Next Article in Journal
Association of the MicroRNA-146a SNP rs2910164 with Ischemic Stroke Incidence and Prognosis in a Chinese Population
Previous Article in Journal
Guanabenz Downregulates Inflammatory Responses via eIF2α Dependent and Independent Signaling
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2016, 17(5), 672; doi:10.3390/ijms17050672

A High Redox Potential Laccase from Pycnoporus sanguineus RP15: Potential Application for Dye Decolorization

1
Department of Chemistry, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, SP 14040-901, Brazil
2
Department of Molecular and Cell Biology and Protein Chemistry Center, CTC-Center for Cell Therapy-CEPID-FAPESP-Hemocentro de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, SP 14040-901, Brazil
3
Department of Biology, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, SP 14040-901, Brazil
*
Author to whom correspondence should be addressed.
Academic Editor: Ulf Hanefeld
Received: 8 March 2016 / Revised: 4 April 2016 / Accepted: 28 April 2016 / Published: 5 May 2016
(This article belongs to the Section Green Chemistry)
View Full-Text   |   Download PDF [2030 KB, uploaded 5 May 2016]   |  

Abstract

Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1) was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w) milled corncob, 0.8% (w/w) NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1), the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate). Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE). ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB), remazol brilliant blue R and reactive blue 4 (RB4), at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents. View Full-Text
Keywords: Pycnoporus sanguineus; solid state fermentation; response surface methodology; laccase; purification; characterization; decolorization; remazol brilliant blue R; Reactive blue 4; bromophenol blue Pycnoporus sanguineus; solid state fermentation; response surface methodology; laccase; purification; characterization; decolorization; remazol brilliant blue R; Reactive blue 4; bromophenol blue
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zimbardi, A.L.R.L.; Camargo, P.F.; Carli, S.; Aquino Neto, S.; Meleiro, L.P.; Rosa, J.C.; De Andrade, A.R.; Jorge, J.A.; Furriel, R.P.M. A High Redox Potential Laccase from Pycnoporus sanguineus RP15: Potential Application for Dye Decolorization. Int. J. Mol. Sci. 2016, 17, 672.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top