 Hz, 20-CH2), 3.13 (1H, d, J = 9.6 Hz,
13-CH), 2.45~2.50 (10H, m, overlapped, 22,23,24,27,28-CH2), 2.35 (2H, m, 12-CH2), 1.58~1.98 (6H, m,
overlapped, 3,11-CH2, 5,9-CH), 1.24 (2H, m, 2-CH2), 0.93 (3H, s, 18-CH3), 0.87 (3H, s, 19-CH3); MS (ESI)
m/z: 795.4 [M + Na]+; HR-MS (ESI, M + NH4) m/z: calcd for C37H48N3O14S: 790.2852, found: 790.2841.

Compound 9i: white solid, 43% yield: m.p. 126 ˝C–128 ˝C; IR (KBr) υmax 3443, 2955, 2025, 1758, 1723,
1615, 1553, 1451, 734, 685 cm´1; 13C NMR (CDCl3, 100 MHz), δ (ppm) 198.12, 167.09, 166.90, 166.51,
158.96, 147.64, 137.97, 135.72, 131.71, 131.41, 131.22, 130.89, 130.16, 129.75 (ˆ2), 128.64, 128.53 (ˆ2);
120.58, 110.49, 101.76, 76.13, 74.98, 74.56, 70.94, 64.72, 60.15, 53.79, 49.97, 48.69, 40.61, 36.97, 32.88, 31.00,
29.80, 25.26, 24.95, 23.23, 23.02, 19.76; 1H NMR (CDCl3, 300 M Hz), δ (ppm) 8.07 (2H, d, J = 7.8 Hz,
21,61-Ar–H), 7.73 (3H, m, 23,25,26-Ar–H), 7.60 (2H, m, 24,41-Ar–H), 7.50 (2H, t, J = 7.8 Hz, 31,51-Ar–H),
6.21 (1H, s, 6-OH), 5.93 (1H, s, 17-CH2), 5.56 (1H, s, 17-CH2), 5.34 (1H, m, 6-CH), 4.68 (2H, m, 1,14-CH),
4.40~4.62 (4H, m, 29,32-CH2), 4.08, 3.97 (each 1H, dd, JA = JB = 9.0 Hz, 20-CH2), 3.30 (1H, d, J = 9.0 Hz,
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13-CH), 2.79 (2H, m, 30-CH2), 2.62 (2H, m, 31-CH2), 2.42 (2H, m, 12-CH2), 2.03 (1H, m, 5-CH), 1.97 (1H,
m, 9-CH), 1.70~1.81 (4H, m, 3,11-CH2), 1.24(2H, m, 2-CH2), 1.03 (3H, s, 18-CH3), 0.96 (3H, s, 19-CH3);
MS (ESI) m/z: 829.4 [M + Na]+; HR-MS (ESI, M + NH4) m/z: calcd for C40H46N3O14S: 824.2695,
found: 824.2697.

3.2. Biology

3.2.1. Antibacterial Assay

The minimal inhibitory concentrations (MICs) were carried out by microbroth dilution method
described by the Clinical Laboratory Standards Institute [30,31]. A stock solution of all the target
compounds was prepared with DMSO-medium (1:2), and then graded quantities of the test compounds
were diluted with medium. The specified concentration suspension of fungus and bacterium contained
approximately 103, and 105 CFU/mL was added into microtitration plates. The inoculated 96-well
plates were incubated at 35 ˝C for 18 h. MIC was defined as the lowest concentrations that prevented
visible growth of the bacteria.

3.2.2. MTT Assay

MTT assay was developed to monitor mammalian cell survival and proliferation in vitro [32].
CaEs-17 cells (K562, Bel-7402 and MGC-803 cells) from American Type Culture Collection
(ATCC, Manassas, VA, USA) were cultivated in RPMI-1640 medium supplemented with 5% fetal
bovine serum (v/v), 100 U/mL penicillin, and 50 mg/mL streptomycin. Cells (5 ˆ 104 cell/mL) at the
log phase of their growth cycle were added to each well of a 96-well plate (100 µL/well) and incubated
for 24 h at 37 ˝C in a humidified atmosphere of 5% CO2. Then, cells were treated with or without
test compounds in different concentrations. After 72 h, 5 mg/mL MTT solution (20 µL per well) was
added. Cells were incubated at 37 ˝C. After 4 h, MTT solution was removed and DMSO was added
to each well (150 µL). Ten minutes later at room temperature, the optical density (OD) values were
measured at the wavelength of 490 nm on a Microplate Reader NO. 550 (BIO-RAD Instruments Inc.,
Hercules, CA, USA). In this experiment, 10 µg/mL of Taxol was used as the positive control and 0.1%
DMSO was used as the negative reference.

3.2.3. Griess Assay

NO produced by the compounds was determined by assaying the levels of NO2 using the Griess
reagent [33]. The levels of NO released from 100 µM of each compound were tested by nitrate/nitrite
in triplicate. The lysates were reacted with Griess reagent (40 min), centrifugalized (10 min), and then
measured at 540 nm. This assay was carried out according to the manufacturer’s instructions for
60 min (Beyotime, Nanjing, China).

3.2.4. Cell Cycle Arrest

Bel-7402 cells (5.0 ˆ 103 cells/well) were plated in 6-well plates and incubated for 24 h, and then
incubated with different concentrations (0.25, 0.5 and 1 µM) of 9f at 37 ˝C for 48 h. After 48 h treatment,
cells were treated with 70% ethanol and RNase, sequentially, and stained with PI [34]. Cellular DNA
content was measured by a flow cytometer for cell cycle distribution analysis.

3.2.5. Cellular Apoptosis

Bel-7402 cells were incubated with different concentrations (0.25, 0.5 and 1 µM) of 9f for 72 h.
Then, Annexin-V and PI double staining was used to detect apoptotic cells to analyze apoptosis
according to the manufacturer’s instructions by flow cytometry [35].

3.2.6. Mitochondrial Membrane Potential

Bel-7402 cells were cultured in six-well plates after treatment with 9f or vehicles for 48 h. The cells
were cells were collected by trypsinization, washed with PBS (Sigma Chemical Co., Shanghai, China)
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and stained according to the manufacturer’s instruction (Keygen, KGA601, Nanjing, China) with the
lipophilic cationic dye JC-1. The flow cytometry analysis was carried out to monitor the percentage of
cells with healthy or collapsed mitochondrial membrane potentials [36].

4. Conclusions

In summary, a series of NO donor/enmein-type diterpenoid derivatives (9a–i) were synthesized
from relevant commercial available resources. All of the target compounds showed antibacterial
activity against Gram-positive bacteria S. aureus and B. subtilis and antiproliferative activity against
the K562 leukemia cell line, the MGC-803 gastric cancer cell line, the CaEs-17 esophageal cancer cell
line, the Bel-7402 hepatoma cell line, and human normal liver cells L-02 to some extent. It was found
that 9b and 9d with the same total linkage length of five carbons were the most active against S. aureus
and B. subtilis with MICs of 4 and 2 µg/mL, respectively. Compound 9f displayed IC50 values of
1.68, 1.11, 3.60 and 0.72 µM against four tested cancer cell lines, respectively, and 18.80 µM against
normal liver cells L-02. The SI value was 26.1 between L-02 normal liver and Bel-7402 hepatoma
cell lines. The preliminary SARs were also concluded based on the obtained biological evaluation
data. Furthermore, it was also found that 9f induced apoptosis via the mitochondria-related pathway
and arrested cell cycle of Bel-7402 cells at the S stage. These findings were important to explore
new chemical entities with innovative natural scaffolds for the treatment of infection combined with
solid tumors.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/6/
747/s1, including 1H NMR and H-H COSY of 8, 1H and 13C NMR of methyl ester of 6a, and 1H and 13C NMR
of 9f.
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TLC Thin Layer Chromatograph
FBS Fetal Bovine Serum
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35. Lepiarczyk, M.; Kałuża, Z.; Bielawska, A.; Czarnomysy, R.; Gornowicz, A.; Bielawski, K. Cytotoxic activity
of octahydropyrazin[2,1-a:5,4-a1]diisoquinoline derivatives in human breast cancer cells. Arch. Pharm. Res.
2015, 38, 628–641.

36. Yugandhar, D.; Nayak, V.L.; Archana, S.; Shekar, K.C.; Srivastava, A.K. Design, synthesis and anticancer
properties of novel oxa/azaspiro[4,5]trienones as potent apoptosis inducers through mitochondrial
disruption. Eur. J. Med. Chem. 2015, 101, 348–357.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/ni1001-907
http://www.ncbi.nlm.nih.gov/pubmed/11577346
http://dx.doi.org/10.2174/156800909787581015
http://www.ncbi.nlm.nih.gov/pubmed/19275761
http://dx.doi.org/10.1021/jm400463q
http://www.ncbi.nlm.nih.gov/pubmed/23668441
http://dx.doi.org/10.1021/jm5019302
http://www.ncbi.nlm.nih.gov/pubmed/25675144
http://dx.doi.org/10.1038/nrmicro1004
http://www.ncbi.nlm.nih.gov/pubmed/15378046
http://dx.doi.org/10.1016/j.niox.2012.02.002
http://www.ncbi.nlm.nih.gov/pubmed/22349019
http://dx.doi.org/10.1016/j.actbio.2015.10.021
http://www.ncbi.nlm.nih.gov/pubmed/26478472
http://dx.doi.org/10.1016/j.ejmech.2012.03.024
http://www.ncbi.nlm.nih.gov/pubmed/22483090
http://dx.doi.org/10.1021/jm400393u
http://www.ncbi.nlm.nih.gov/pubmed/23617697
http://dx.doi.org/10.1021/jm801131a
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Results and Discussion
	Chemistry
	Antimicrobial Activity
	Antiproliferative Activity
	NO-Releasing Ability
	Influence of 9f on the Bel-7402 Cell Cycle
	Induction of Apoptosis by 9f
	9f Induced Mitochondrial Depolarization

	Materials and Methods
	Chemistry
	General
	General Procedure to Synthesize 9a–i

	Biology
	Antibacterial Assay
	MTT Assay
	Griess Assay
	Cell Cycle Arrest
	Cellular Apoptosis
	Mitochondrial Membrane Potential


	Conclusions

