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Abstract: Protein self-association is a key feature that can modulate the physiological role of proteins
or lead to deleterious effects when uncontrolled. Protein oligomerization is a simple way to modify
the activity of a protein, as the modulation of binding interfaces allows for self-activation or
inhibition, or variation in the selectivity of binding partners. As such, dimerization and higher
order oligomerization is a common feature in signaling proteins, for example, and more than 70% of
enzymes have the potential to self-associate. On the other hand, protein aggregation can overcome
the regulatory mechanisms of the cell and can have disastrous physiological effects. This is the case
in a number of neurodegenerative diseases, where proteins, due to mutation or dysregulation later in
life, start polymerizing and often fibrillate, leading to the creation of protein inclusion bodies in cells.
Dimerization, well-defined oligomerization and random aggregation are often difficult to differentiate
and characterize experimentally. Single molecule “counting” methods are particularly well suited
to the study of self-oligomerization as they allow observation and quantification of behaviors in
heterogeneous conditions. However, the extreme dilution of samples often causes weak complexes to
dissociate, and rare events can be overlooked. Here, we discuss a straightforward alternative where
the principles of single molecule detection are used at higher protein concentrations to quantify
oligomers and aggregates in a background of monomers. We propose a practical guide for the use of
confocal spectroscopy to quantify protein oligomerization status and also discuss about its use in
monitoring changes in protein aggregation in drug screening assays.

Keywords: single molecule spectroscopy; number and brightness analysis; protein folding; protein
oligomerization; protein-protein interactions

1. Introduction

1.1. Oligomerization: Function and Dysfunction

Most types of proteins can modulate their function and binding partners by modifying their
oligomerization status [1,2]. One of the most described functions of dimerization/oligomerization
is the activation/inhibition of enzymatic activities, particularly in kinases. The role of dimerization
in signaling has been extensively studied in the case of the receptor tyrosine kinases (RTKs) [3–6]. A
remarkable amount of work has led to a precise description of molecular mechanisms of Epidermal
Growth Factor Receptor (EGFR) activation upon ligand binding (Figure 1A), and the role of the
dimer [7–11]. This knowledge provided new therapeutic avenues in the treatment of cancers where
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RTKs are often mutated or over-expressed [12–15]. Dimerization of receptors also provides a way
to activate signaling kinases in non-RTK receptors. One such example is the dimerization of Janus
Kinase 2 (JAK2) and the sliding mechanism that leads to its activation following the Growth Hormone
Receptor (GHR) binding to its ligand [16].
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Binding of the hormone (in red) triggers activation of the intracellular kinase domain (constructed 
from PDB entry 2gs6); (B) p53 binds to the DNA (blue/green) as a tetramer (shown in pink/yellow) 
(constructed from PDB entries 1tup , 1olg and 1ycq) ; (C) Aβ (1–42) forms fibrils that can accumulate 
in the brain causing neurodegenerative disorders including Alzheimer’s disease. Three different 
β-sheet stacks (colored in green, blue and purple) form the amyloid fibril (constructed from  
PDB entry 2m4j). These examples were “molecules of the month” on the RCSB PDB, generated by 
David S. Goodsell [17]. 

Oligomerization can also switch the function of a given protein. Remarkably, transcription 
factors use dimerization and oligomerization as a way to not only increase their affinity for DNA [18–22] 
(Figure 1B) but also to modulate the subset of genes to be regulated [23–26] or vary the binding 
partners that can be recruited [27,28]. For example, for transcription factors involved in circadian 
oscillations, variation in their oligomeric status is a simple and efficient way to modulate activity [29]. 
Finally, oligomers of a transcriptional activator can be repressors [30] and vice versa [31]. 

Larger scale oligomerization or polymerization can also find a role in biology. Some functions 
in the cell, such as endocytosis, vesicle transport [32,33] or cytoskeletal organization [34], are so 
complex that it requires a full machinery to be carried out. Proteins involved in such mechanisms 
have the ability to self-assemble to create nanoscale objects of various shape and function. 
Polymerization is also a process that allows for fast, non-linear signal amplification. This is 
particularly relevant in immunity where one danger signal must be enough to activate a full-scale 
response by the organism. Recently, two adaptor proteins of the immune system, the Mitochondrial 
Antiviral Signaling (MAVS) protein [35,36] and the apoptosis-associated speck-like protein 
containing a CARD (ASC) [37] have been shown to polymerize upon activation. These proteins 
actually adopt a prion-like behavior in order to amplify the danger signals not only intracellularly but 

Figure 1. Examples of oligmerization in active proteins: (A) Epidermal Growth Factor Receptor
(EGFR, shown in light blue and purple) dimerizes in the plasma membrane (represented in gray).
Binding of the hormone (in red) triggers activation of the intracellular kinase domain (constructed
from PDB entry 2gs6); (B) p53 binds to the DNA (blue/green) as a tetramer (shown in pink/yellow)
(constructed from PDB entries 1tup , 1olg and 1ycq) ; (C) Aβ (1–42) forms fibrils that can accumulate in
the brain causing neurodegenerative disorders including Alzheimer’s disease. Three different β-sheet
stacks (colored in green, blue and purple) form the amyloid fibril (constructed from PDB entry 2m4j).
These examples were “molecules of the month” on the RCSB PDB, generated by David S. Goodsell [17].

Oligomerization can also switch the function of a given protein. Remarkably, transcription factors
use dimerization and oligomerization as a way to not only increase their affinity for DNA [18–22]
(Figure 1B) but also to modulate the subset of genes to be regulated [23–26] or vary the binding partners
that can be recruited [27,28]. For example, for transcription factors involved in circadian oscillations,
variation in their oligomeric status is a simple and efficient way to modulate activity [29]. Finally,
oligomers of a transcriptional activator can be repressors [30] and vice versa [31].

Larger scale oligomerization or polymerization can also find a role in biology. Some functions in
the cell, such as endocytosis, vesicle transport [32,33] or cytoskeletal organization [34], are so complex
that it requires a full machinery to be carried out. Proteins involved in such mechanisms have the
ability to self-assemble to create nanoscale objects of various shape and function. Polymerization
is also a process that allows for fast, non-linear signal amplification. This is particularly relevant in
immunity where one danger signal must be enough to activate a full-scale response by the organism.
Recently, two adaptor proteins of the immune system, the Mitochondrial Antiviral Signaling (MAVS)
protein [35,36] and the apoptosis-associated speck-like protein containing a CARD (ASC) [37] have
been shown to polymerize upon activation. These proteins actually adopt a prion-like behavior in
order to amplify the danger signals not only intracellularly but also in neighboring cells [38]. These
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discoveries are reigniting the interest in prion-like behavior as a physiologically relevant and beneficial
process in mammalian cells [39–41].

However, thus far, most examples of protein aggregation, polymerization and prion-like behavior
occur in the context of diseases [42–44]. The best characterized examples of deleterious protein
aggregation and prion-like behavior are found in neurodegenerative diseases [45–48]. In particular,
misfolding and aggregation of proteins, such as Aβ [49] (Figure 1C), α-synuclein [50,51] and Tau [52,53],
relevant to Alzheimer’s and Parkinson’s diseases, have been studied at length. More recently, prion-like
behavior has been linked to cancer [54,55] as mutations in p53 [56,57] notably lead to polymerization
of the protein.

Whether it is a controlled, defined process or an exponential progression, a physiological response
to a stimulus or an acquired pathological mutation, oligomerization is a fundamental property of most
proteins. Information on the proteins’ oligomerization state is therefore essential to the molecular
understanding of many biological events. Though many technologies [58–64] have been developed
to study oligomerization and polymerization, single molecule counting and confocal spectroscopy
techniques [65–69] are particularly well suited to the study of protein self-assembly.

1.2. Single Molecule Detection and Confocal Spectroscopy for the Study of Protein Self-Assembly

Fluorescence confocal spectroscopy relies on the detection of fluorescent proteins freely diffusing
in and out of the confocal volume of a microscope. Confocal spectroscopy methods are especially
attractive as they avoid “ensemble” averaging of the properties of the sample. As a small number
of proteins are measured at the same time, sub-populations can be detected in complex mixtures.
Two methods, Fluorescence Correlation Spectroscopy (FCS) and single-molecule spectroscopy, rely
on confocal microscopy to observe the diffusion of fluorescently labeled proteins and track their
oligomerization. Both are commonly used to study proteins behavior but have specific limitations.

FCS [70–73] is often referred to as a “small ensemble” technique as multiple proteins are detected
simultaneously in the focal volume (typically at nanomolar concentrations). The method relies
on observing of intensity fluctuations as fluorescent particles diffuse into and out of the confocal
detection volume. In FCS, a correlator is used to calculate the temporal auto-correlations of the
fluorescent signal. This method is extremely powerful as it can yield information on many timescales,
from microsecond dynamics (rapid intramolecular fluctuations can be measured by measuring fast
changes in the photophysics or environment on the fluorophores) to milliseconds (to measure diffusion
parameters). This precise measure of diffusion is especially useful when a small diffusing object
(small molecule, peptide or small protein) can bind to a larger particle, creating a large shift in the
diffusion coefficient. However, FCS is not optimal when the sample is heterogeneous. The brightest
events overwhelm the correlation and dominate the analysis as bursts of very large amplitude create
long-range temporal correlations.

“Pure” single-molecule spectroscopy [74–79] is performed at picomolar (pM) concentrations,
allowing the characterization of highly heterogeneous mixtures. Single molecule spectroscopy is used
by many groups to measure Förster Resonance Energy Transfer (FRET) at the single molecule level,
but it can also be used to measure the size of small oligomers. The measurements detect individual
bursts of fluorescence when a single protein or single oligomer diffuses within the detection volume.
Although proteins transiting through the focal volume produce signals with different intensities,
depending on their individual trajectories, sufficient sampling of many trajectories can be provide
information on the number of proteins in each oligomer [80–83]. To simplify, the maximal number of
photons collected in a burst of a millisecond can be compared with the number of photons emitted
by a monomeric fluorophore, and interpreted in terms of the number of proteins in an oligomer [84].
These “pure” single molecule counting techniques are powerful but have limited ability to handle the
presence of rare and large objects as the extreme dilution required by single-molecule counting makes
rare events virtually undetectable.
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The principles of single molecule detection can be applied in a straightforward manner to detect
large oligomers at higher protein concentrations, by detecting larger bursts of fluorescence in a
background of monomers. Photon counting [85,86] or Number and Brightness (N&B) [87–92] analysis,
a method often used in laser scanning microscopy in cells, can be viewed as a hybrid approach that
can overcome the limitations of FCS and “pure” single molecule spectroscopy. The simple analysis of
the heterogeneity of intensity values measured in short time traces yields an extremely robust and
precise measure of protein oligomerization. Performed at “FCS” concentrations (nM), the brightness
analysis allows the detection of rare events, yet the counting system attributes the same weight to
a monomer or a large oligomer, providing a precise picture of the mixture composition. Here, we
describe a simple application of the N&B analysis to identify the size of oligomers and demonstrate
the use of the brightness parameter (B) as a screening tool for protein aggregation.

2. Characterization of the Brightness Parameter in Confocal Spectroscopy

2.1. Theory

For simplicity, let us consider purely monomeric proteins first. At single molecule concentrations,
typically picomolar (pM), proteins transiting through the focal volume will produce signal of different
brightness, depending on their individual trajectories (Figure 2A,B). This allows for the single molecule
brightness analysis illustrated in Figure 2C,D. When the protein concentration is raised significantly
(by a factor of ~50–100), the brightness distribution becomes Gaussian as shown in Figure 2G.
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volume increases from <1 to 10 molecules/ms. A typical focal volume is 200–300 nanometers in 
width and 2–6 times larger in the vertical axis; (F) The increase of the average number of molecules 
is reflected by the increase in background of a typical fluorescent time traces obtained for 
different concentrations of GFP; (G) The distribution of number of events changes from asymmetric 
at low concentrations to a Gaussian profile. The colors correspond to the time traces in (F); 
intermediate concentrations are shown in black. 
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a pinhole with small aperture (typically 30–50 microns) (see Figure 3). On the contrary, brightness 
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Figure 2. From photon counting histograms to brightness analysis: (A,B) Typical time traces of
fluorescence obtained in “pure” single-molecule experiments for GFP (A) and GFP-foldon (foldon is
an artificial trimerization domain) (B) The number of photons detected is often referred to as “counts
per millisecond” (cpms); (C) Photon Counting Histograms obtained for 5 distinct experiments for
each protein, the colors indicate the different repeats. The GFP curves converge to a maximal value
of 80 photons per ms whereas the GFP-foldon proteins reaches a maximum of 250 photons per ms;
(D) A simulated GFP trimer photon counting histogram obtained by multiplying a monomer trace
by three and analyzed for the distribution of values; the data show that the slope of the distribution
matches with that of the experiments; (E) As concentration of the sample increases from 100 pM to
10 nM, the average number of molecules in the confocal volume increases from <1 to 10 molecules/ms.
A typical focal volume is 200–300 nanometers in width and 2–6 times larger in the vertical axis; (F) The
increase of the average number of molecules is reflected by the increase in background of a typical
fluorescent time traces obtained for different concentrations of GFP; (G) The distribution of number of
events changes from asymmetric at low concentrations to a Gaussian profile. The colors correspond to
the time traces in (F); intermediate concentrations are shown in black.

The signal measured from each fluorescently labeled particle as it diffuses through the focal
volume depends on a multitude of factors. These include the path the particle takes, the geometry of
the focal volume, and the characteristics of the excitation laser beam, among others. The shape of the
confocal volume is extremely important to obtain correct fitting of FCS measurements. Acquisition
of FCS data typically requires extensive optimization of all optical elements and perfect alignment
of a pinhole with small aperture (typically 30–50 microns) (see Figure 3). On the contrary, brightness
measurements are more forgiving as a monomeric reference sample can be used to calibrate each
apparatus. The contribution of all these geometrical parameters is integrated in the characteristic
width of the histogram for a sample’s time series.

For symmetrical distributions, the variance depends on the lateral and vertical extension of
the confocal volume and the protein’s concentration. Notably, the protein’s concentration imparts a
Poisson dependence on the distribution, meaning that for a concentration n, the distribution has the
following characteristics:

µn “ n
nre f

ˆ µre f

σ2
n “ n

nre f
ˆ σ2

re f

+

(1)

where, µn and σ2
n are the mean and variance for the distribution at a concentration n, while µre f and

σ2
re f are the mean and variance for the distribution at a reference concentration (nre f ).
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(NA) water immersion objective. In the dual color mode, the fluorescence from GFP and Cherry  
is separated by a dichroic filter. Fluorescence from GFP is filtered by a 505–540 band pass filter. The 
number of photons collected in 1 ms time bins is recorded as IGFP (t). Avalanche Photo Diodes 
(APDs) are used for photon counting. 
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B incorporates all the contributions from the physical characteristics of the system, as described 
earlier. Mathematically, it follows that B should remain invariant with concentration. Indeed, this 
property serves to confirm the suitability of the model (see Section 2.3 below). 

Figure 3. Schematic of the single molecule spectroscopy setup: In the brightness analysis mode, the
532 nm laser is turned off but this setup can also be used for single molecule coincidence or single
molecule FRET. A 488 nm laser is used to illuminate the sample containing GFP. The light is focused
and the resulting fluorescence is collected through a 40ˆ magnification, 1.2 Numerical Aperture (NA)
water immersion objective. In the dual color mode, the fluorescence from GFP and Cherry is separated
by a dichroic filter. Fluorescence from GFP is filtered by a 505–540 band pass filter. The number of
photons collected in 1 ms time bins is recorded as IGFP (t). Avalanche Photo Diodes (APDs) are used
for photon counting.

The brightness parameter (B) is defined as the ratio of the variance σ2 over the mean intensity µ

(mathematically, the index of dispersion).

B “
σ2

µ
(2)

B incorporates all the contributions from the physical characteristics of the system, as described
earlier. Mathematically, it follows that B should remain invariant with concentration. Indeed, this
property serves to confirm the suitability of the model (see Section 2.3 below).

B “
σ2

n
µn

“
σ2

re f

µre f
(3)
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Because an oligomer is a complex of monomers, its signal is a multiple of that of the monomer
if we assume that the fluorophores are randomly oriented in the oligomer. In turn, it follows that
for a given mean signal, µ, if the sample consists of dimers, its variance will be double that of a
monomer distribution. Consider the distribution of dimers with concentration n/2 (the concentration
of fluorophores is n). It follows that µdimer “ 2 ˆ µn{2 “ µn [93].

However, the particles pass through the focal volume in pairs, meaning that their distributions
are exactly correlated [93].

σ2
dimer “ σ2

n{2 ` σ2
n{2 ` 2 Cov

“

f
` n

2

˘

, f
` n

2

˘‰

σ2
dimer “ 2 σ2

n{2 ` 2 σ2
n{2

σ2
dimer “ 2 σ2

n

(4)

By extension, for an N-mer, with fluorophore concentration of n,

µolig “ µn

σ2
olig “ N ˆ σ2

n

+

(5)

Again, as B “ σ2

µ , in the case of an oligomer: Bolig “
σ2

olig
µolig

“
Nˆσ2

n
µn

“ N ˆ Bmono.
Once B is known for a pure monomer, it becomes possible to ascertain how other proteins deviate

from this behavior by measuring B for their time series. Therefore, the size of the oligomer (N) can
be simply deduced provided that a reference monomeric sample has been characterized using the
same setup.

2.2. Experimental Measure of the Size of Oligomers

Obtaining a reference monomeric sample is readily accomplished when one uses genetically
encoded fluorophores, as their fluorescence properties are independent of the protein they label.
Because most laboratories use GFP and its variants for cell microscopy, most proteins are available as
GFP fusions for expression in mammalian cells. The brightness can be analyzed directly after cell lysis
and centrifugation to remove nuclei and membrane debris. Alternatively, cell-free expression systems
such as the eukaryotic system used in our laboratory [94] can be used to produce the fluorescently
tagged proteins. This approach shortcuts labeling, denaturation/refolding and purification steps that
could affect the protein oligomerization status.

2.2.1. Experimental Setup

The experimental setup we use is described in Figure 3. Single molecule spectroscopy was
performed as described previously [84,95]. The measurement requires 20 µL of diluted sample that
is placed into a custom-made 192-well silicone plate with a 70 ˆ 80 mm glass coverslip (ProSciTech,
Kirwan, QLD, Australia). Plates are analyzed at room temperature on a Zeiss Axio Observer
microscope with a custom-built data acquisition setup. Illumination is provided by a 488 nm laser beam,
focused in the sample volume using a 40ˆ magnification, 1.2 Numerical Aperture water immersion
objective (Zeiss, Oberkochen, Germany). The fluorescence of GFP is measured through a 525/20 nm
band pass filter, and detected by a photon counting detector (Micro Photon Devices, Bolzano, Italy).
Photons are collected in 1 ms time bins.

2.2.2. Examples: Monomers, Dimers and Trimers

In the first example, eGFP and eGFP-Foldon were expressed in our cell-free system [94] and
analyzed. Foldon is a trimeric β-hairpin propeller derived from the C-terminal domain of the T4
fibritin; this domain drives the trimeric assembly of the fibritin and has been used as an efficient
artificial trimerization domain [96].



Int. J. Mol. Sci. 2016, 17, 655 8 of 20

Typical data are presented in Figure 4. In the case of monomeric eGFP (Figure 4A), the fluctuations
of intensities correspond to the entry/exit of a single fluorophore through the focal volume. The
formation of small oligomers, such as trimers (using the foldon domain), creates a broader distribution
of values: the simultaneous displacement of three fluorophores bound together creates fluctuations
of 3-times larger amplitude (Figure 4B). This difference is clearly seen on the graphs plotting the
distribution of intensities (Figure 4C). The distribution for the trimeric GFP (GFP-Foldon) is wider
than the one for monomeric GFP. From these data, the brightness parameters can be extracted with
Bmono = 19.4 and Bfoldon = 53.1, giving N = 2.8.

The brightness analysis was then tested on proteins from previous published studies [97,98]
(Figure 4D–L). E-cadherin and β-Catenin were previously measured to be monomeric in our cell-free
extracts [97]. We also tested three members of the Sortin Nexin (SNX) family of proteins, as we
previously determined that SNX5 was monomeric, and SNX4 and SNX6 were dimeric [98]. Finally,
we used the transcription factor Jun, which forms a dimer stabilized with a Leucine Zipper, and the
FERM (F for 4.1 protein, E for ezrin, R for radixin and M for moesin) domain of the protein Janus
Kinase 2 (JAK2) [16]. These different proteins tagged with eGFP were expressed in our cell-free extracts
and the fluorescence time traces were acquired for 30 s. The brightness distributions were obtained
and fitted by a Gaussian; the B values were also calculated and the number of proteins per oligomer
was determined. The predictions of dimer or trimer formation show excellent agreement with our
previous observations (Figure 4H) using other techniques including single molecule fluorescence at
pM concentrations.

Note that in one case, the FERM domain, the calculated data do not fit properly the tail of the
experimental distribution and the interpretation of oligomer size is unreliable (Figure 4L). Indeed, in
this sample, we observed the presence of rare large aggregates that cannot be properly quantified by
this method.
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Figure 4. (A,B) Typical fluorescent time traces used for brightness analysis, obtained for GFP (A) and
GFP-foldon (B). The background fluorescence are similar (~400 photons/ms) but the amplitude of the
fluctuations are bigger for GFP-foldon than for GFP; (C) Histogram showing the number of events
corresponding to different fluorescence intensity values (photons per ms or cpms) measured in the
time traces shown in (A) and (B) for GFP (light grey) and GFP-foldon (black). The distribution
for GFP-foldon (black) is larger than GFP (light grey); (D–L) Example of different distribution of
values for different proteins for which the oligomerization status was previously described using
other techniques. In blue are the experimental data and red is the calculated Gaussian fit; (H) Table
presenting the calculated oligomeric status of the protein based on brightness analysis (“B/Bref”)
compared to the literature (“oligomer size”) and accuracy of the fit (“R2 of fit”).

2.3. A High-Throughput Screening Tool

Although B cannot be used to determine the size of rare aggregates, it is still able to report on
their presence and can therefore be used to monitor protein aggregation for screening purposes. B
is a good screening parameter as it is concentration-independent, reproducible, fast to acquire and
unaffected by the protein size.

2.3.1. B Is a Concentration-Independent Parameter for a Wide Range of Concentrations

The concentration-independence of B is a built-in property of this parameter, as mentioned
previously. To simulate the increase of concentration, multiple curves for the same sample
(GFP monomer) were acquired and then the intensities of 2, 3, 4 or 5 different files were artificially
added and the distribution of the sums analyzed. As the files are not correlated, we efficiently recreate
the increase in concentration, but avoid an increase in the dispersion that would correspond to oligomer
formation (Figure 5A–C).
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Figure 5. B is independent from the concentration: (A) Simulated distributions of values for a serial
range of concentrations. To simulate the increase of concentration, we acquired multiple curves for
the same sample (GFP monomer). We then artificially added the intensities of 2, 3, 4 or 5 different
files, and analyzed the distribution of the sums. As the files are not correlated, we efficiently recreate
the increase of concentrations, but not an increase of fluctuations due to oligomer formation. Curves
are differentiated by using different shades of grey and black; (B) The calculated variance of the
distribution (σ2) (grey squares) linearly increases with the concentration (or in this case, the number
of files used to simulate the concentration increase); (C) In this simulation, the brightness parameter
(B) (grey diamonds) does not vary with the concentration; (D) Experimental distributions of values
for a serial range of concentrations. Here a GFP-Cherry fusion protein was expressed at different final
concentrations and a 60 s fluorescent time trace was acquired for each sample. Curves are differentiated
by using different shades of grey and black; (E) The distributions of values of (D) are presented in a
semi-logarithmic scale to show the loss of symmetry of the distributions at low concentrations. Curves
are differentiated by using the same shades of grey and black as in (D); (F) Experimental B values
(black squares) as a function of the mean fluorescence. B is indeed independent of the concentration if
the mean fluorescence is >400 cpms.

Experimentally, we could determine a range of concentration where the parameter was actually
invariant (Figure 5F). This is easily explained when one looks at the profiles of distribution (Figure 5E).
At low concentration, the overall distribution, even for a monomer, becomes asymmetrical. This is even
more evident when looking at oligomers. For these samples, the passage of large oligomers through
the focal volume skews the distribution to higher values, while the lower side of the distribution
remains unaffected because the overall protein concentration in the focal volume cannot decrease
significantly from the average value.

At high concentrations, the high fluorescence signal can mask small fluctuations and lead to a
loss of information. In practice, we found that the B value could be determined in conditions where
the fluorescence average signal (µ) was comprised between 400 and 5000 cpms, which in our system
corresponds to a range between 4 and 50 nM GFP (Figure 5F).
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2.3.2. B Is a Highly Reproducible Parameter

To determine the reproducibility of the brightness analyses, we expressed the GFP monomer and
GFP-Foldon and acquired 100 traces of 10 s for each protein. B was calculated for each file and plotted
as a distribution or as individual data points to show consistency (Figure 6A,B).Int. J. Mol. Sci. 2016, 17, 655 11 of 19 
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acquisition time (1 s). Our monomeric WT α-synuclein behaves similarly to GFP as expected. For 
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Figure 6. Acquisition of B in confocal spectroscopy: 100 repeats of a 5 s time trace were collected
for GFP and GFP-foldon after diluting the proteins to 2000 cpms and B values were calculated. The
results are presented in (A) in the form of a histogram to show that the distributions of values are
narrow, especially for GFP; (B) Plotting the B values for the different repeats show the good recurrence
of the parameter (grey dots: GFP monomer, black dots: trimeric GFP-foldon); (C) B values obtained
for different time of acquisition. Time traces of 1 s (10 repeats), 3 s (10 repeats), 10 s (5 repeats), 30 s
(5 repeats) or 100 s (3 repeats) were acquired and analyzed. The graph shows average ˘ SEM. For
the synuclein mutant, long traces have to be acquired as the aggregates are relatively rare; (D) B as a
function of the molecular weight for 16 different proteins (see SI Table S1 for list). Sixteen different
proteins were expressed as GFP fusion proteins and 30 s time traces were acquired 3 times for each
protein. The graph shows average ˘ SEM. The dashed diamond corresponds to the GFP foldon, the
green diamond is GFP only. The white (Lyn) and dark grey (Gli1) diamonds correspond to proteins
that have known interactions with the components of the lysate (lipids and DNA, respectively).

2.3.3. B Can Be Acquired Rapidly

In order to develop a medium-throughput method, acquisition time has to be as low as possible.
Different proteins (GFP, GFP-Foldon, WT α-synuclein-GFP, a pathological mutant of α-synuclein
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E46K-GFP) were expressed in our cell-free system and fluorescent traces were acquired for different
amount of time. The B values are presented in Figure 6C. For the calibration, the difference between
GFP and GFP-Foldon could be accurately determined even at the smallest acquisition time (1 s).
Our monomeric WT α-synuclein behaves similarly to GFP as expected. For highly heterogeneous
samples (α-synuclein E46K), longer acquisition times are needed to collect more rare events. However,
10-second long reads are sufficient to reliably establish that a protein is not monomeric provided that
aggregation is not an extremely rare event, as would be the case for a prion-like behavior.

2.3.4. B Is Mostly Unaffected by the Size of the Protein

B values were obtained for a panel of 16 N-terminus GFP-tagged proteins with molecular weights
ranging from 27 to 163 kDa expected to be monomeric. The experimental B values (Figure 6D) were all
found to be between 11 and 16, with an average of 13. These slightly higher values compared to GFP
alone (in green), as well as the variability in the data can be explained by the fact that those proteins
may not be pure monomers. Indeed, in this panel, proteins that can slightly interact with components
in the lysate, lipids (such as Lyn, white diamond) or nucleic acids (Gli1, black diamond) for example,
were included.

2.3.5. Oligomers or Aggregates?

When a non-monomeric sample is identified, one has to look at the distribution of fluorescent
events (and the time traces) to determine if the protein is mainly oligomeric or forms rare large
aggregates. If the sample is relatively homogeneous (GFP-Foldon), the distribution is symmetrical. The
presence of rare aggregates breaks this symmetry and the distribution of values can be decomposed
into two contributions. These include, (1) the fluctuations created by the dominant species, monomer
or small, well-defined oligomer, correspond to the symmetrical Gaussian distribution highlighted in
blue and (2) the rare events are typically at single-molecule concentrations so their detection is rare
and we obtain an exponentially decaying distribution of intensities, as shown in red (Figure 7).
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Figure 7. Influence of the large rare aggregates: (A) The experimental data obtained for α-synuclein
E46K-GFP show an asymmetric distribution of fluorescence values (B). The distribution of intensity
values can be decomposed into a Gaussian contribution (in blue) and a tail distribution (in red). These
two components can then be analyzed separately (C). The Gaussian distribution (blue) is analyzed by
brightness analysis to give the oligomeric status of the majority of the protein (here monomeric). The
tail distribution (red) only contains a small number of events, comparable to data obtained with “pure”
(pM) single-molecule acquisition. This can therefore be analyzed using the theory of Photon Counting
Histograms (PCH) to give the average number of proteins in the large aggregates.
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3. Examples of Aggregation Assays

3.1. Aggregation as a Function of Expression

We use B to determine the aggregation behavior of a protein as a function of the concentration at
which it has been expressed.

To obtain different final concentrations of the proteins (in this case α-synuclein A30P/A53T),
a serial dilution of the plasmid encoding the proteins was realized. When expressed in a cell-free
expression system, different concentrations of DNA yield different final concentrations of proteins.
The samples were then diluted uniformly (11 times in this case) and 45 s time traces were acquired. B
could be plotted as a function of the concentration and reveal a “Kd” of aggregation (Figure 8A).Int. J. Mol. Sci. 2016, 17, 655 13 of 19 
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Figure 8. B is a useful parameter in screening assays: (A) B as a function of the final concentration
of protein. α-Synuclein A30P/A53T, tagged with sGFP at its C-terminus, was expressed at different
final concentrations by using a range of dilutions of the template DNA. All expressions were diluted
10 times and 100 s time traces were acquired; (B) Variation of B during the expression of the protein.
The expression of GFP-foldon was started directly under the microscope by adding the template
DNA to the cell-free lysate in the sample holder. Sixty-second time traces were acquired every
minute for 2 h; (C) B can be used to follow the thermal denaturation of a protein. Here, Munc18-1 WT
(black) and mutant (C180Y, red) were expressed as GFP fusion proteins for 2 h and then treated at
different temperatures for 1 h. Three time traces of 30 s were acquired for each temperature treatment;
(D) Changes in aggregation behavior upon calcium treatment. α-synuclein WT (black) and mutant
(H50Q, red), tagged with sGFP at the C-terminus, were expressed for 2 h then incubated with different
concentrations of Ca2+ for 1 h. Three time traces of 30 s were acquired for data point.

3.2. Time Course of Aggregation

Monitoring aggregation has a function of time, following addition of a reagent. Recording
the oligomerization/aggregation status during synthesis of a protein can also be useful as it gives
insights into the mechanism of aggregation for example. To monitor aggregation during synthesis, the
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expression of the GFP-Foldon was initiated by addition of the plasmid to the cell-free extracts. The
well was sealed by applying a glass coverslip to limit evaporation, and 60 second-long time traces
were obtained every minute for 3 h. Here, B can be plotted as a function of time (Figure 8B).

3.3. Determination of Thermal Stability

A very simple application of an aggregation assay is to determine the thermal stability of a protein
(also called melting temperature, Tm). Here, upon expression, the cell-free reaction mixes expressing
Munc18-1 and one of its mutant [99] were split into 12 samples, which were submitted to a gradient of
temperature of (35 ˘ 5) ˝C using PCR machine for 30 min. The heated samples were then allowed to
cool down to room temperature, diluted and 5 times traces of 10 s were acquired for each sample. The
mutant (C118Y) was found to be less stable than WT leading to aggregation of the protein (Figure 8C).
As long as the GFP is not thermally denatured (<70 ˝C), the method is widely applicable.

3.4. Small Molecule Inhibitors of Aggregation

A valuable application of an aggregation assay is to screen for drugs that prevent pathological
aggregation of proteins. In combination with the cell-free expression system, the assay can be
modulated to include the small molecules during protein synthesis (to measure prevention of
aggregation) or after expression and aggregation (to find disruptors). Here, we studied the effect of
calcium (Ca2+) on α-synuclein aggregation, comparing WT and a pathological mutant (H50Q [100]).
Titration curves (B vs. [Ca2+]) were obtained showing that WT was unaffected whereas aggregation of
H50Q increased with Ca2+ concentration (Figure 8D).

4. Discussions

In this “practical guide” to brightness analysis in confocal spectroscopy, we demonstrate that
single molecule spectroscopists should take advantage of this simple method to characterize the
oligomerization and aggregation propensity of their protein samples. It is often considered that
only “true” single measurements performed at extremely low protein concentration can detect
sub-populations that would remain hidden in a measurement where molecular properties are
averaged. However, as presented above, the brightness method conducted in a “small ensemble”
configuration, i.e., at higher protein concentration, gives access to a robust and quantitative measure of
protein oligomerization.

In order to go further, it is often important to validate the oligomerization status of the proteins
of interest in their cellular context. Indeed, crowding effects, binding partners, post-translational
modifications or chaperone activity can modify the oligomerization of proteins in the cell.

As we demonstrated earlier [84], the brightness analysis can be performed easily from cell lysates.
In that case, the fluorescent proteins are expressed in different cell lines; the cells are lysed and
membrane/nuclei are spun down. The expression levels in the cytoplasm are in general sufficient for a
straightforward measurement of brightness on most confocal microscope.

These in vitro spectroscopy measurements can be pushed further by turning to cell imaging.
Advanced cell microscopy requires more advanced confocal microscope and more expertise from users,
but can lead to very valuable information on protein dynamics in time and space. As demonstrated
by Enrico Gratton’s laboratory, imaging cells using the Number and Brightness analysis is equivalent
to performing many spectroscopic measurements simultaneously, giving access to a pixel-by-pixel
map of local concentration and aggregation status of fluorescent protein. In this case, the average pixel
intensity is directly linked with the number of fluorophores present, and the variance distinguishes
pixels with many monomers from pixels containing a few oligomers.

In cell imaging, the acquisition parameters have to be carefully tuned. For example, the technique
has to choose an acquisition rate to capture enough variations of amplitude: if increasing the dwell
time increases the apparent brightness, it decreases the amplitude of fluctuations and causes a loss
of information. On contrary to diffusing setups, imaging methods have to deal with the existence of
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immobile molecules or proteins with extremely slow diffusion. To help identify regions containing an
immobile fraction, the laser power is varied and the variance measured. For mobile molecules, the
variance/intensity increases with intensity, while it remains constant for immobile molecules. The
experiments need to take into account a significant background and statistical noise, and the choice of
the gain is crucial for proper quantification.

Combined with recent advances in genetically encoded fluorophores and single-molecule imaging
techniques, the new developments of Number and Brightness analysis open exciting opportunities to
track protein oligomerization in cells with unprecedented temporal and spatial resolution [101,102].

5. Conclusions

The brightness parameter has been a valuable tool in single molecule microscopy and can be
readily applied to monitor protein aggregation in cells. Here, we described its usefulness when applied
to confocal single molecule spectroscopy. We propose to use B as a convenient parameter for the
development of aggregation screening assays. Here we also illustrate the use of and changes in the B
parameter in understanding various factors affecting protein aggregation. The method takes advantage
of genetically-encoded fluorophores to shortcut the necessity of purification/labeling steps. All the
examples provided use proteins expressed in a cell-free expression system which enables control of
expression levels and reaction time, but samples from other sources can be used, notably lysates from
transfected cells.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/
17/5/655/s1.
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