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Abstract: Kidney is a vital organ with high energy demands to actively maintain plasma
hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular
epithelium is endowed with high mitochondria density for their function in active transport. Acute
kidney injury (AKI) is an important clinical syndrome and a global public health issue with high
mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell
death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and
inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial
damage, associative oxidative stress, and the release of many tissue damage factors have been
identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism
that removes damaged organelles via lysosome-mediated degradation, had been proposed to be
renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate
immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This
review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate
immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration
and potential therapeutic interventions are also discussed.

Keywords: ischemia-reperfusion injury; nephrotoxicity; oxidative stress; kidney disease; tissue
regeneration

1. Introduction

The primary function of the kidney is maintenance of body homeostasis by regulating tubular
reabsorption of water, ions, glucose, nutrients and removal of waste metabolic products via glomerular
filtration. The nephron (particularly proximal tubule and thick ascending limb of Henle) relies on
ATP generated from renal tubular cell mitochondria to achieve sodium-coupled reclamation of 99% of
filtered water. Therefore, there is high energy demand. In acute kidney injury (AKI), renal function
declines rapidly and this contributes to poor patient outcomes. AKI has recently been recognized as a
global healthcare issue due to associated high morbidity and mortality rates and high socioeconomic
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burden [1–3]. It is estimated that the worldwide annual occurrence of AKI reaches about 13 million
people and contributes to roughly 1.7 million deaths annually [3].

AKI represents a heterogeneous disease syndrome with various causes, severity, geographical and
population distributions and different outcomes. AKI is a common clinical condition and represents
a diagnostic and therapeutic challenge to physicians. The disorder has a prevalence of 1%–2%
among hospital admissions and 2%–7% during all hospital stays. Of these, ischemia-reperfusion
injury (IRI)-related AKI is especially relevant for kidney transplantation and trauma patients in
hospital admissions. In-hospital mortality rates in intensive care unit patients with AKI could reach
50%–70% [4]. In addition to high morbidity and mortality rates, AKI is associated with high cost of
medical care due to lack of effective therapeutic strategies and no effective pharmacologic intervention.
To put the economic burden into perspective, the estimated yearly medical expenses of AKI treatment
have exceeded $10 billion in the U.S and £400–600 million in the UK [5]. However, in low- and
middle-income countries, AKI mainly develops in community settings with acute endemic infections
(such as malaria), toxins (venoms and poisons), and lack of available healthcare systems. Due to
worldwide awareness, this information has become accessible from some population-specific (such
as China) studies [6]. Despite the global attention to this common clinical condition, AKI remains a
diagnostic and therapeutic challenge to clinicians. Although major advances in preclinical innovations
have been made, there are “death valleys” and gaps in translating discoveries into viable therapy [7].
It is known that with timely intervention AKI is likely preventable and treatable. This has led the
International Society of Nephrology to recognize such interventions as important, and develop the
“0by25” initiative for AKI (zero preventable death by 2025) [3].

The most updated 2012 KDIGO (Kidney Disease: Improving Global Outcomes) clinical practice
guideline has reached consensus definitions, classification and practical guidelines on AKI [8]. As an
example, stage 1 AKI is defined clinically as an abrupt reduction of kidney function with concomitant
decreased urinary output (<0.5 mL/kg per hour for more than 6 h) and an accumulation of serum
waste products (rise of creatinine to ě26 µmol/L within 48 h or 50%–99% rise from baseline within
7 days). Injury to the renal proximal tubular epithelium (PTE) represents the prominent cause of AKI
following exposure to various renal stressors including nephrotoxins, ischemia-reperfusion injury
(IRI) and sepsis. Various types of insults, intensity, dose, duration, and context, will elicit diverse
forms of tubular epithelial cell death, each with distinct signaling characteristics that play distinct
pathophysiological roles to the outcomes of AKI [9]. Better knowledge of epithelial cell death will
enhance our understanding on pathophysiological mechanisms associated with AKI.

Autophagy is an evolutionally conserved intracellular degradation pathway responsible for
maintaining cellular homeostasis. Among the various cell death pathways, autophagy is now
recognized as an inducible, highly regulated process which intimately determines cell survival or
death and kidney disease process. In this review, we address the current pathophysiology of AKI
with emphasis on the involvement of mitochondrial dysfunction, innate immunity, and molecular
mechanism of autophagy. Finally, we discuss recent advances in tissue regeneration and innovative
therapeutic intervention methods.

2. Kidney Physiology Relevant to Acute Kidney Injury (AKI)

In humans, about 20% of cardiac output flows through roughly 3 million nephron filtration units
to generate approximately 170 liters of ultrafiltrate daily. The ions, small peptides and molecules within
this ultrafiltrate are reabsorbed mainly through active receptor-mediated endocytosis (transcytosis)
for proteins and biomolecules. This generates roughly 1–1.5 liter of urinary excretion daily. The
reabsorptive process consumes roughly 7% of normal daily energy expenditure [10]. Due to this high
energy demand, renal tubule cells are rich in mitochondria. Their reabsorptive function relies heavily
on normal mitochondrial oxidative phosphorylation to supply ATP as an energy source. Different
nephron segments have different energy demands and, consequently, number of mitochondria; the
highest mitochondria density is within the S1 segment of the proximal tubule [11]. However, in most
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animal models of renal ischemia/reperfusion injury (IRI) epithelial cell damage is most apparent in the
S3 segment of the proximal tubule [12,13]. In this regard, the proximal tubule is exquisitely vulnerable
to oxidative stress from various insults, such as sepsis, nephrotoxins, and IRI.

3. Animal Models of AKI

Much knowledge regarding the pathophysiology of AKI is derived from animal studies [14]. Both
rats and mice have been used in animal models to study human renal physiology. However, there
are notable differences among those animal models and humans. In humans, sex-related disparities
exhibit little clinical relevance in the context of pharmacokinetics and pharmacodynamics related
to anti-hypertensive therapies [15] and some kidney solute transporters [16]. However, due to high
breeding capacity, sex-related differential distribution of specific organic anion transporters (such as
Oat1 and 3) [17], and the fluctuation of hormonal conditions, female rodents usually are excluded as
a suitable animal model for study of AKI. Canines are commonly used as large animal models for
kidney function study because it more closely resembles human kidney function in terms of renal
physiology and the practical consideration of surgical intervention in experiments. However, to meet
experimental statistical significance, rodents are usually preferable models given their capacity for
rapid colony expansion and easy genetic manipulation for functional studies.

The most common experimental animal AKI models are investigated with ischemia/reperfusion
induced by clamping single or both renal pedicles (ischemic) followed by reperfusion injury. Chemical
or nephrotoxin (such as cisplatin, folic acid and traditional herbs)-induced models, obstruction-induced
injury, endotoxin sepsis models, and cecal ligation and puncture (CLP)-induced mouse sepsis
models [18–20] have also been widely used. Recently, zebrafish has emerged as a new AKI animal
model due to the great amount of offspring and because they are genomically viewed as high eukaryotic
animals. Their relatively simple (only two-nephron) but well-defined kidney with representative
features of mammal kidney [21] is an advantage. Moreover, nanotechnology has allowed a feasible
means of measuring renal function via fluorescent nanoparticles within the tank [22]. Interestingly,
nephron organoids derived from human pluripotent stem cells were recently developed to model
kidney development and injury [23]. In combination with CRISPR-Cas (clustered regularly interspaced
short palindromic repeat–CRISPR-associated protein) and gene-editing technologies [24,25] to generate
gene-specific mutations in the kidney organoids, these innovative developments provide enormous
potential to further our knowledge in molecular mechanisms of kidney disease and development [26].
That said, it has to be kept in mind that, even though these animal AKI models can reproducibly
cause AKI, the human etiology of AKI is much more complex, and it is a challenge to get treatment
to patients early enough in the disease course. Extensive studies are needed to accurately reproduce
human AKI and translate findings from animal studies to human therapeutic interventions [14,27].

4. Pathophysiological Process of Acute Kidney Injury

Kidney tubular diseases are classified into two categories as either acute kidney injury (AKI) or
chronic kidney disease (CKD). The devastating disease, AKI, manifested as an abrupt loss of renal
function within hours to days, is especially common in hospitalized transplant and trauma patients.
Multiple-etiologies such as ischemia, nephrotoxin insult, or sepsis lead to direct tubular injury [4].
Clinically, AKI results in the accumulation of plasma nitrogen metabolites (blood urea nitrogen, BUN),
and serum creatinine. As for the urinary output, it is usually reduced. CKD is a condition characterized
by a gradual loss of kidney function over time which could progressively lead to complications like
high blood pressure, bone loss, malnutrition, and heart and blood vessel diseases. Depending on age,
behavior, culture, and diet, both AKI and CKD are closely integrated and could serve as a risk factor
for one another [28–31]. For example, patients surviving AKI may develop CKD or early onset of
end-stage renal disease in later life due to incomplete recovery.

AKI is a complex pathophysiological response with the intricate involvement of oxidative
stress accumulation, inflammatory response, tubular cell damage, and endothelial microvasculature
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dysfunction, all of which impact the extent of tubular cell damage [4,13] (Figure 1). Tubular cell injury
usually peaks at 2–3 days post tissue damage. Upon injury, tubular epithelial cells lose cytoskeletal
integrity and cell polarity, which results in mis-localization of membrane protein for ion-flux control
and disruption of cell´cell communication. Tubular epithelial cell casts, derived from tubular cell
debris in the lumen, are a histological characterization of tubular cell death and necrosis which
commonly obstruct and reduce the urine flow.
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Figure 1. The pathophysiology of acute kidney injury involves renal tubules and vascular endothelium
cell injury and inflammatory response. Diagram shows healthy tubule (right, unshaded) and injured
tubule (left, shaded). The tubule cell damage involves different forms of cell death which result in
loss of brush border (villi blebbing), loss of cell polarity (cytoskeletons), tubular obstruction, and cast
formation. Peri-tubule vessel damage causes vascular endothelial dysfunction including: microvascular
obstruction, vasoconstriction, vascular leakage, and edema. The accumulation of immune cells, such
as NK cells, neutrophils, macrophages, and dendritic cells, at damaged tubules cause the release of
inflammatory cytokines and further tubule cell injury. TBM, tubular basement membrane.

Different modes of cell death with distinct morphologic characteristics and biochemical features
are proposed to be involved in the loss of tubular epithelial cells. Of these, apoptotic cell death,
multiple forms of “regulated” necrosis (also referred as necroptosis), and autophagic cell death are well
documented in animal models and associated with the clinical syndrome of acute tubular necrosis and
AKI [9,32]. While cell membrane integrity and morphology are largely maintained in the early events
of apoptosis and autophagy, they are disrupted in necrosis. Those necrotic cells release intracellular
contents including intracellular organelles, pro-immunogenic components such as Ca2+ ions, ATP,
DNA, RNA, HMGB1 (high-mobility group protein B1), and cytokines. These released damage factors
are collectively referred to as DAMPs (damage-associated molecular patterns) [33,34] and play essential
roles in organ damage.

5. Mitochondria in Kidney Health and Disease

5.1. Mitochondrial Reactive Oxygen Species (ROS) Production

Mitochondria are the power house of the cells. Persistent mitochondrial dysfunction is a
characteristic of AKI. In fact, loss of mitochondrial homeostasis is a key feature of tubular epithelial
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injury in AKI, and is characterized by mitochondrial oxidative stress and diminished cellular ATP
production [35–37]. ATP synthesis through mitochondrial oxidative respiratory chain reaction leads
to formation of oxidative stress radicals as byproducts. About 4% (or less) of total consumed oxygen
is converted into superoxide radicals via electron leakage which constitutes different forms of
oxidative stress [38]. Oxidative stress-causing molecules include: non-radical derivatives such as
hydrogen peroxide (H2O2) and O2, highly reactive oxygen free radical derivatives (ROS), hydroxyl
(OH-) and reactive nitrogen free radical derivatives (RNS), and peroxynitrite (ONOO-). Normally,
mitochondria are equipped with powerful intrinsic antioxidant machinery to maintain intracellular
redox homeostasis and keep oxidative stress under a certain threshold. Excess ROS generation is
detrimental to cellular functions. It is well documented that these radicals cause modification of
biomolecules, such as DNA (nuclear and mitochondrial DNAs), proteins, and lipids, as well as impair
their bio-activities [36]. As such, mitochondrial dysfunction and oxidative stress accumulation play
critical roles in the pathogenesis of kidney diseases [39].

5.2. Regulation of Mitochondria Dynamics

Mitochondria play a central role in cell survival and death signaling. It has recently been
recognized that mitochondria are not only critical in energy production, but are also highly dynamic
organelles with constant fusion and fission. These dynamics are essential to their size, morphology,
energy biogenesis, function, and maintenance of cellular homeostasis and viability [40]. For instance,
dynamic mitochondrial fusion is associated with excitation-contraction coupling in skeletal muscle [41]
and maintenance of normal vital organ physiology. Impaired mitochondrial dynamics have been
demonstrated in several disease states such as diabetic skeletal muscle [42], cancer cell migration [42],
and neurodegenerative diseases [43].

Mitochondrial dynamics are regulated by a complex interplay between fission proteins (Drp1
and Fis1) and fusion proteins (like Mfn1, Mfn2 and OPA1) [35]. Drp1 (a large GTPase of the dynamin
superfamily protein), together with its interaction with Fis1 and other adaptor proteins, undergoes
post-translational modifications, like phosphorylation, ubiquitination and sumosylation, to mediate its
own activation and translocation to outer mitochondrial membrane (OMM) fission sites. Drp1 n is
responsible for “pinching off” the membrane stalk between two forming daughter mitochondria and
returns to the cytosol upon completion of mitochondrial fission [44]. In mammalian cells, mitochondrial
fusion machinery is comprised of three essential components, all of which belong to the large GTPase
dynamin superfamily of proteins, including mitofusin 1 and 2 (Mfn1/2) for OMM fusion and optic
atrophy 1 (OPA1) protein for inner mitochondrial membrane (IMM) fusion. Mfn1 and Mfn2 are located
on the OMM and form homo- or hetero-oligomers to mediate neighboring OMM tethering and fusion.
The IMM-localized OPA1 is responsible for the GTP-dependent IMM tethering and fusion and plays a
key role in remodeling mitochondrial cristae during apoptosis [35,45,46]. Additionally, mitochondrial
homeostasis and dynamics are also regulated by cellular physiology, including energy status, Ca2+

homeostasis, ROS stress, and the interaction of Bcl-2 family proteins [35,47].
During AKI, mitochondrial dynamics shift to fission, a state known to cause “mitochondria

fragmentation”, which leads to subsequent cell death. It was shown that suppressed mitochondrial
function and tubular damage are sustained for 6 days after IRI [48]. Moreover, it has been proposed
that regulation of mitochondrial dynamics in a timely manner may prove to be an intervention strategy
to prevent long-term cardiac dysfunction after myocardial infarction attack in animal model [49].
In line with this notion, suppressing mitochondrial fragmentation by mdivi-1, a chemical inhibitor
against Drp-1 activity, ameliorated symptoms of IRI-induced experimental AKI [37]. Interestingly,
renal cells with elevated expression of the major mitochondrial deacetylase sirtuin 3 (SIRT3), a master
regulator of mitochondrial energy metabolism and oxidative stress, improved mitochondria fusion
and promoted protection against AKI [50]. Together, these observations support the important role
played by mitochondrial dynamics in kidney injury and repair.
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Mitochondria undergo drastic morphological and functional changes during stress and injury;
therefore, studying mitochondrial stress responses has been a central focus of AKI studies. Advances in
live cell imaging with multiphoton microscopy allows in vivo high resolution of real-time visualization
of subcellular structures like nuclei, endosomes, lysosomes and mitochondria [51]. In combination with
different fluorescent probes, the development for organelle functional study coupled with multiphoton
microscopy have provided substantial information on basic renal physiology and the underlying
mechanisms of AKI. It was demonstrated that loss of mitochondrial inner membrane potential (∆Ψm)
and changes in mitochondria morphology (swollen and fragmented) occur immediately (within
2 min) and are associated with a rapid (within 10 min) membrane blebbing and extensive shedding of
proximal tubule apical structures, brush border, and cytosolic contents during ischemic injury, at a time
when only minimal tissue damage could be observed with conventional histology techniques [51–53].
These studies also suggested that there is a narrow time window for application of therapeutics to
prevent acute mitochondria dysfunction.

6. Innate Immunity and AKI

The immune system has an essential role in regulating many immune response-mediated
pathologies during disease progression. This role includes the stepwise stimulation of innate immune
responses with subsequent cytokine release and crosstalk between renal cells and immune cells,
mainly dendritic cells and macrophages, for tissue injury resolution. It also includes adaptive immune
responses with evident participation of T cells in tissue injury and repair [33].

The innate immune response can be elicited by pathogen invasion during sepsis or tissue
damage factors released from injured cells (Figure 2). Pathogen invasion on the outer surface of
wounded internal organs may lead to the generation of pathogen-associated molecular patterns
(PAMPs) that induce sepsis if the pathogens are not controlled soon enough by local inflammatory
response. Severe sepsis causes AKI. Additionally, sterile inflammation occurs frequently in many
renal diseases and is triggered in response to toxins, genotoxic stresses, ischemia, or trauma. This
inflammation is a response towards “damage-associated molecular patterns” (DAMPs) released from
injured necrotic cells. DAMPs include: histones, HMGB1, U1snRNP, DNA/RNA from nucleus, ATP,
mtDNA (mitochondrial DNA), heat shock proteins (HSPs), S100 proteins, uric acid, RNA from cytosol,
and lysosomal enzymes from damaged lysosomes [33,34]. In both PAMPs and DAMPs cases, oxidative
stress activates host innate defense mechanism which induces renal tubular epithelial cell necrosis
while infiltrating immune cells secrete many pro-inflammatory cytokines and chemokines.

Two signals are required for innate immune response activation. As illustrated in Figure 2,
inflammatory cytokines along with some DAMPs or invading PAMPs are recognized by plasma
membrane-bound Toll-like receptors (TLRs) and serve as the “prime” signal (Signal 1). The TLRs’
membrane receptors serve as pattern-recognition receptors (PRRs) for the signals of DAMPs and
PAMPs, and offer crucial host specificity during the early host defense phase [54]. Both TLR 2 and 4
have been shown to be upregulated in renal epithelial cells upon IRI and are crucial in initiating
influx of various immune cells, such as polymorphonuclear leukocytes, lymphocytes, dendritic
cells, and macrophages, into damaged interstitium (a pro-inflammatory phase) [55,56]. This step
also activates the nuclear transcriptional factor NFκB to induce expression of premature forms
of pro-inflammatory factors such as pro-interleukin (IL)-18 and pro-IL-1β. The introduction of a
second signal (Signal 2) leads to stepwise activation and formation of an intracellular multi-protein
complex, the “inflammasome” amplification loop. Several processes have been identified as the
secondary signals to activate inflammasomes such as reactive oxygen species (ROS) from damaged
organelles (mitochondria) [57], K+ ion flux [58], ATP/P2X7R [59,60] and lysosomal rupture [61,62].
The inflammasome complex further senses the danger signals outside or within cells and enhances the
secretion of pro-inflammatory cytokines.
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Figure 2. Inflammasome signaling acting in a two-step activation of IL-1β and IL-18. Activation of 
the NLPR3 inflammasome requires two signals. Signal 1 involves the activation of TLRs, IL-1R, 
IL-18R and TNFRs by DAMPs or PAMPs which then induces the transcriptional activation of NF-κB 
and subsequent production of pro-IL-1β and pro-IL-18; Signal 2 involves different pathways such as 
ion (K+) efflux, generation of ROS, ATP/P2X7R activation and lysosomal rupture/release of the 
endogenous cathepsins into the cytosol. Both signals coordinately induce assembly of the 
inflammasome complex: NLRP3 (sensor), apoptosis-associated speck-like (adaptor) and recruitment 
and enzymatic cleavage/activation of active caspase-1. Activated caspase-1 cleaves pre-forms of 
pro-IL-1β and pro-IL-18 to release the pro-immunogenic IL-1β and IL-18. Solid arrows indicate direct 
activation; dashed arrows indicate indirect activation. 

In a simplified structural model, the inflammasome-complex consists of three main 
components: a sensor, an adaptor, and a pro-inflammatory caspase [63] (Figure 2). The sensor 
proteins are mainly comprised of the intracellular NOD-like receptor, also known as 
“nucleotide-binding domain and leucine-rich repeat (LRR) containing receptor” family proteins 
(NLRPs), with NLRP3 being the best-characterized member. NLRP3 inflammasome is widely 
expressed in immune cells and to a lesser extent in tubular cells [64] and podoytes [57]. Activation of 
the inflammasome leads to overexpression and oligomerization of NLRP3, recruitment of the 
adaptor “apoptosis-associated speck-like (ASC)” protein and procaspase-1 enzyme. This process 
accounts for the final activation of caspase 1, and the processing and secretion of cytokine mediators 
in their mature forms including IL-1β, IL-18 and IL-33 [65]. 

The concept of renal inflammasome activation and its role in kidney disease has been the recent 
research focus in kidney injury and regeneration [34,54,66–68]. Interestingly, during the recovery 
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repair process would determine the progression or resolution of tissue inflammation and 
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Figure 2. Inflammasome signaling acting in a two-step activation of IL-1β and IL-18. Activation of
the NLPR3 inflammasome requires two signals. Signal 1 involves the activation of TLRs, IL-1R,
IL-18R and TNFRs by DAMPs or PAMPs which then induces the transcriptional activation of
NF-κB and subsequent production of pro-IL-1β and pro-IL-18; Signal 2 involves different pathways
such as ion (K+) efflux, generation of ROS, ATP/P2X7R activation and lysosomal rupture/release
of the endogenous cathepsins into the cytosol. Both signals coordinately induce assembly of the
inflammasome complex: NLRP3 (sensor), apoptosis-associated speck-like (adaptor) and recruitment
and enzymatic cleavage/activation of active caspase-1. Activated caspase-1 cleaves pre-forms of
pro-IL-1β and pro-IL-18 to release the pro-immunogenic IL-1β and IL-18. Solid arrows indicate direct
activation; dashed arrows indicate indirect activation.

In a simplified structural model, the inflammasome-complex consists of three main components:
a sensor, an adaptor, and a pro-inflammatory caspase [63] (Figure 2). The sensor proteins are mainly
comprised of the intracellular NOD-like receptor, also known as “nucleotide-binding domain and
leucine-rich repeat (LRR) containing receptor” family proteins (NLRPs), with NLRP3 being the
best-characterized member. NLRP3 inflammasome is widely expressed in immune cells and to a lesser
extent in tubular cells [64] and podoytes [57]. Activation of the inflammasome leads to overexpression
and oligomerization of NLRP3, recruitment of the adaptor “apoptosis-associated speck-like (ASC)”
protein and procaspase-1 enzyme. This process accounts for the final activation of caspase 1, and
the processing and secretion of cytokine mediators in their mature forms including IL-1β, IL-18 and
IL-33 [65].

The concept of renal inflammasome activation and its role in kidney disease has been the recent
research focus in kidney injury and regeneration [34,54,66–68]. Interestingly, during the recovery phase
of AKI, in response to microenvironmental change, macrophages are polarized to adopt a trophic
phenotype and become anti-inflammatory (or pro-regeneratory). This macrophage-relevant repair
process would determine the progression or resolution of tissue inflammation and subsequent tissue
fibrosis [69].
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7. Kidney Repair and Regeneration after AKI

Mammalian kidney tubular epithelium uniquely possesses a great capacity to repair and
regenerate in order to restore normal epithelial integrity after AKI [12,70]. Under normal
conditions, human proximal tubular cells have a slow turnover rate to maintain tissue homeostasis;
however, this rate is switched to a fast proliferation mode after injury. There were strong
debates about the origin of cells that initiate the repair program attempting to replenish the
loss of cells from insult-induced apoptosis and necrosis [12,71]. Recent results support evidence
that the terminally differentiated epithelial cells dedifferentiate upon injury, migrate along the
basement membrane, then regain apparent stem-cell characteristics, proliferate to restore cell
number, and expand in size to repair [71]. As mentioned above, it appears that effective kidney
regeneration requires macrophage-mediated resolution of inflammation to support regeneration [69].
Furthermore, circulating bone-marrow-derived stromal cells (BMSCs) can facilitate the repair
process through a microvesicle-mediated paracrine effect that transfers proteins, receptors, mRNA,
microRNAs and organelles [72]. Various preconditioning interventions also support the concept of
microvesicle-mediated inter-organ crosstalk playing important roles in tissue repair process [72,73].

Fibrosis is the final common characteristic of CKD which could be derived from maladaptive
wound repair following AKI [13,30,74]. Several pro-inflammatory and profibrotic factors are released
by injured epithelium and immune cells, which contributes to resident fibroblasts and myofibroblast
activation, progressive accumulation of interstitial matrix proteins, irreversible scarring, and gradual
loss of functional nephrons [75–77]. A better understanding of the repair/regeneration mechanism
will facilitate therapeutic interventions toward AKI and help the development of pharmacological
therapeutics to halt the progression of CKD.

8. Autophagy

Autophagy (from the Greek “auto” (self) and “phagy”, meaning eating) is an intracellular
degradation process utilized by eukaryotic cells as a basal “quality-control” mechanism to degrade
and turnover aged or damaged cellular components in order to maintain homeostasis. As such,
autophagy is critical to a wide variety of physiological and pathophysiological processes [10,78].
Basal autophagy plays important roles during development and differentiation. Additionally,
autophagy is also a defense mechanism employed against environmental stress such as nutrient
deprivation, aging, pathogen invasion and various disease states [79,80]. During nutrient starvation,
non-selective autophagy (“macroautophagy” or “autophagy”) is applied to sequester and eliminate
cytoplasmic burdens, i.e., damaged organelles and protein aggregates, for subsequent use in
amino acid recycling, ATP generation and anabolic protein synthesis. In certain stressed situations,
selective autophagy occurs in order to remove toxic materials within cells. Specific examples include:
damaged mitochondria (mitophagy), infectious bacterial particles (xenophagy), aggregating proteins
(aggrephagy), or ruptured lysosomes (lysophagy) (Figure 3).

In simplified terms, autophagy is a lysosome-dependent “self-eating” process which involves
multiple steps of a well-conserved sophisticated degradation process to ensure cellular homeostasis.
Autophagy is a highly dynamic and context-dependent process. A set of evolutionally conserved genes
and proteins, autophagy-related genes (atg) and proteins, originally identified in yeast, have been
identified to participate in autophagy [81,82]. During autophagy, double membrane-bound vesicles
form to engulf the damaged cytoplasmic constituents to generate autophagosomes. Autophagosomes
then mature and fuse with lysosomes to form autolysosomes which allow cargo degradation
and subsequent macromolecule recycling and regeneration. The final step of autophagy involves
reactivation of mTOR (mammalian target of rapamycin), a pivotal modulator of cell growth, survival
and metabolism, and the autophagic lysosome reformation.
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Figure 3. Autophagy contributes to protein degradation and damaged organelle removal in renal
tubule cells. Active endocytosis occurs in the renal tubule cells for kidney ultrafiltrate reabsorption.
Amphisome, a form of autophagic vacuole, is formed by fusion of an endosome with an autophagosome.
Macroautophagy is triggered by the activation of an autophagic protein complex that induces LC3
recruitment to the nascent autophagosome (isolation membrane). Proteins that are committed for
degradation are labeled by polyubiquitin chains and delivered to the autophagosome by the p62
scaffold protein. Fusion of autophagosomes and lysosomes, known as autolysosomes, results in the
degradation of the contents. Selective autophagy like mitophagy and lysophagy are used to remove
damaged mitochondria (depolarization of inner mitochondrial membrane) or ruptured lysosome,
respectively, during tubule cell injury.

Notably, the term “autophagy flux” is used to represent the entire dynamic autophagic process,
including autophagosome formation, maturation, autophagosome-lysosome fusion, macromolecule
digestion and lysosome recycling. It is of extreme importance to accurately assess autophagic flux
in vivo and in vitro to fully understand the real function of autophagy in live cells, animal, and
patients. Most assays use the autophagy marker protein microtubule-associated protein1 light chain 3
(LC3), a yeast ATG8 protein homologue, as readout for autophagic activity. LC3 is a ubiquitin-like
adaptor protein required for autophagosome formation [83]. The cytosolic “deletion form” (LC3-I
form) becomes phosphatidylethanolamine-lipidated (LC3-II form) and tightly associated with the
autophagosomal membranes as an indication of autophagosome formation. Although LC3-II content
is a good indicator of the autophagic vesicle number, LC3-II itself is degraded within lysosome after
autolysosome formation and complicates autophagic measures. Therefore, care must be taken when
interpreting the result of autophagy flux analysis [84–86].

9. Autophagy and AKI—Overview

Accumulating autophagy research corroborated the essential roles of this highly
context-dependent cellular homeostasis pathway in regulating cell viability during tissue injury
and repair. Balanced autophagy is critical in maintaining cellular homeostasis and viability, for
damage occurs in the event of either “too much” or “insufficient” autophagy. In support of this,
autophagy dysfunction has been linked to many diseases including skeletal muscle diseases, cancers,
neurodegenerative diseases, systemic lupus erythematosus autoimmune disease, and others [87].
Besides mitochondrial fragmentation, severe oxidative stress (ROS) is induced during renal injury and
has been implicated as an upstream signal to induce autophagy [88]. Recently, cumulative evidences



Int. J. Mol. Sci. 2016, 17, 662 10 of 19

support a cyto-protective role of autophagy in AKI. Several genetically modified animal models,
with either tubule epithelial cell-specific or systemic deficiency of genes involved in the autophagic
pathway such as atg5, atg7, LC3 knockout, beclin1 heterozygous mutant mice or the transgenic animal
expressing GFP-LC3-RFP autophagic flux reporter have provided valuable tools to gain insights into
how autophagy is involved in various kidney diseases and AKI [89].

Autophagosome was first identified in murine renal IRI model on tubular epithelial cells and
also in human kidney transplants [90]. Later, autophagy was shown to be rapidly induced in ischemic
AKI model, and autophagic flux was increased during the reperfusion phase following ischemic
injury, which occurred well ahead of tissue damage [91]. Moreover, studies from transgenic animal
expressing GFP-LC3 confirmed a time-dependent autophagosome (GFP-LC3 punctates) accumulation
in the proximal tubule in a cisplatin–induced AKI model. In this study, apparent autophagy was
induced within 6 h of treatment and peaked at day 3 in proximal tubules [92]. Tubule-specific ATG5-
or ATG7- knockout mice demonstrated exacerbated IRI or cisplatin-induced kidney damage and
apoptosis [92–95]. Mechanistically, in these tissue-specific autophagy-deficient AKI models, animals
displayed exacerbated mitochondrial dysfunction including morphological changes, increase in ROS
production, DNA damage, apoptosis with reduction in cell viability, and loss of renal function. In line
with this finding, mouse models with tubule-specific deletion of Rictor/mTORC2 [96] or mTORC1 [97]
demonstrated the fundamental roles of mTOR complexes in response to nephrotoxin or ischemic
stresses. Consistently, autophagy is also documented in response to CLP septic AKI animal model
and played a renoprotective function in proximal tubular cells [98]. Research with LPS-induced
endotoxemia in septic AKI model further indicated the critical role played by mTOR in modulating
autophagy, calcium signaling, and immune response [99,100]. In summary, these findings corroborate
the renoprotective and pro-survival effect of autophagy in various types of AKI etiologies and highlight
the importance to delineate the underlying mechanism.

It appears that efficient autophagic flux is critical to promote cell survival. Recently, an autophagic
flux study using GFP-LC3-RFP transgenic mouse in ischemic AKI distinguished two populations
of cells: early autophagic vacuoles (yellow signal derived from combined GFP-LC3 and RFP-LC3
punctates) and autolysosomes (red signal from RFP-LC3 punctates only). This study provided a
detailed time-course of autophagy in relation to cell proliferation [89]. The results support the notion
that autophagy was initiated at day 1 and autophagosome clearance occurred during renal recovery at
day 3. Notably, autophagic cells appeared to be less likely to divide and repair the injured tubule cells.

Autophagy has recently been proposed to play a “dual role”—both renoprotective and detrimental,
depending on the IRI experimental procedures of ischemia and reperfusion insults [101,102].
For renoprotective autophagy to happen, the ischemic duration should be limited to a threshold
of 45 min for mice and 60 min for rats [101]. Within this condition, autophagosomes sequester
damaged organelles like mitochondria, ER, and ribosomes and prevent subsequent ROS release
and cell death. Paradoxically, detrimental autophagic responses were also reported when extended
ischemic conditions or other modulations affecting autophagy were applied. Therefore, it is suggested
that excessive autophagy during tissue damage causes detrimental degradation of damaged organelles
and may trigger further tissue injury and cell death pathway [101,102]. Taken together, autophagy is a
time- and context-dependent process, subject to dynamic fluxregulation to switch the balance between
“pro-survival” or “detrimental” depending on the extent of oxidative stress. What exactly regulates
this transition from protective to detrimental remains unclear. However, new tools are introduced to
more accurately measure the autophagic flux in the animal models which will provide hints towards
the molecular mechanisms of autophagy and its links to oxidative stresses.

9.1. Selective Autophagy in AKI

During AKI, large amounts of mitochondria, lysosomes and other organelles are damaged
and need to be removed by selective autophagy or “organellophagy” processes [103]. To initiate
selective autophagy, proteins on the membrane of damaged organelles are first recognized and



Int. J. Mol. Sci. 2016, 17, 662 11 of 19

ubiquitinated, followed by the recruitment of LC3 and some autophagic adaptor proteins, like p62, to
the isolated membrane for autophagosome membrane formation. Eventually, the damaged organelles
are incorporated into autolysosomes for degradation [104]. We will review in more detail the two
types of selective autophagy—mitophagy and lysophagy in relation to AKI (Figure 3).

9.1.1. Mitophagy—Mechanism and Involvement in AKI

The quality and quantity of mitochondria are under tight control in order to adjust to cellular
metabolism and functional needs. Mitochondrial dysfunction represents the status of the elevation of
mitochondrial calcium content, ROS production, permeabilization of outer mitochondria membrane,
decrease in respiration, loss of inner membrane potential (∆Ψm), and ATP production. Notably,
in animal models of AKI, mitochondrial dysfunction occurs well before renal dysfunction, as
measured by increase of serum creatinine, which occurs around 12 h after IRI onset and persists
for a much longer period of time than kidney function recovery [48]. Maintaining mitochondrial
homeostasis is thus an important strategy in curing acute organ failure [36]. The selective removal
of dysfunctional mitochondria, namely “mitophagy”, in a timely fashion via autophagy is thus
critical to preserve bioenergy and prevent the release of detrimental DAMPs biomolecules and
ROS. Accumulation of those damaged and aggregated biomolecules serve as strong DAMPs signals
and contribute to inflammation and pathogenesis [66]. Currently, two mechanisms of mitophagy,
PINK1/PARKIN-dependent pathway and Bcl2/BNIP3-dependent pathway, have been identified [105].

In the PINK/PARKIN-dependent pathway, the whole process of mitophagy is regulated by
a post-translational modification circuit constituted of PTEN-induced kinase 1 (PINK1), PARKIN
(an E3 ubiquitin (Ub) ligase), and mitochondria-localized deubiquitylase “Ub-specific proteases
(USP)” [106–108]. In healthy conditions, the cytosolic level of PINK1 is kept low by serial steps
of intra-mitochondrial translocation and cleavage. In damaged mitochondria, the IMM become
depolarized and the PINK1 inner mitochondrial translocation is blocked which leads to its
accumulation on the OMM of defective mitochondria. This is followed by PINK1-mediated
phosphorylation of cytosolic PARKIN (E3 Ub ligase) and its subsequent ubiquitination. The
phosphorylated and ubiquitinated PARKIN is then recruited and activated on the damaged
mitochondrial surface to create many ubiquitin conjugates on mitochondria and ubiquitinate many
substrates, including Mfn1 and Mfn2. The autophagy adaptor proteins LC3/Atg8 are then recruited
to the complex and initiate the cascade of mitophagy to clear the damaged mitochondria. The USPs
remove the Ub chain on mitochondria and counteract PARKIN-mediated Ub chain formation on cells
to regulate mitochondrial homeostasis [108].

The alternative mitophagy pathway occurs to eliminate healthy mitochondria under the condition
of normal reticulocyte differentiation into mature red blood cells [109]. This alternative pathway is
also employed under certain hypoxia conditions as an adaptive metabolic response [110]. This process
involves the direct interaction of Bcl2 and BNIP3 (Bcl2/adenovirus E1B 19 kDa protein-interacting
protein 3) family proteins to prevent ROS accumulation and cell death [111]. Studies from the animal
ischemic AKI models of globally or tubule-specific deletions of the apoptotic proteins Bax or Bak
have confirmed their involvement as regulators of mitochondrial integrity and their roles in renal
pathophysiology [112]. This also highlights the close interaction of apoptosis, autophagy (mitophagy)
and kidney injury. For future therapies, it will be useful to design a targeted approach to regulate
mitophagy specifically during kidney injuries for renoprotection.

9.1.2. Lysophagy—Mechanism and Involvement in AKI

Lysosomes are intracellular membrane-bound acidic (about pH 4.5) organelles containing more
than 50 kinds of hydrolytic enzymes known as “cathepsins” capable of degrading biomolecules
such as proteins, nucleic acids, lipids and cell debris. During lysosome rupture, the lysosomes
release large amounts of cathepsins, proteins, and calcium into cytosol, which result in apoptotic cell
death, caspase activation and cellular dysfunction. Evidence demonstrated that damaged lysosomes
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are selectively sequestered by macroautophagy [104,113] (Figure 3). It is known that proximal
tubule-dependent receptor-mediated endocytic vesicular trafficking and lysosomal degradation
(clearance) are crucial to renal protein reabsorption and clearance [114]. Indeed, reabsorption of filtered
proteins is largely limited by the capacity of lysosomal degradation instead of receptor-mediated
endocytosis [115]. Moreover, it has recently been shown that the numbers of lysosomes are functional
or dysfunctional, remain constant within cells [113], and that ruptured lysosomes are a strong activator
for NLRP3 inflammasome [61]. Thus, maintaining cellular homeostasis with lysosome-selective
lysophagy becomes especially important in AKI. In line with this finding, Maejima et al. [113] have
reported proximal tubule-specific autophagy-deficient mice demonstrating severe nephropathy under
hyperuricemia-induced lysosome rupture in kidney. Interestingly, it seems there is mitochondrial and
lysosomal crosstalk in the regulation of cisplatin-induced nephrotoxicity [116]. It would be of great
value to study the crosstalk between mitochondria and lysosomes in the setting of animal AKI models
in real time using high resolution multiphoton microscopy.

10. Innovative Preclinical AKI Therapy—Targeting Cell Death and Tissue Regeneration

Current AKI treatment is largely supportive in nature as there is no effective therapeutic
intervention. A great deal of effort has been devoted to developing new therapies to
cure AKI. This includes research to target apoptosis with caspase inhibitors (zVAD-fmk,
q-VD) [117], necroinflammation [118,119], oxidative stress, regenerative stem cell therapy [27,120,121],
microvesicle-delivered paracrine effects [122,123], mitochondrial dynamics [124,125] and
autophagy [126]. These studies mainly remain at the animal model and cell therapy levels
but do offer innovative opportunities for translation into clinical research. Currently, several clinical
trials are in progress, aiming to translate preclinical experimental research into clinical therapies
(clinicaltrials.gov) [7,127].

11. Concluding Remarks and Future Perspectives

Presently, acute kidney injury (AKI) continues to have high morbidity and mortality with a
high medical and financial burden globally. The pathophysiology of this disease is rather complex
and involves multiple cell systems including renal tubules, immune cells and vascular endothelial
cells. Moreover, there are intricate crosstalks among different cell death pathways, such as apoptosis,
autophagy and programmed necrosis. We still need to better understand the molecular mechanisms,
and identify the key players in these pathways in order to develop new therapeutic designs. However,
new tools and microscopic advances are introduced to more accurately measure autophagic flux in
animal models, thus providing hints toward the molecular regulation of the autophagic pathway and
its links to oxidative stresses during tissue injury and repair. Several modulators have been discovered
recently and offer a better understanding of this complex signaling network. Considerable progress
has been made in the fields of basic immune mechanisms and kidney pathophysiology. Clinically, a
web-based tool was developed for risk calculation to better predict post-kidney transplantation or
“delayed graft failure”-associated AKI [128,129] and fits well into the global “0by25” initiative for AKI
(zero preventable deaths by 2025) [3]. All these efforts hold great promise for both the identification
of novel therapeutic targets and biomarker-based evaluation of the damage-repair process to be
better translated into clinical therapies for new drug design. Perhaps strategies with a combinatorial
modulation of multiple drug targets would be beneficial to the disease outcome and provide new hope
for the cure of AKI and related renal diseases.
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Abbreviations

AKI Acute kidney injury
CKD Chronic kidney disease
IRI Ischemic reperfusion injury
PTE Proximal tubule epithelium
ROS Reactive oxygen species
CLP Cecal ligation and puncture model of sepsis
DAMPs Damage-associated molecular patterns
PAMPs Pathogen-associated molecular patterns
TLR Toll-like receptors
OMM Outer mitochondrial membrane
IMM Inner mitochondrial membrane
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