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Abstract: Protein sumoylation is a posttranslational modification triggered by cellular stress. Because
general information concerning the role of small ubiquitin-related modifier (SUMO) proteins in
adult skeletal muscle is sparse, we investigated whether SUMO-1 proteins will be subjected to
time-dependent changes in their subcellular localization in sarcoplasmic and nuclear compartments
of human type I and II skeletal muscle fibers in response to acute stimulation by resistance exercise
(RE). Skeletal muscle biopsies were taken at baseline (PRE), 15, 30, 60, 240 min and 24 h post RE from
6 male subjects subjected to a single bout of one-legged knee extensions. SUMO-1 localization was
determined via immunohistochemistry and confocal laser microscopy. At baseline SUMO-1 was
localized in perinuclear regions of myonuclei. Within 15 and up to 60 min post exercise, nuclear
SUMO-1 localization was significantly increased (p < 0.01), declining towards baseline levels within
240 min post exercise. Sarcoplasmic SUMO-1 localization was increased at 15 min post exercise in
type I and up to 30 min post RE in type II myofibres. The changing localization of SUMO-1 proteins
acutely after intense muscle contractions points to a role for SUMO proteins in the acute regulation of
the skeletal muscle proteome after exercise.

Keywords: SUMO-1; resistance exercise; sumoylation; skeletal muscle adaptation; nuclear
translocation; acute response

1. Introduction

The small ubiquitin-related modifier protein family (SUMO) is essentially involved in the
maintenance of the cellular proteome [1–3]. Similar to ubiquitination, SUMO proteins modify
protein function and localization by reversible covalent binding to specific binding motifs on target
proteins [3,4]. Sumoylation has been shown to be triggered in cells by osmotic and oxidative stress
as well as acute hypoxia [5,6]. The function of sumoylated proteins depends on the type of target as
well as its subcellular localization [7], but in contrast to ubiquitination, SUMO-conjugation prevents
protein degradation and enhances protein stability [8–10]. One of the first reports on sumoylation
demonstrated that RanGAP1 is modified by SUMO-1 [11], leading to its localization to the nuclear
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pore complex, where it is involved in the regulation of nucleo-cytoplasmic shuttling [12]. Sumoylated
proteins and transcription factors are dominantly localized or translocated towards nuclei [13–15] as
sumoylation acts e.g., by repressing [16] or enhancing transcriptional rates [17].

However, proteins which are typically localized in the cytosol or mitochondria, e.g., ribosomal
proteins, glycolytic enzymes, and adenosine triphosphate (ATP) synthase subunits, are targets
for sumoylation [18]. Interestingly, sumoylation has recently been reported to be involved
in sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) modification in failing heart
muscle [19], providing a crucial role for calcium handling of contractile muscle tissue especially
under conditions of increased stress. Additionally, a recent study showed that α-actin is sumoylated
in rat skeletal muscle [20], providing an as yet undetermined role for modulation of contractility or
protein stability.

Although a growing number of studies investigate sumoylation in vitro [13] or in animals [6],
much less is known about SUMO regulation within adult human skeletal muscle. Moreover, in
contrast to various aspects of protein signaling and gene expression in resistance exercised muscle
tissue [8–10,21–24], basic information concerning the general response, time course and localization of
SUMO proteins in response to exercise is missing.

Acute resistance exercise provides a mixture of mechanical [25], metabolic [26,27] and oxidative
perturbations [28] within myofibres, acutely exerting the activation of signaling pathways [29], leading
to increased transcription [30–32], protein degradation [22] and synthesis [33]. Because the regulation
of skeletal muscle adaptation requires a complex network of protein translocation, degradation
and maintenance, we hypothesized that SUMO proteins may also act as modulators in the early
molecular response of loaded skeletal muscle, associated and reflected by the acute translocation of
SUMO-proteins within skeletal muscle. The present study investigated the localization of SUMO-1
proteins in resistance-exercised human myofibres via immunohistological methods. Here we show
that a single bout of high-intensity resistance exercise induces substantial nuclear translocation of
SUMO-1 in skeletal muscle myofibres in an early time course after stimulation and describe a potential
role of sumoylation in the acute response of skeletal muscle tissue towards exercise.

2. Results

2.1. Immunohistochemistry

Immunohistochemical staining of skeletal muscle cross-sections with SUMO-1 antibodies revealed
specific SUMO-1 staining in sarcoplasmic and nuclear compartments of type I and II skeletal muscle
fibers when compared to negative controls (Figure 1A,B specific SUMO-1 staining vs. MyHC stained
consecutive cross-sections in C and D and consecutive cross-sections showing negative controls in E
and F).
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Figure 1. Small ubiquitin-related modifier (SUMO)-1 stained myofibre cross-sections in human 
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corresponding areas from (A,B). 

Figure 1. Small ubiquitin-related modifier (SUMO)-1 stained myofibre cross-sections in human
skeletal muscle. (A,B) Skeletal muscle cross-section showing nuclear and sarcoplasmic staining of
SUMO-1 antibodies in type I and II myofibres 15 and 30 min after resistance exercise, respectively;
(C,D) Consecutive cross-sections stained for type I MyHc (A 4.840) showing type I (dark) and
type II (bright) myofibres; (E,F) Consecutive cross-sections showing unstained negative controls
of corresponding areas from (A,B).
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Under resting conditions, SUMO-1 localization showed a predominant perinuclear localization
and lower intranuclear abundance (Figure 2A,C), but showed a time-dependent increase in
accumulated nuclear area in an early time course after resistance exercise (Figure 2B,D).
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post RE nuclear SUMO-1 area decreased and at 24 h post there was a significant loss of accumulated
nuclear SUMO-1 localization compared to 30 and 60 min values (p < 0.01 and p < 0.05).Int. J. Mol. Sci. 2016, 17, 646 4 of 12 
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determined in DAB-stained myofibres (compare Figure 2A,B) from PRE to 24 h post RE (Mean ˘ S.E.M).
(#) significant different compared to PRE for (p < 0.01); (*) significant different compared to 24 h values
(p < 0.01).

To clearly distinguish between increased intranuclear SUMO-1 localization and accumulated
SUMO-1 stained areas in perinuclear and near nuclear regions, we further conducted fluorescence
staining of SUMO-1 in combination with lamin-A nuclear membrane staining (Figure 5(A1–4,B1–4)).
Under resting conditions (Figure 5(A1–4)), SUMO-1 was predominantly localized in perinuclear
regions and around the nuclear envelope showing a lowered intranuclear localization. At 60 min post
RE (Figure 5(B1–4)) SUMO-1 was predominantly located within nuclei (Figure 5(B1–4)) or entirely
filling the intranuclear area with additionally high abundance at the nuclear envelope. Quantification
of intranuclear SUMO-1 abundance in skeletal muscle nuclei between the inner borders of the nuclear
envelope (Figure 5C) revealed significantly increased intranuclear SUMO-1 levels from PRE to 60 min
post RE (p < 0.01) and significantly reduced intranuclear levels at 24 h post RE (p < 0.01). Importantly,
intranuclear SUMO-1 accumulation did not display a highly homogenous response within investigated
nuclei but increased gradually and significantly in the vast majority of myofibres after RE. Figure 5D
shows the number of myofibres with high intranuclear staining increase considerably at 60 min post
RE compared to PRE.
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3. Discussion

The response of SUMO proteins upon acute exercise in skeletal muscle is not described. Only
one study observed increased SUMO-1 mRNA levels in response to 48 h of immobilization in human
skeletal muscle [34] showing SUMO proteins to be involved in the regulation of atrophic skeletal
muscle conditions. The investigation of SUMO-involving mechanisms in loaded skeletal muscle seems
promising because SUMO-conjugation regulates a multitude of processes, all of which are stimulated
by exercise, e.g., increased gene expression, protein signaling [32] and trafficking [35,36]. Although the
determination of specifically-sumoylated targets was beyond the scope of this study, we determined,
via an exploratory but purely descriptive approach, the time-dependent change of SUMO-1 localization
in nuclear and sarcoplasmic compartments of human skeletal muscle fibers as acute phase reaction to
intense skeletal muscle stimulation by RE.

In resting skeletal muscle we observed SUMO-1 to be predominantly localized in the perinuclear
region and the nuclear envelope, while less SUMO was detected within the nucleus. Because the
localization of SUMO-1 changed early after exercise in both sarcoplasmic and nuclear myofibre
compartments, this points to a role for an early and extended protein sumoylation in skeletal muscle
that can be triggered by exercise-induced stress. Amongst others, we have shown recently that
acute increases in mechanical tension by RE induces increased myocellular signaling [21] and gene
expression [22,37] within 15 min after cessation of RE [37–41], also accompanied by myofibrillar
damage and upregulation of the protein degradation machinery chaperone-assisted selective
autophagy CASA [22]. All of these processes are accompanied by a complex and overlapping network
of post-transcriptional and post-translational modification of target proteins in which sumoylation
may play a supporting role [7,14,15,42,43]. Thus, many nuclear and cytosolic proteins in skeletal
muscle that are crucially involved in the regulation of hypoxia [44], energy metabolism [43], myofibre
contractility [19], mitochondrial [45] or myocellular adaptation towards resistance exercise [46,47] are
also known to be targeted by sumoylation in vitro [5,13,14,18] and in vivo [6,19]. Sustained myofibre
contractions require the acute functional regulation of enzymes involved in energy metabolism,
ATPsynthase subunits, calcium channels and contractile filaments. These proteins are highly abundant
in the sarcoplasm and have been shown to be sumoylated in contractile tissues [6,18,20]. Hence,
augmented SUMO-conjugation of these proteins might have contributed to the observed increase in
SUMO-1 localization in sarcoplasm of human type I and II myofibres.
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In this context sumoylation of α-actin [20] might have contributed to the observed sarcoplasmic
SUMO-1-staining. It might be hypothesized that especially under conditions of contractile stress,
sumoylation of actin filaments could act by transiently preserving for ubiquitin-dependent degradation.
Interestingly, type I fibers showed a partly higher SUMO-1 staining pattern than type II fibers and might
be explained by the generally higher protein content of type I fibers due to increased mitochondrial
density. Both myofibre types showed a similar increase in sarcoplasmic SUMO-1 localization after RE
and exercise-dependent differences between fiber types in the regulation of sarcoplasmic SUMO-1
localization remain unclear.

The early response of skeletal muscle myofibres towards resistance exercise-stimulation affected
especially also the myonuclear compartment. The modulation of gene transcription requires the
nuclear translocation or nuclear removal of targets via nucleo-cytoplasmic shuttling. Both processes
have been described as being controlled in part by SUMO [9,12,48]. Cytoplasmic-nuclear shuttling
includes myocyte-specific enhancer factor (MEF)-2, peroxisome proliferator-activated receptor gamma
coactivator (PGC)-1-α, p38 and c-Jun, [13–15,49] representing designated targets for sumoylation and
play important roles in the adaptation of mitochondria and skeletal muscle towards exercise [50,51].
Activity-induced myofibre shifting and mitochondrial biogenesis e.g., is increased after cessation of
acute exercise and require the aforementioned nuclear translocation and regulation of transcription
factors. It has been proposed that sumoylation of type II histone deacetylase proteins (HDAC2) might
lead to MEF2 sumoylation and inactivation within nuclei, counteracting exercise-induced slow shifting
of myofibres [52].

Nuclear translocation of transcription factors that are crucial for skeletal muscle adaptability
occurs within the first hours after exercise [35,36,53], a time course in which we observed a significant
increase of SUMO-1 localization in myonuclei. Therefore it might be hypothesized that the observed
change in SUMO-1 localization and density will have involved sumoylation and subsequent
translocation of some of the aforementioned targets. Future studies are required to describe these
events in exercising muscle more specific, with regard to the identification of sumoylated targets, and
importantly, describing the cellular and physiological consequences of sumoylation for myocellular
adaptation. Although explorative in nature, the present investigation is the first to describe the time
course and localization of SUMO-1 in compartments of human myofibres in response to acute resistance
exercise. Our results emphasize a role for SUMO proteins in early cellular responses within the first
hours after skeletal muscle stimulation with potential implication for maintenance and regulation of
exercise-induced adaptation in skeletal muscle.

4. Materials and Methods

4.1. Study Design

Figure 6 displays the schematic overview of the study design.
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4.2. Subjects

Six healthy male subjects (age: 23 ˘ 4 years, height: 180 ˘ 89 cm, and weight: 79 ˘ 10 kg)
participated in our study. Subjects were informed orally and in writing of the study’s purpose and the
possible risks involved before providing informed consent. Prior participation all subjects provided
written and verbal informed consent to take part in the intervention. Written informed consent
document were collected and stored in the office of the head of the institute. The study (BISPIIA1
070103/09-10) was approved by the Ethics Committee of the German Sport University Cologne in
compliance with the Declaration of Helsinki and approved all documents for subject information and
informed consent prior handling out to the subjects.

4.3. Standardization of Diet and Activity before Exercise

Subjects were instructed to refrain from RE 14 days prior to this study and from any physical
activity 48 h prior to baseline biopsies, exercise testing and the main RE stimulus. The day prior the
resting biopsy as well as the main exercise stimulus a standardized protein-energy drink (Fresubin®

protein energy drink, Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany; containing 20 g
protein, 24.8 g carbohydrate 13.4 g fat, providing 1260 kJ) was provided to the subjects at 22:00 before
they fasted overnight. The following morning, one hour prior to the resting biopsy and the main RE
intervention, subjects were advised to drink a second energy drink in order to carry out the exercise in
the fed state. Subjects were allowed to drink water ad libitum during all exercise interventions.

4.4. Experimental Trials

On the day of the experimental trial, subjects arrived at the laboratory at 07:45 AM. Subjects were
instructed to refrain from vigorous physical activity for two days prior to baseline biopsies and the
RE intervention. Prior to RE, a standardized warm-up program on a cycle ergometer was applied
(5 min cycling with 1 W/kg bodyweight). After a 3 min resting phase, the RE protocol was performed
containing one single set with 20 concentric and eccentric knee extensions with maximum voluntary
force. The angular velocity was set to 40˝/seconds (s) during the eccentric and concentric movement
phases of knee extensions, which provided in sum 70 s of time under tension. Subjects were verbally
encouraged to perform all repetitions with maximum voluntary force until exhaustion. After local
anesthesia several muscle biopsies were collected from the vastus lateralis muscle of the exercised leg.

4.5. Skeletal Muscle Biopsies

Baseline biopsies of the vastus lateralis muscle of the exercising leg were taken at rest, ten days
prior to the exercise intervention using the percutaneous needle biopsy technique. On the day of the
experimental trial five biopsies were collected, at 15, 30, 60, 240 min and 24 h after cessation of the
resistance exercise protocol. 15, 30 and 60 min biopsies were taken from the same incision 2 cm distal
of the resting biopsy. The angle of the biopsy needle was altered during every biopsy with the needle
pointing straight (15 min), inward (30 min) and outward (60 min) to collect samples from unaffected
regions. The 240 min biopsy sample was collected 2 cm proximal of the resting biopsy incision and
the 24 h biopsy was collected distal from 15, 30 and 60 min incision. An outside routed scale allowed
standardization of the biopsy depth for each subject. Muscle biopsies were obtained from the middle
region of the vastus lateralis muscle between the spina iliaca anterior superior and the lateral part of
the patella, 3 cm below entry through the fascia.

4.6. Tissue Processing and Staining

Muscle samples were freed from blood and non-muscle material, embedded in Tissue-Tek (Sakura
Finetek, Zoeterwoude, The Netherlands), frozen in liquid nitrogen-cooled isopentane and stored
in liquid nitrogen until further processing. For immunohistochemical staining procedures, 7 µm
cross-sections of all biopsy time points were mounted in double on Polysine® slides (VWR International
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GmbH, Darmstadt, Germany), carefully aligned for cross-sectional analysis, air-dried and stored at
´80 ˝C. Immunohistochemical procedures were conducted according to previous works [21,54].
Skeletal muscle cross-sections were incubated overnight at 4 ˝C with specific primary antibodies
recognizing SUMO-1 (#4930; Cell Signaling, Beverly, MA, USA), nuclear envelope marker lamin-A
(ab26300, Abcam, Cambridge, UK) and A 4.951, which is raised against adult human slow myosin
heavy chain (MyHC1) (Developmental Studies Hybridoma Bank, Iowa City, IA, USA). Antibodies were
diluted 1:150 (SUMO-1), 1:200 (lamin-A) or 1:200 (A4.951) in TBS containing 1% bovine serum albumin
(BSA). Muscle cross-sections from all biopsy time points of each subject were stained within a single
batch to minimize variability in staining efficiency. Double-mounted, consecutive serial sections on the
same slide were stained simultaneously for slow MyHC1 and SUMO-1.

4.7. Analysis of Nuclear and Sarcoplasmic SUMO-1 Localization

Stained cross-sections were examined with a Zeiss Axiophot 200 light microscope coupled
to a Sony 3CCD Color Video Camera (AVT Horn, Aalen, Germany). Digitally captured images
(8 bit-grayscale) (200ˆ magnification) with 8 fields of view per muscle cross-section (9 ˘ 3 fibers
per field of view) were analyzed. The specific staining intensity for SUMO-1 stained type I and II
myofibres was quantified by selection of the sarcoplasmic part of the investigated myofibres. Optical
densitometry was carried out with the software ImageJ® (National Institutes of Health, Bethesda, MD,
USA). Sarcoplasmic SUMO-1 density in each myofibre was expressed as mean staining intensity in 8-bit
greyscale pictures with 256 grades of resolution (0 = entirely black, 256 = entirely white). Data show
the netto staining intensity shown as arbitrary data, determining the difference between equalized
background light transmission (adjusted equally for each cross-section to an equal value of 220) and
the specific light transmission within each myofiber. In sum, 614 type I and 612 type II myofibres were
analyzed with a mean number of 102 ˘ 4 type I and 102 ˘ 3 type II myofibres for each time point and
a similar number of fibers per subject. Mean values and standard deviation were calculated by the
mean value for all fibers within that time-point. Quantification of nuclear SUMO-1 area was carried out
in DAB-stained cross-sections by automatic analysis of SUMO-1 stained nuclear regions via the particle
analysis option within ImageJ® (National Institute of Health). 16-Bit pictures (200-fold magnification)
of all subjects and time points were analyzed with identical grey-value threshold for determining
pixel as SUMO-1 positively stained. In prior analysis, SUMO-1 stained areas were determined as
exact measures of specific nuclear SUMO-1 staining but excluding non-specific and small sarcoplasmic
areas. The determined values constituted the area (µm2) of specific SUMO-1 stained pixels within or
around nuclear compartments and within the applied staining-threshold for each picture, time point
and subject. 819 ˘ 141 SUMO-1 stained nuclear areas were automatically counted for each time point
in all subjects and analyzed with STATISTICA 7 analysis software (Statsoft, Tulsa, OK, USA).

4.8. Immunofluorescence Analysis

Tissue preparation and fluorescence staining was conducted as previously described [21].
Alexa488 goat anti-mouse (Invitrogen, Karlsruhe, Germany; dilution 1:500) and Alexa555 goat
anti-rabbit (Invitrogen, Karlsruhe, Germany; dilution 1:500) secondary antibodies were used to
determine type I myofibres, lamin-A and SUMO-1 respectively. Pictures were taken by a Zeiss
confocal laser scanning microscope equipped with Plan-Neofluar 40ˆ and 63ˆ/1.3 Oil DIC objectives
(LSM 510Meta, Zeiss, Jena, Germany). Alexa488 was excited by an Argon laser using the filter set
BP505-530, Alexa555 by a Neon laser using the filter set BP565-615. Intranuclear SUMO-1localization
was conducted by determining the fluorescence staining intensity of SUMO-1 (244 ˘ 54 nuclei per
time-point of subjects) doubly-labeled for SUMO-1 (Alexa 555) and lamin-A (Alexa 488) in pictures
with 40ˆ fold magnification. The quantification of intranuclear SUMO-1 signal was conducted via
ImageJ® by using the line scan function exclusively within the inner borders of lamin-A stained nuclear
envelope of nuclei.
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4.9. Statistics

Data are expressed as means ˘ standard error of means (S.E.M.). Multifactorial analysis of
variances (ANOVA) for repeated measures with the factors “time” and “fiber type” was applied to
determine differences in the density of SUMO-1 in the sarcoplasmic compartment of muscle fiber types
over time. One-way ANOVA with the factor time was applied to determine differences in the area of
SUMO-1 stained nuclear compartments of myofibres. Bonferroni post hoc tests were used to locate the
differences. Significance was assumed at p < 0.05. Results of the ANOVA include the effect size (partial
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under baseline conditions); (B) DAB staining (200× magnification) of myofibres 60 min post resistance 
exercise (RE) showing increased nuclear accumulation of SUMO-1 (black arrows showing nuclei with 
increased intranuclear SUMO-1 localization); (C) Representative immunofluorescence staining of 
SUMO-1 in myofibre cross-sections under resting conditions (PRE) showing the preferential 
localization of SUMO-1 (Alexa 555, Red) at the nuclear envelope (yellow arrows) and in perinuclear 
regions of myofibres (MyHC I, Alexa 488, Green) (200× magnification); (D) Immunofluorescence 
staining (200× magnification) of myofibres 60 min post RE showing increased nuclear accumulation 
of SUMO-1 (Alexa 555, Red) and expanded SUMO-1 stained nuclear areas (yellow arrows). 

2.2. Sarcoplasmic Small Ubiquitin-Related Modifier (SUMO)-1-1 Localization 

Within 30 min after RE, SUMO-1 density increased in sarcoplasm of both myofibre types  
(type I, p < 0.01, ῃ2 = 0.30; type II, p < 0.01, ῃ2 = 0.23) but decreased within 24 h post exercise towards 
baseline (p < 0.01) (Figures 3A–C and 4A). 

Type I myofibres offered at baseline (PRE) higher (p < 0.01) sarcoplasmic SUMO-1 localization 
than type II myofibres and tended to be generally higher in this fibre type after resistance exercise 
(Figures 1A,B and 3B). However, relative increases tended to be higher in type II fibers (not 
significant). Sarcoplasmic SUMO-1 levels returned within 240 min and up to 24 h post RE towards 
baseline levels in both myofibre types (Figure 3C). 

2.3. Nuclear SUMO-1 Localization 

Immunofluorescence staining showed a specific nuclear and perinuclear SUMO-1 localization 
in skeletal muscle nuclei already at baseline however with an increasing nuclear abundance of 
SUMO-1 in an early time-course after RE (Figures 2C,D, 4A and 5A,B). Quantification of SUMO-1 
positive areas (independent of the fibre type, Figure 4B) revealed significantly expanding SUMO-1 
accumulation from PRE (p < 0.01 and p < 0.05, ῃ2 = 0.069) up to 15 and 60 min after RE, respectively. 
From 240 min post RE nuclear SUMO-1 area decreased and at 24 h post there was a significant loss 
of accumulated nuclear SUMO-1 localization compared to 30 and 60 min values (p < 0.01 and p < 0.05). 

2) which was corrected by Greenhouse-Geisser correction if sphericity was violated.
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