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Abstract: Mesenchymal stem cells (MSCs) are multipotent; non-hematopoietic stem cells. Because of
their immunoregulatory abilities; MSCs are widely used for different clinical applications. Compared
with that of other immune cells; the investigation of how MSCs specifically regulate B-cells has been
superficial and insufficient. In addition; the few experimental studies on this regulation are often
contradictory. In this review; we summarize the various interactions between different types or states
of MSCs and B-cells; address how different types of MSCs and B-cells affect this interaction and
examine how other immune cells influence the regulation of B-cells by MSCs. Finally; we hypothesize
why there are conflicting results on the interaction between MSCs and B-cells in the literature.

Keywords: mesenchymal stem cell; B-cell; immune regulation; immune suppression; systemic lupus
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1. Introduction

Mesenchymal stem cells (MSCs) are a progenitor cell population with multilineage potency.
MSCs were initially discovered in bone marrow and were subsequently found in almost every type
of tissue [1–3], including adipose tissue [4], the placenta [5], umbilical cord [6], endometrium [7],
and gingiva [8]. When cultured in vitro, MSCs are able to proliferate, form plastic-adherent colonies
and retain the capability to perform osteogenesis, chondrogenesis, and adipogenesis [9]. These
cells also have multilineage potency in vivo and are able to generate functional cells for use in
regenerative medicine. However, the research focus has recently shifted, with a new appreciation
of the wide range of MSC-secreted trophic factors that are capable of promoting tissue repair and
potent immune modulation [1]. Recent evidence suggests that MSCs can regulate T-cells [6,10], natural
killer cells (NK-cells) [11], dendritic cells (DCs) [12], and macrophages [13]. A remarkable curative
effect can be observed in the treatment of systemic lupus erythematous (SLE) [6], graft-versus-host
disease (GVHD) [14], type I diabetes [4], inflammatory bowel disease (IBD) [8], and pancreatic islets
transplantation [15]. Compared with the clear mechanism of interaction between MSCs and the
immune cells mentioned above, the investigation of the immune regulation of B-cells by MSCs
has been superficial and insufficient, and the results are commonly contradictory between different
experimental studies [16,17].

B-cells, a type of lymphocyte, are indispensable for the humoral immunity portion of the human
adaptive immune system. B-cells secrete antibodies (when stimulated by antigens), present antigens
and secrete cytokines, such as interleukin-10 (IL-10) [18,19]. B-cells develop from hematopoietic
progenitor cells in the fetal liver and, after birth, in the bone marrow [20,21]. The development,
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proliferation, differentiation and maturation of B-cells are all complex and sophisticated controlled
processes in vivo. Cytokines (IL-7 [22], IL-6 [23], IL-4 [24], and interferon-γ (IFN-γ) [24], etc.) and other
types of lymphocytes (T-cells [25], DCs [26] and macrophages [26]) play a guiding role in regulating the
B-cell behaviors mentioned above. There is also a considerable amount of MSCs in the bone marrow [3].
The presence of MSCs in both the fetal and adult liver has also been confirmed [27,28]. The presence of
MSCs in the sites of B-cell development and maturation is significant. Autoimmune diseases, including
SLE, multiple sclerosis and type 1 diabetes, can arise when abnormal B-cells recognize self-antigens
and secrete autoantibodies [29].

Previous reports have found that MSCs can alter the functions of immune cells with both
cell-to-cell contact and the secretion of soluble cytokines, including IL-10 [30], transforming growth
factor-β (TGF-β) [31], prostaglandin E2 (PGE2) [10], nitric oxide (NO) [32], and indoleamine
2,3,dioxygenase (IDO) [33]. These cytokines can influence the interaction between MSCs and other
immune cells. However, for B-cells, studies currently suggest that the response of B-cells to MSCs
depends on the culture microenvironment. Thus, although B-cells may directly interact with MSCs to
alter their characteristics and behaviors, other immune cells (e.g., T-cells and DCs) also play an indirect
regulatory role and may serve as intermediates between the MSCs and B-cells. After reviewing the
literature, we cannot yet arrive at general conclusion regarding the interaction between various MSC
and B-cell types and their activation states. However, it is clear that the interaction between MSCs
and B-cells is extremely complicated and is likely associated with many different factors. After the
mechanisms of interaction between MSCs and B-cells and subsequent immune regulation are clarified,
manipulation of this interaction may lead to effective therapies in tissue engineering and regenerative
medicine. In this review, we focus on the interaction between MSCs and B-cells in purified B-cell
co-culture systems, as well as in multi-immune cell co-culture systems, to clarify the underlining
mechanisms of their interaction.

2. Characterization of MSC-B Cells Interactions

Although MSC/purified B-cell (MSC–B) co-culture conditions are not identical to the conditions
that occur in vivo, MSC–B is the optimal controllable system for investigating the interaction between
MSCs and B-cells. There are few interfering factors in this system; thus, the experimental results are
repeatable and interpretable. Experiments using the MSC–B system will lay a solid foundation for
further studies. The culture medium, cell origin of the MSCs and B-cells, and the maturity of the B-cells
used in any given experiment will likely influence the interaction between MSCs and B-cells.

2.1. Different Origins and Activation States of MSCs

MSCs isolated from different origins, or those in different states of activation, can regulate the
survival or proliferation of B-cells differently. For example, MSCs from lupus patients (LMSCs) are
unable to regulate the immune system, causing symptoms and pathological changes in SLE [34].
To examine the mechanism underlying this defect, a LMSC–B-cell co-culture system was designed.
The LMSCs were able to promote levels of proliferation of unstimulated B-cells similar to those of
MSCs from healthy individuals [16]. However, LMSCs were less able to inhibit the proliferation,
plasma cell differentiation, and immunoglobulin M and immunoglobulin G (IgM and IgG) secretion
of B-cells that were stimulated by a stimulation cocktail (cytosine phosphorothioate (CpG), soluble
cluster of differentiation 40 ligand (sCD40L), antiIgM, and IL-4) compared with MSCs from healthy
subjects [16,35]. The expression level of C–C-motif ligand 2 (CCL2), which can be cleaved by
matrix metalloproteinases (MMPs), is also lower in LMSCs, likely because MMP-1 is able to mediate
the suppression of B-cells by MSCs [36]. In contrast, overexpression of olfactory 1/early B-cell
factor-associated zinc-finger protein (OAZ) in LMSCs can downregulate CCL2 [36].

CCAAT/enhancer-binding protein β (C/EBPβ), a protein expressed on the cytomembrane of
bone marrow mesenchymal stem cells (BMMSCs), can promote the proliferation and differentiation
of B-cells. C/EBPβ-deficient BMMSCs have an impaired ability to support the differentiation of
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hematopoietic stem cells (HSCs) into precursor B-cells, and the reduced production of C–X–C-motif
ligand (CXCL12)/stromal cell-derived factor 1 (SDF-1) by C/EBPβ-deficient BMMSCs partially
contributes to this phenotype. Furthermore, the survival of leukemic precursor B-cells is also
suppressed when these cells are co-cultured with C/EBPβ-deficient BMMSCs [37]. Supernatant
extracts from MSCs differentiated into adipocytes (adi-MSCs) can promote the proliferation of
activated B-cells in a dose-dependent manner. This effect is mainly attributed to B-cell activating
factor (BAFF) secretion by adi-MSCs, whereas undifferentiated MSCs show the opposite effect on
B-cells [38]. In MSCs, Toll-like receptor 4 (TLR4) can upregulate BAFF, which in turn promotes the
nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB), c-Jun N-terminal kinases (JNK),
and p38 mitogen-activated protein kinase (MAPK) signaling pathways. In addition, activated TLR4
can promote either MSC osteogenic or adipogenic differentiation, suggesting that the stimulation
of B-cell proliferation by TLR4 and MSCs is highly correlated [39]. According to Nan Che et al.,
umbilical cord MSCs (UCMSCs) can inhibit the proliferation and plasma cell differentiation of
B-cells, whereas IgM and IgG secretion is suppressed. In addition, when B-cells were co-cultured
with UCMSCs, the expression of B-cell-induced maturation protein-1 (Blimp-1) was downregulated,
whereas the expression of paired box gene 5 (PAX-5) was upregulated, and the phosphorylation
of the phosphorylated protein-38 (p-p38) and phosphorylated protein kinase B (p-PKB) pathways
were inhibited [40]. According to Charalampos Pontikoglou et al., BMMSCs from B-cell chronic
lymphoblastic leukemia patients (CLLBMMSCs) can promote the proliferation and IgG secretion of
B-cells, whereas healthy BMMSCs do not promote proliferation or IgG secretion. CLLBMMSCs are
also able to regulate B-cell apoptosis, unlike healthy BMMSCs. CLLBMMSCs have been shown to
secrete more proliferation-inducing ligand (APRIL) and less SDF-1, BAFF, and TGF-β1 than healthy
BMMSCs [41]. Additionally, MSCs infected with Mycoplasma arginini show increased inhibitory
effects on the Ig production of IL-4/lipopolysaccharide (LPS)-stimulated B-cells compared with
mycoplasma-free MSCs. Complement C3 (C3) has also been shown to be involved in the suppression
of B-cell Ig production by infected MSCs. In this process, Blimp-1 may be inactivated directly or
indirectly by infected MSCs [42].

Despite varying the origin or culture medium, MSCs activated by IFN-γ or tumor necrosis factor-α
(TNF-α) inhibit B-cell proliferation, whereas unstimulated MSCs do not suppress B-cell proliferation
and may even promote proliferation to some extent. In either amesenchymal stem cell from adipose
tissue (ASC)–human platelet lysate (PL) system or a BMMSC–fetal calf serum (FCS) system [16],
BMMSCs stimulated by TNF-α inhibited the release of IgE and IgG from activated B-cells but had no
effect on B-cell survival. The cyclo-oxygen-ase 2(COX2)/PGE2 signaling pathway may play a key role
mediating this inhibition [43]. MSCs stimulated by IFN-γ can also upregulate B7-H1, the ligand of
programmed cell death receptor 1 (PD-1), permitting MSCs to inhibit the proliferation, plasma cell
differentiation, and IgG secretion of B-cells by direct cell–cell interaction [44].

2.2. Different Origins and Types of B-Cells

B-cells of various origins, including rare subpopulations (such as regulatory B-cells (Bregs)),
abnormal B-cells from patients with hematological system diseases, precursor B-cells and mature B-cells
(the pathways that regulate the transition from mature B-cells to plasma cells or memory B-cells are
not reviewed in this section) play different roles in the regulation of MSCs. In particular, CD5-positive
B-cells are a peculiar subpopulation with a remarkable immunoregulation ability to maintain peripheral
tolerance by secreting IL-10 or inducing the differentiation of T regulatory cells [45–47]. Patients with
chronic GVHD (cGVHD) have been shown to have impaired CD5+ B-cell reconstitution [48,49].

ASCs from both healthy subjects and breast cancer donors can promote the proliferation of
lymphoblastoid Namalva cells (in both standard growth medium and growth factor-deficient medium)
and the myeloma U266 cell line. In addition, the production of IgM and IgE is not affected by ASCs
in these co-culture systems [50]. BMMNCs from a B-cell acute lymphocytic leukemia (B-ALL) donor
(B-ALLBMMNCs) express specific surface markers, including CD19, CD34, terminal deoxynucleotidyl
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transferase markers (TdT), and CD10, but not CD20. Thus, B-ALLBMMNCs can be considered to be
abnormal B-cells. After co-culture with MSCs, B-ALLBMMNCs overexpress CD19, CD10, and CD20
(the expression levels of both CD10 and CD20 increase by a wide margin). Hierarchical cluster analysis
of these surface markers shows that, after co-culture with MSCs, an association between pre-pre-B-cells
from control patients (Ct) and B-ALLBMMNCs gradually forms. However, no association between
these cell groups has been observed after their co-culture in the absence of BMMSCs [51].

MSCs can also promote the proliferation of CD5+ B-cells in a positive feedback manner. MSCs
accelerate the survival and proliferation of CD5+ B-cells by secreting IDO. Interestingly, IFN-γ, secreted
by CD5+ B-cells, can compound the effects of MSCs [52]. In addition, B7-H1, secreted by MSCs, is
indispensable for the upregulation of CD5+ B-cells [37].

2.3. MSCs Co-Cultured with B-Cells in Basic Conditions

Here, MSCs and B-cells co-cultured under basic conditions are defined as unstimulated, healthy
BMMSCs or ASCs that are co-cultured with stimulated, mature B-cells. Although these basic conditions
are different than the microenvironment in vivo, this experimental setup is highly stable and repeatable,
making it useful for exploring the molecular signaling pathways underlying the interaction between
B-cells and MSCs.

According to Healy et al., MSCs can inhibit the caspase 3-mediated apoptosis of peripheral
CD19+ B-cells through direct cell–cell interaction. This inhibition is dependent on the MSC-induced
upregulation of vascular endothelial growth factor (VEGF), and a p-PKBA blocking experiment
showed that the signal transmission following cell–cell contact is not dependent on CXCR12-CXCL4
or epidermal growth factor receptor (EGFR) [53]. ASCs can also secrete an unknown soluble factor
that promotes the chemotaxis and mobility of B-cells. However, potential B-cell chemokines, such
as PGE2, CXCL8, CXCL10, or combinations of cytokines secreted by ASCs, do not affect on B-cell
chemotaxis [54].

According to Asari et al., MSCs can inhibit the proliferation of B-cells (stimulated by LPS), and the
degree of suppression is related to the MSC–B-cell ratio in the co-culture system. This phenomenon
suggests that the B-cell apoptosis induced by MSCs is unrelated to the decrease in total B-cells. In
this study, MSCs suppressed LPS-stimulated B-cells, which then could differentiate into plasma cells
and affect the proportion of the plasma cell population by decreasing the IgM-secreting plasma
cells and instead boosting the IgG3-secreting plasma cells [17]. In addition, the downregulation of
Blimp-1 mRNA expression in B-cells resulted in the suppression of B-cell terminal differentiation. This
suppression was likely mediated by an unknown humoral factor released by the MSCs (not IL-10,
TGF-β, or IDO) [17]. BMMSCs can inhibit the proliferation of B-cells by blocking the G0/G1 phases
(G0 phase to G1 phase) of the cell cycle. Interestingly, the supernatants from the purified BMMSCs
culture medium cannot suppress the proliferation of B-cells. We suggest that BMMSCs secrete the
soluble inhibitory factors stimulated only by the paracrine signals [55]. When B-cells are co-cultured
with BMMSCs, several key immunoglobulins and chemokine receptors are down regulated. These
molecules include the immunoglobulins IgM, IgG, and IgA and the chemokine receptors CXCR4,
CXCR5, and CCR7. However, neither costimulatory molecules (CD40, CD86, and CD80) nor cytokines
(TNF, IFN-γ, IL-4, IL-10, and IL-12) expressed by B-cells are affected by MSCs [55]. Interestingly,
several reports indicate that MSCs can promote the proliferation and differentiation of B-cells in
basic co-culture systems [16,56,57], with MSC-derived PGE2 and other unknown soluble cytokines
mediating the positive immunoregulation [58] (Figure 1).
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Figure 1. When MSCs are co-cultured with B-cells in basic condition, MSCs regulate Igs-secreting, 
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such as diverse stimulators of B-cells in culture medium, regulations of proliferation, plasma-cell 
differentiation and Igs secreting of B-cells are unable to reach agreement. 

3. Influence of Other Immune Cells on MSC–B Cells Crosstalk 

A substantial amount of research has demonstrated that different B-cell states and functions are 
regulated by other immune cells. For example, the activity of B-cells is dependent on antigen 
presenting cells, such as DCs and helper T cells (Th). After receiving an activation signal, B-cells 
proliferate and differentiate into plasma-cells [18]. As previously mentioned, MSCs can modify the 
function of other immune cells through cell–cell interaction or by secreting soluble factors [6,10–13]. 
The regulation of Th-cells or DCs by MSCs can greatly influence the interaction between MSCs and 
B-cells in mixed immune cell environments. MSCs can inhibit the maturation, migration, antigen 
presentation and cytokine secretion of DCs [12,57,59] via soluble factors, and alter the subpopulation 
polarization of Th-cells (Th1-Th2) as well as suppress Th-17 differentiation [10,60,61]. 

3.1. In Vitro 

Compared with the microenvironment in vivo, in vitro culture systems provide more stable and 
controllable surroundings. The experimental results from animal models or clinical trials need to be 
verified via in vitro tests. The co-culture systems commonly used to validate the immune regulation 
between MSCs and B-cells are MSC–PBMC [62], MSC–B-cell–T-cell [56], and MSC–B-cell–DC systems 
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Functional T-cells are crucial for B-cell inhibition. When peripheral blood lymphocytes (PBLs) 
are co-cultured with MSCs and B-cells, MSCs can inhibit B-cell proliferation, plasma cell 
differentiation, and Ig excretion. However, in the absence of CD3+ cells, this inhibition effect 
disappears, and MSCs instead promote the proliferation and Ig secretion of B-cells. To confirm this 
finding, MSCs, B-cells and T-cell were co-cultured in the presence of CpG. In the system, the ability 

Figure 1. When MSCs are co-cultured with B-cells in basic condition, MSCs regulate Igs-secreting,
apoptosis, proliferation, plasma-cell differentiation and chemotaxis of B-cells. For indefinite reasons,
such as diverse stimulators of B-cells in culture medium, regulations of proliferation, plasma-cell
differentiation and Igs secreting of B-cells are unable to reach agreement.

3. Influence of Other Immune Cells on MSC–B Cells Crosstalk

A substantial amount of research has demonstrated that different B-cell states and functions
are regulated by other immune cells. For example, the activity of B-cells is dependent on antigen
presenting cells, such as DCs and helper T cells (Th). After receiving an activation signal, B-cells
proliferate and differentiate into plasma-cells [18]. As previously mentioned, MSCs can modify the
function of other immune cells through cell–cell interaction or by secreting soluble factors [6,10–13].
The regulation of Th-cells or DCs by MSCs can greatly influence the interaction between MSCs and
B-cells in mixed immune cell environments. MSCs can inhibit the maturation, migration, antigen
presentation and cytokine secretion of DCs [12,57,59] via soluble factors, and alter the subpopulation
polarization of Th-cells (Th1-Th2) as well as suppress Th-17 differentiation [10,60,61].

3.1. In Vitro

Compared with the microenvironment in vivo, in vitro culture systems provide more stable and
controllable surroundings. The experimental results from animal models or clinical trials need
to be verified via in vitro tests. The co-culture systems commonly used to validate the immune
regulation between MSCs and B-cells are MSC–PBMC [62], MSC–B-cell–T-cell [56], and MSC–B-cell–DC
systems [63].

Functional T-cells are crucial for B-cell inhibition. When peripheral blood lymphocytes (PBLs) are
co-cultured with MSCs and B-cells, MSCs can inhibit B-cell proliferation, plasma cell differentiation,
and Ig excretion. However, in the absence of CD3+ cells, this inhibition effect disappears, and MSCs
instead promote the proliferation and Ig secretion of B-cells. To confirm this finding, MSCs, B-cells
and T-cell were co-cultured in the presence of CpG. In the system, the ability of MSCs to restrain
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B-cell function was restored. Furthermore, MSCs–T-cell (Th cell) contact is crucial for the inhibition of
B-cell proliferation, and an unknown soluble factor from T-cells or MSCs mediates the suppression
of B-cells [56]. Interestingly, the content of IFN-γ in the supernatant showed a remarkable decline
in this study. Typically, IFN-γ can be detected only in the B-cell–T-cell co-culture system, not in the
supernatant of purified B-cell or T-cell culture systems [56]. IFN-γ, secreted by active T-cells, can
promote B-cell maturation and the differentiation of B-cells into plasma cells [64]. Another study
showed that the inhibition of B-cell proliferation by MSCs depends on the presence of CD4+ T-cells, but
the ability of MSCs to modify the differentiation of B-cells into plasma cells is independent of T-cells
and IL-6 [65]. Additionally, whereas IFN-γ is detected in both MSCs–B-cell and MSCs–T-cell–B-cell
co-culture systems, only IFN-γ from MSC–T-cell–B-cell co-culture systems had an effect on B-cells [65].
MSCs stimulated with IFN-γ acquire the ability to inhibit T-cell proliferation [66]. Therefore, we
hypothesize that T-cell-produced IFN-γ is crucial for the immune suppression of B-cells by MSCs.

DCs can also influence the immunoregulation of B-cells by MSCs. Animal experiments have
clearly shown that BMMSCs from Balb/c mice can suppress B-cell proliferation by inhibiting BAFF
secretion in DCs [63]. To confirm this result, a murine MSC–DC–B-cell co-culture system was designed
and this experiment showed that MSCs can inhibit BAFF secretion in DCs [63]. Furthermore, in
a purified MSC–B-cell co-culture system, MSCs promoted the proliferation of B-cells through the
secretion of BAFF. However, this positive effect of BAFF on B-cells can be offset by the presence of
DCs [39].

Galectin-9 (Gal-9) is a critical factor in mediating the inhibition of B-cells by MSCs. The MSCs,
activated by either B-cells or IFN-γ, can inhibit B-cell proliferation and Ig release in peripheral blood
mononuclear cells (PBMCs), an effect that is mediated by Gal-9 [61]. Cell–cell contact is essential for
Gal-9 to mediate this immunoregulation. Because Gal-9 can also influence the function of Th1 cells,
the effect of T-cells on the MSC–B-cell interaction cannot be ignored [61].

Membrane vesicles (MVs) secreted by cells can also mediate the interactions between different
immune cells [67]. Based on the site of origin of a particular cell, its structural and biochemical
properties can vary broadly [68]. MVs play an important role in intercellular signaling by exchanging
mRNA, microRNA, and proteins between cells [58]. MSCs can secrete MVs to regulate B-cell functions.
MVs secreted by MSCs can suppress B-cell proliferation and the differentiation of CpG-stimulated
B-cells into plasma cells. In addition, MVs can inhibit the biosynthesis of IgM, IgG, and IgA in plasma
cells. However, MVs do not facilitate B-cell apoptosis. Furthermore, MVs typically contain IL-6 and
IL-8, and MVs can be endocytosed by B-cells but not by T-cells or NK-cells [69]. Compared with MSCs,
secreted MVs are less able to alter the ratio of B-cells and plasma cells in a PBMC population [70].

3.2. In Vivo

The allogeneic or autologous transplantation of MSCs shows remarkable therapeutic effects, in
both clinical trials and animal models, for many diseases. In conventional cell transplantation therapy,
MSCs are injected into humans or animals via a peripheral vein. In the peripheral blood, MSCs can
then interact with blood cells other than B-cells. For example, MSCs can also promote the survival and
phagocytosis of neutrophils [52,71–73] and enhance the phagocytosis of monocytes [70,74]. Importantly,
the impact of MSCs on T-cells in vivo is reciprocal; T-cells can also immunosuppress MSCs [56]. This
immunosuppression can mitigate the action of B-cells in the body, restoring the balance of B-cells,
which likely contributes to symptom relief and the improvement of histopathology in autoimmune
diseases, GVHD, and certain anaphylactic diseases. Current studies on the mechanism by which MSCs
alleviate diseases in vivo, via B-cell immune regulation, focus on SLE and cGVHD. In vivo studies
can be divided into two categories, clinical and animal studies. Compared with clinical tests, the
results obtained from mouse or rat models are more reliable and repeatable. The following paragraph
summarizes research studies on SLE and cGVHD, from animal models to clinical results.

SLE is a typical multi-system autoimmune disease. The initial burst of SLE symptoms is related
to a functional T-cell disorder and the over activation of polyclonal B-cells [24]. As a typical producer
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of antinuclear antibodies (ANAs), especially anti-dsDNA antibodies, B-cells play a crucial role in
the pathophysiologic process of SLE [70]. Recent studies have shown that defects in HSCs or the
bone marrow microenvironment can initiate SLE, and MSC transplantation may improve it [75,76].
Recent studies show that regardless of in vitro or in vivo experiments, MSCs collected from SLE
patients or animal models present deficient immune suppression, especially to B-cells [35,77,78].
Based on the deficiency of the immune regulation capacity of BMMSCs from SLE patients or animal
models, we can infer that MSCs therapy can alleviate SLE by inhibiting the excessive proliferation
of B-cells and secretion of autoantibodies in the bone marrow niche and peripheral blood. Does the
therapeutic effect of MSCs appear in SLE animal models? Studies indicate that it does. To investigate
the therapeutic effects and mechanism of MSCs, several murine models have been utilized, such as
MRL/lpr mice [66], (NZB/NZW)F1 mice [78] and Roquinsan/san mice. The results of MSC therapy on
SLE murine models show that the therapy: (1) prolongs survival time [48,58]; (2) reduces proteinuria
and glomerulonephritis [65,70,79]; (3) lightens the spleen [58]; (4) suppresses serum anti-dsDNA
antibodies and the deposition of immune complexes [35,66,78,79]; and (5) reduces serum immune
globulin (IgG, IgE, and IgM) [79]. The immune regulation of the B-cell subpopulation in SLE models
receiving the therapy indicates that MSCs reduce germinal center B-cells [79], plasma cells [79], follicle
B-cells [79] and naive mature (CD19+ and CD21+) B-cells and promote the marginal zone B-cells [79]
and regulatory B-cells [79]. Regarding the functions of B-cells, MSCs suppress the maturation,
plasma-cell differentiation and antibody (IgM and IgG) secretion of B-cells [66,79]. Additionally,
MSCs restore the bone marrow niche microenvironment [47]. In general, MSCs therapy shows a
positive effect on SLE murine models.

Can clinical tests, duplicate the positive effects on animal models? Clinic tests involving MSC
transplantation in SLE patients are limited in number, but the curative effects are valid. Reduction
of the systemic lupus erythematous disease activity index (SLEDAI) [6,47,80], recovery of renal
function [47,81], and a decrease in serum anti-dsDNA antibodies and compliment C3 [47,80] are
observed in recipients of MSCs therapy. However, data pertaining to the immune regulation of MSCs
to B-cells in clinical tests are lacking.

GVHD is typically initiated after allogeneic hematopoiesis. cGVHD has become one of the
most common serious problems affecting long-term hematopoietic stem cell transplantation (HSCT)
survivors [81,82]. cGVHD has long been considered to be an autoimmune disorder, and medicines
used to treat cGVHD remain unsatisfactory, particularly for refractory cGVHD [83]. Recently, quite a
few studies have demonstrated that not only T-cells but B-cells as well play a vital role in the process
of cGVHD [84]. Excessive serum BAFF and insufficient naive B-cells can be observed in cGVHD
patients. The coexistence of the two anomalies activates autoimmune B-cells in patients, thus leading
to autoimmune symptoms [85]. Inhibiting B-cells to a certain degree in peripheral blood and activating
Bregs after HSCT are beneficial to preventing cGVHD [86–88]. Because studies show that MSCs possess
the ability to immunosuppress B-cells, inhibit DCs secreting BAFF and up-regulate Bregs, MSC therapy
is chosen as a potential option for relieveing cGVHD. In GVHD animal models, the outcomes of MSC
therapy are contradictory. The curative effect is dose-dependent and related to the timewindow of
MSC transplantation [88,89]. If MSC transplantation is implemented while HSCT is in progress, MSCs
decrease the morbidity of cGVHD [89], prolong survival time [88,90], reduce the cGVHD score [88,90]
and decrease the serum IFN-γ [65]. However, another group reports that MSC therapy exhibits a
negligible effect in preventing GVHD [91]. Once GVHD is initiated, MSC injection cannot alleviate
symptoms or target organ damage [89].

The inconsistent outcomes of MSC therapy in animal models are bewildering. To gain more
meaningful and practical results, clinical tests of MSC transplantation on GVHD patients have been
designed and carried out. Small-scale clinical tests show that MSC therapy alleviates damage to
target organs (liver, skin, gut, and oral mucosa) [52,92], but its effects on overall survival or the rate of
complete remission are controversial [42,92–94]. For glucocorticoid-resistant patients, the therapeutic
effect is invalid [92]. However, for less heavily treated patients, MSC transplantation shows a positive
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curative effect [93,94]. The relevance of glucocorticoid therapy and the effects of MSC transplantation
should be investigated further. In the peripheral blood of complete remission patients, as the frequency
of Bregs increases, the IL-10 secretion of Bregs is up-regulated [95]. The mechanism of Bregs immune
regulation of MSCs is related to down-regulating of the serum BAFF and up-regulating of the ratio of
naive B-cells and the memory B-cells [95].

4. Concluding Points and Future Directions: Do IL-4 and LPS Play a Role?

The interaction between MSCs and B-cells is sophisticated; diverse culture environments and
types of cells affect the immunoregulation of B-cells by MSCs. In purified B-cell–MSC environments,
MSCs regulate B-cell functions via soluble factors (Table 1) and cell–cell contact. We found that the
soluble factors related to the immunoregulation of B-cells can be divide into two subtypes based on
their function: pro-inflammatory and anti-inflammatory. Membrane vesicles, CCL2, B7-H1, VEGF,
C3, GAL-9, and IDO are anti-inflammatory, whereas BAFF, PGE2, and APRIL are pro-inflammatory.
In the co-culture systems listed above, the B-cell stimulators and the ratio between MSCs and B-cells
were varied, yet MSCs were still able to modulate the functions of B-cells. Therefore, this process likely
depends on paracrine signaling [96]. We hypothesize that MSCs are influenced by diverse stimulators
in co-culture systems, which can lead to the distinct immune regulation of B-cells by MSCs observed
in different experimental setups.

Several other types of immune cells can differentiate into two subpopulations with contrasting
functions depending on the signals in the microenvironment. For example, Th-cells can differentiate
into the Th1 and Th2 subpopulations [97] and macrophages can differentiate into the M1 and M2
subpopulations [98]. In both of these cases, one of the subpopulations is pro-inflammatory, whereas
the other is anti-inflammatory. The induction, progress and recovery of inflammation in the human
body relies on the self-balancing of pro- and anti-inflammatory signals and cell types. Interestingly,
MSCs possess characteristics similar to those of these immune cells. MSCs can transform into a
pro-inflammatory MSC1 subpopulation or an anti-inflammatory MSC2 subpopulation, depending on
the microenvironment [99,100]. Recent studies have reported that when different TLRs subtypes on
MSCs are stimulated, MSCs can differentiate into distinct subgroups. For example, stimulation of TLR4
is indispensable for MSC1 differentiation and TLR3 is indispensable for MSC2 differentiation [99]. We
can speculate that the MSC–B-cell co-culture systems that led to an inhibition of B-cells likely contained
TLR3 stimulators (poly(I:C), etc.) or anti-inflammatory differentiation-related factors (IL-4, IL10, and
TGF-β), and the co-culture systems that promoted B-cells contained TLR4 stimulators (LPS, etc.).

In purified B-cell–MSC co-culture systems, the regulation of B-cells does not remain uniform,
particularly for the regulation of B-cell proliferation and plasma-cell differentiation. To confirm the
above-mentioned hypothesis, we examined the different B-cell stimulators in each culture medium
(Table 2). Interestingly, with the exception of one study, we observed that all of the co-culture systems
in which B-cells were suppressed contained IL-4 or LPS. However, why would LPS, a TLR4 stimulator,
lead to B-cell suppression? Existing research suggests that long-term and excessive LPS stimulation
induces macrophages to switch to the anti-inflammatory M2 subpopulation. MSCs are likely stimulated
by LPS in certain co-culture systems, thus leading to the suppression of B-cells.

Although the immunoregulation of B-cells by MSCs is largely mediated by soluble factors, cell–cell
contact also plays a role in the MSC–B-cell interaction. Similar to immune suppression mediated by
T-cells [101,102], cell–cell contact between MSCs and B-cells is essential for facilitating B7-H1 and
Gal-9 to inhibit B-cell function [44,61], promote the survival and IgG secretion of B-cells [63,103], and
suppress caspase-3-mediated B-cell apoptosis [53].

In in vitro environments with multiple types of immune cells, MSCs typically inhibit B-cell
proliferation and plasma-cell differentiation [56,61,64,66,69,70] and promote the proliferation of
Bregs [37,72]. The immunosuppression of MSCs is related to specific cytokines, such as IFN-γ and
BAFF. After receiving paracrine signals from B-cells, T-cells secrete IFN-γ, and this IFN-γ-secreting
capacity of T-cells can, in turn, be suppressed by MSCs.
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Table 1. Soluble factors related to the interaction between MSCs and B cells.

Soluble Factor Original Mscs The Effect of B-Cells Explanatory Note

Unknown Factors [17,40,54,55]

Human UC-MSCs [40]
Murine BM-MSCs [17]
Human BM-MSCs [55]
Human ASCs [54]

proliferationβ Ó [17,40,55]
plasma-cell differentiation Ó [17,40,55]
Ig secretion Ó [17,40,55]
apoptosis Ó [17]
chemotaxis Ó [54]

Membrane Vesicles (Containing
IL-6 AND IL-8) [69,70] Human BM-MSCs [69,70]

proliferation Ó [69,70]

the immune suppression of purified IL-6 or IL-8 to
B-cells has not been confirmed.

plasma-cell differentiation Ó [69,70]
Ig secretion Ó [69]
Pro-inflammatory Cytokines secretion Ó [70]
Anti-inflammatory Cytokines secretionÒ [70]

CCL2 [35,36] Human BM-MSCs [35,36]
proliferation Ó [35,36]
plasma-cell differentiation Ó [36]
Ig secretion Ó [35,36]

B7-H1 [44] Murine BM-MSCs [44]
proliferation Ó [44]
Ig secretion Ó [44]

VEGF [53] Human BM-MSCs [53] Apoptosis Ó [53]

Complement C3 [42] mycoplasma-infected MSCs [42] Ig secretion Ó [42]

GAL-9 [58] Human BM-MSCs [58]
proliferation Ó [58]
Ig secretion Ó [58]

IDO [52] Human BM-MSCs [52] breg proliferation Ò [52]
Anti-inflammatory Cytokines secretionα Ò [52]

BAFF [38,39]
Human BM-MSCs [39]

proliferation Ò [38,39]Murine BM-MSCs [39]
adipogenic differentiated MSCs [38]

PGE2 [18,43]
Human UC-MSCs [18] proliferation Ò [18]

Murine BM-MSCs prepared by TNF-α [43] Ig secretion Ò [18]
IgE secretion Ó [43]

APRIL[41] Human CLLBM-MSCs [41] proliferation Ò [41] the immunoregulation of APRIL to B-cells is a conjecture.
in vitro experiment to clarify has not carried out.Ig secretion Ò [41]

C/EBPB [37] Murine BM-MSCs [37] precursor B-cell proliferation Ò [37]

Remarks: Ò, promoting; Ó, suppressing.
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Table 2. Correlation between stimulators in culture media (LPS, CpG, CD40L, and Ig antibodies IL-2 and IL-4) and the immunoregulation of B-cells by MSCs.

MSCs B-Cells LPS CpG CD40L Ig Antibodies IL-2 IL-4 Proliferation of B-Cells Plasma-Cell Differentiation of B-Cells

murine BMMSCs murine B-cells
‘

Ó [17] Ó [17]
human BMMSCs human B-cells

‘ ‘ ‘ ‘ ‘

Ó [55] Ó [55]
human UCMSCs murine B-cells

‘ ‘ ‘ ‘

Ó [40] Ó [40]
human BMMSCs mutine B-cells

‘ ‘ ‘ ‘

Ó [36] Ó [36]
murine BMMSCs murine B-cells

‘ ‘

Ó [44] Ó [44]
human BMMSCs human B-cells

‘ ‘ ‘ ‘

Ó [35] Ó [35]
human UCMSCs human B-cells

‘ ‘ ‘ ‘

Ó [83]
human BMMSCs human B-cells

‘ ‘ ‘ ‘

Ó [83]
human ASCs human B-cells

‘ ‘ ‘

Û [65] Ó [65]
human BMMSCs human B-cells

‘ ‘

Ò/Û(FCS/PL) [16]
human ASCs human B-cells

‘ ‘

Ò [16]
human UCMSCs human B-cells

‘ ‘ ‘ ‘

Ò [18] Ò [18]
human BMMSCs human B-cells

‘

Ò [56] Ò [56]

Remarks: Ò, promoting; Ó, suppressing; Û, no effect.
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Therefore, MSCs can inhibit B-cell proliferation and plasma-cell differentiation through inhibiting
IFN-γ secretion in T-cells. Similarly, MSCs can inhibit B-cell through the downregulation of BAFF
secreted by DCs. In vivo, in both human and animal experiments, MSCs can suppress abnormal
proliferation and excess autoantibody production of B-cells through two mechanisms. First, injected
MSCs can substitute for the dysfunctional MSCs in patients or animal models and regulate the aberrant
proliferation and antibody secretion of B-cells. Second, MSCs can be stimulated by other immune cells
and become anti-inflammatory; they can then suppress B-cells and instead promote the proliferation
of Bregs. Several questions remain to be answered in the field of stem cell biology: (1) Which soluble
cytokines can switch the immune regulation of MSCs (from promotion to inhibition)? (2) How do
the paracrine signals from B-cells influence the immunoregulation of MSCs? (3) How can we design
in vitro MSC co-culture systems such that we can simulate the peripheral blood of a patient with a
specific autoimmune disease to investigate why MSCs regulate B-cells differently in vivo? (4) How can
we build an MSC culture system to accurately promote MSC subgroup (M1 or M2) differentiation to an
appropriate extent to optimize the MSC therapy? Answering these questions will contribute to finding
cytokines suited for stimulating MSCs to rectify the immune regulation of B-cells for specific clinical
applications (e.g., to relieve a diverse range of autoimmune diseases and identify triage patients fit for
treatment with MSCs by assaying the cytokines in their peripheral blood).
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