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Abstract: Calcium carbonate, especially with nanostructure, has been considered as a good candidate
material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this
study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility
were achieved with the regulation of poly (acrylic acid). Characterization results revealed that
the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect
ratio of 2.60 and a negative ζ-potential of ´22.25 ˘ 0.35 mV. The degradation study illustrated the
nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution
within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive
effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together
with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the
nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed
rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration.
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1. Introduction

Various bone diseases such as bone fractures, osteoporosis, osteoarthritis, and bone cancers
commonly present urgent clinical needs for bone regenerative materials [1]. Implant materials in the
clinic can sometimes cause serious side effects such as inflammation and infection which create the
necessity to develop new regenerative materials [2–4]. Among new kinds of materials, hydroxyapatite,
which is the main ingredient of bone, has been widely used [5–8]. However, in contrast to calcium
carbonate, the poor biodegradability of hydroxyapatite has limited its applications in biomedical
fields [9–11]. Calcium carbonate has been considered to be an ideal bone repair material based on its
excellent osteoconductivity and biodegradability [12–15].

Calcium carbonate in nano-scale size has attracted more attention in bone regeneration due to its
flexibility in preparation, its ability to enhance cell attachment and proliferation and its high efficiency
in carrying more drug or bioactive molecules [16–19]. Yu employed macro-, micro- and nano-scale
hierarchical calcium carbonate scaffolds to repair bone defects and proved that the scaffold with
nanostructured calcium carbonate enhanced the protein adsorption and accelerated its continuous
degradation, thus providing high calcium for promoting bone growth [20]. Fujihara confirmed
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calcium carbonate nanoparticles’ dispersed polycaprolactone nano-fibers improved the attachment
and proliferation of osteoblast cells [16]. Calcium carbonate nanoparticles with diverse sizes and
shapes have been synthesized and their interactions with cells have been systematically studied [21,22].
According to early studies, rod-like nanoparticles have better interactions with proteins and cells
to enhance cellular uptake and intracellular sorting [23–25]. However, not many reports have
demonstrated the specific effects of rod-like calcium carbonate nanoparticles on osteoblast cells.

In the present study, rod-like calcium carbonate nanoparticles were synthesized with the regulation
of poly(acrylic acid) (PAA). The physical-chemical properties, in vitro degradation and cytocompatibility
of the prepared nanoparticles were investigated. Besides, the in vitro proliferation and differentiation
assays on MC3T3-E1 cells were conducted to evaluate its effect as bone regenerative material.

2. Results and Discussion

2.1. Preparation and Characterization of Rod-Like Calcium Carbonate Nanoparticles (Rod-CC NPs)

PAA was used to regulate the synthesis of calcium carbonate nanoparticles. The SEM (Figure 1)
image shows that the prepared nanoparticles exhibited a uniform rod shape with an average length of
220 nm and a width of 85 nm, and the SEM image also displays the rough surfaces of Rod-CC NPs.
The rough surface enabled Rod-CC NPs to load more drugs or bioactive molecules which is beneficial
for its further applications.
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Figure 1. SEM image of the prepared rod-like calcium carbonate nanoparticles (Rod-CC NPs).

The XRD pattern (Figure 2a) indicates that the nanoparticles were composed of a high crystallinity
of calcite (JCPDS 47-1743), as shown by the sharp diffraction peaks, and a low vaterite (JCPDS 33-0268).
The crystal phase of the obtained calcium carbonate products was also characterized by the FTIR
spectrum. As shown in Figure 2b, the absorption peak located at 877 cm´1 was the characteristic peak
of calcite, and the peaks at 745 and 1090 cm´1 were for vaterite.

TGA was employed to investigate the percentage of PAA that was involved in the precipitation
of the mineral crystalline. Figure 3 shows the TGA and DTG curves of PAA-regulated Rod-CC NPs.
The first decomposition between 25 and 123 ˝C with a maximum rate at 53 ˝C and weight loss of
almost 8.34 wt % could be attributed to water loss. Additionally, the second stage, at 500 ˝C with a
maximum decomposition rate at 470 ˝C and weight loss of about 7.73 wt %, was the degradation of
PAA. The last curve was for the decomposition of calcium carbonate which occupied almost 84 wt %
of the total Rod-CC NPs. Besides, the last stage consisted of the decomposition of vaterite (loss of
2.16 wt %) and calcite (loss of 35.42 wt %). The 7.73 wt % PAA involved in Rod-CC NPs played an
important role in modifying the surface charge with its carboxyl which may contribute to its ζ-potential
of ´22.25 ˘ 0.35 mV.
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The aqueous dispersion and stability were also studied. As shown in Figure 4, the Rod-CC NPs
at a concentration of 1 mg/mL dispersed very well with little sediment for at least one week, which
implied its good aqueous dispersion and stability. Its desired aqueous stability could be attributed to
the involved PAA which formed a negative charge layer, preventing the aggregation of Rod-CC NPs
in aqueous solution [26].
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The in vitro degradation experiment was conducted under pH 5.6 and 7.4, and it aimed to
stimulate the in vivo condition in the lysosome and body fluid [27]. Results in Figure 5 demonstrate
the Rod-CC NPs degraded more than 45% under pH 5.6 and more than 20% under pH 7.4 in three
months with a rapid degradation in the first week and a linear degradation in the last several weeks.
The good degradation property of Rod-CC NPs ensures its biosafety and degradation is the key issue
that affects the behavior of osteoblast cells.

Int. J. Mol. Sci. 2016, 17, 639 4 of 11 

 

The in vitro degradation experiment was conducted under pH 5.6 and 7.4, and it aimed to 
stimulate the in vivo condition in the lysosome and body fluid [27]. Results in Figure 5 demonstrate 
the Rod-CC NPs degraded more than 45% under pH 5.6 and more than 20% under pH 7.4 in three 
months with a rapid degradation in the first week and a linear degradation in the last several weeks. 
The good degradation property of Rod-CC NPs ensures its biosafety and degradation is the key 
issue that affects the behavior of osteoblast cells. 

 
Figure 5. In vitro degradation profiles of Rod-CC NPs in phosphate-buffered saline (PBS) with 
different pH values. 

2.2. Cytocompatibility 

The cytocompatibility assay was conducted to assess whether the Rod-CC NPs were 
biocompatible enough to be used in a biological system. The cytocompatibility assay was carried  
out using Rod-CC NPs at concentrations of 0.001–1 mg/mL. The cell viabilities of all the groups  
were more than 80% when compared with the control, indicating that the Rod-CC NPs were 
biocompatible with osteoblast cells (Figure 6). Calcium carbonate is one of the ingredients of natural 
bone [28,29], and PAA is proved to be nontoxic, which may lead to its good biocompatibility [30,31]. 
Especially, with the increase of the concentration of Rod-CC NPs, it tended to promote the growth  
of MC3T3-E1 cells which may be because of the degradation of Rod-CC NPs and the released 
calcium ions. 

 
Figure 6. Cell viabilities of MC3T3-E1 cells treated with different concentrations of Rod-CC NPs  
for 48 h. 

Figure 5. In vitro degradation profiles of Rod-CC NPs in phosphate-buffered saline (PBS) with different
pH values.

2.2. Cytocompatibility

The cytocompatibility assay was conducted to assess whether the Rod-CC NPs were biocompatible
enough to be used in a biological system. The cytocompatibility assay was carried out using Rod-CC
NPs at concentrations of 0.001–1 mg/mL. The cell viabilities of all the groups were more than 80%
when compared with the control, indicating that the Rod-CC NPs were biocompatible with osteoblast
cells (Figure 6). Calcium carbonate is one of the ingredients of natural bone [28,29], and PAA is proved
to be nontoxic, which may lead to its good biocompatibility [30,31]. Especially, with the increase of
the concentration of Rod-CC NPs, it tended to promote the growth of MC3T3-E1 cells which may be
because of the degradation of Rod-CC NPs and the released calcium ions.
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2.3. Cell Proliferation Assay

The CCK-8 assay was employed to measure the effects of Rod-CC NPs on the proliferation activity
of MC3T3-E1 cells at day 1, 3, 5, and 7 (Figure 7). For control, the cell viability continuously increased
within five days, and possibly due to the confluence among cells, the proliferation became relatively
stable after day 5. However, with 0.1, 0.2, 0.8 and 1 mg/mL groups, the cell viability gradually
increased within seven days.
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for one, three, five, and seven days. Table shows pair-wise comparison results of each group analyzed
by Student-Newman–Keuls post hoc comparison test.

The 0.1 and 0.8 mg/mL Rod-CC NP groups had a significant positive effect on the proliferation
of MC3T3-E1 cells compared with the control (p < 0.05). For day 1, the 0.2 mg/mL group showed
a significantly lower proliferation value than the control (p < 0.05) which may be related to the cell
condition, and there was no significant difference between the 0.1, 0.8 and 1 mg/mL groups and
the control (p > 0.05). At day 3, 0.8 mg/mL Rod-CC NPs had a higher proliferation value compared
with the control (p < 0.05), and no statistical difference was found between the other groups and the
control (p > 0.05). At day 5, no significant difference was found between the nanoparticle groups
and the control (p > 0.05). At day 7, only the 0.1 and 0.8 mg/mL Rod-CC NPs groups exhibited
higher proliferation values than the control (p < 0.05). The results depicted that the Rod-CC NPs had
a significant positive effect on the proliferation of MC3T3-E1 cells at the concentrations of 0.1 and
0.8 mg/mL. Additionally, this may be ascribed to the appropriate calcium ion release, the penetration
and influence on the Ca2+ signal, or the related proteins, which needs further mechanism research [32].

2.4. Differentiation of Osteoblast Cells

Based on the cell viability and proliferation studies, Rod-CC NP concentrations of 0.1 and
0.8 mg/mL were chosen to study the osteogenic differentiation of MC3T3-E1 cells.

For early the osteogenic differentiation test, the Alkaline phosphatase (ALP) assay was conducted
(Figure 8). The two different concentrations of Rod-CC NPs were added to the seeded cells in growth
medium, and the osteoinduced medium without nanoparticles was used as a positive control. As for
the 0.1 mg/mL group, the ALP value was higher than the control (p < 0.001) and the positive control
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(p < 0.05). The Rod-CC NPs of 0.8 mg/mL also had better ALP activity than the positive control
(p < 0.01) and the control (p < 0.001). Moreover, the 0.8 mg/mL group displayed significantly better
improvement of ALP activity than the 0.1 mg/mL group.
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osteoinduced medium without nanoparticles was employed as positive control. (* p < 0.05, ** p < 0.01,
*** p < 0.001; n = 5).

Osteocalcin (OCN) and bone sialoprotein (BSP) are symbols of the advanced stage of osteogenic
differentiation [33,34]. Therefore, the Western blot assay was conducted to evaluate the expression of
OCN, BSP and β-Actin after the cells were cultured with 0.1 and 0.8 mg/mL Rod-CC NPs, and the
osteoinduced medium without nanoparticles was used as a positive control. As shown in Figure 9,
the expressions of BSP and OCN cultured with 0.1 and 0.8 mg/mL Rod-CC NPs were significantly
higher than the control (p < 0.01) which indicated the nanoparticles enhanced the differentiation of
MC3T3-E1 cells. Compared with the positive control, BSP expressions were significantly enhanced
(p < 0.01) in both 0.1 and 0.8 mg/mL Rod-CC NP groups, and OCN expressions were comparable
in the 0.1 mg/mL group (p > 0.05) and higher in the 0.8 mg/mL group (p < 0.001). These results
illustrated that the Rod-CC NPs had the capacity to induce the differentiation of MC3T3-E1 cells.

Various parameters comprehensively regulate the processes of osteoblastic proliferation and
differentiation, including hormonal regulation, physical stimulation and extracellular matrix
maturation [33,35]. The calcium ion, which is considered to a coupling factor between osteoblasts
and osteoclasts, plays a significant role in regulating the proliferation and differentiation of osteoblast
cells by affecting the expression of calcium-dependent protein and specific Ca2+ channel isoforms [36].
According to Parakhonskiy, elongated particles (with a higher aspect ratio) have a higher internalized
rate, and hence the synthesized Rod-CC NPs are supposed to have high internalized possibility [22].
After entering cells, the Rod-CC NPs with a rough surface begin to react with enzymes such as carbonic
anhydrase and then they degrade and release Ca2+, and the variation of Ca2+ affects the Ca2+-mediated
cellular responses to finally induce the proliferation and differentiation in due time [37]. These results
are in accordance with the observation by Maeno [35].

Based on the biodegradability and osteoinduced ability, the Rod-CC NPs are able to be formed
into bone-filling or bone substitute materials. Moreover, with the rough surface, Rod-CC NPs are
supposed to have the capacity to load drugs or bioactive molecules which may obtain better bone
regenerative effects.
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Figure 9. Western blot assays of the bone sialoprotein (BSP), osteocalcin (OCN) and β-Actin expression
of MC3T3-E1 cells when combined with 0.1 and 0.8 mg/mL Rod-CC NPs, and the osteoinduced
medium without nanoparticles was used as positive control. Table shows pair-wise comparison results
of each group (* p < 0.05, ** p < 0.01, *** p < 0.001; n = 4).

3. Materials and Methods

3.1. Preparation of Rod-CC NPs

The pure Rod-CC NPs were synthesized with the regulation of PAA [38]. First, PAA (MW = 5000,
Acros Organics, Belgium, NJ, USA) was dissolved at a final concentration of 2 mM with deionized
water and removed 10 mL to a round bottomed flask. The pH value was adjusted to 11 by 5 mM
NaOH solution. Next, 7 mL of a 0.1 M CaCl2 aqueous solution (adjusted to pH 8.5 with NH3¨ H2O)
was added dropwise to the prepared PAA solution at a rate of 1 mL/min under gentle stirring in water
bath at 60 ˝C. After stirring for 60 min at 60 ˝C, 7 mL of a 0.1 M (NH4)2CO3 aqueous solution (adjusted
to pH 10 with NH3¨ H2O) was added dropwise to the reaction solution under same condition. After
keeping stirring for 24 h in the water bath, the calcium carbonate nanoparticles were ultra-centrifuged
at 10,000 rpm for 5 min and washed with deionized water and ethanol each three times. Then the
obtained products were dried at 60 ˝C in oven for 24 h and stored at 37 ˝C for further use.

3.2. Characterization of the Rod-CC NPs

3.2.1. Physical–Chemical Characterization

The surface morphology, shape and size of the prepared nanoparticles were observed by scanning
electron microscope (SEM, Hitachi S-4800, Tokyo, Japan). Fourier transform infrared spectroscopy
(FTIR, Nicolet 5700, Thermo Electron, Waltham, MA, USA), thermogravimetric analysis (SDT Q600,
TA Instruments, New Castle, PA, USA), X-ray diffraction (XRD, Rigaku Corporation, Tokyo, Japan) and



Int. J. Mol. Sci. 2016, 17, 639 8 of 11

Zeta Sizer Nano Series ZEN 3600 Spectrometer (Malvern Instruments Ltd., Malvern, Worcestershire,
UK) were also employed to characterize the nanoparticles.

3.2.2. Aqueous Stability of the Rod-CC NPs

Rod-CC NPs were dispersed in deionized water at a final concentration of 1 mg/mL, and placed
in a cuvette for 3, 6, 9, 12 h and 1, 3, 5, 7 day at room temperature without moving and a picture was
taken at each time point. The water dispersibility and stability of the nanoparticles could be estimated
based on the precipitation conditions and the transparency of the solution.

3.2.3. In Vitro Rod-CC NPs Degradation

Rod-CC NPs (50 mg) were immersed in 10 mL PBS solution at pH 5.6 and 10 mL PBS at pH 7.4,
respectively. Then the solutions were gently stirred at a shaking bath at 37 ˝C for three months.
At specific times, the supernatants were collected through centrifugation and same volume of fresh
PBS solutions were added. QuantiChrom™ Calcium Assay Kit (BioAssay Systems, Hayward, CA,
USA) was used to measure calcium concentration in the supernatant according to instructions. The final
degradation percentage was calculated according to the released Ca2+ concentration tested above.

3.3. Cell Culture

MC3T3-E1 cells (Shanghai Cell Collection, Shanghai, China) were cultured in growth medium
(GM) consisting of alpha-minimum essential medium (α-MEM) media with 10% FBS. For osteogenic
induction, cells were cultured in osteoinduced medium (OM) which was obtained by adding 10 mM
β-glycerophosphate, 50 µg/mL ascorbic acid and 10´8 M dexamethasone into GM. The cells were
maintained in the density range of (0.1–1) ˆ 106 cells/mL. And all the cells were cultured in a
humidified incubator at 37 ˝C and 5% CO2 atmosphere.

3.4. Cytocompatibility Study

To determine the cytocompatibility of the synthesized Rod-CC NPs, Cell Counting Kit-8 assay
(CCK-8, Beyotime Institute of Biotechnology, Haimen, China) was performed. Then 100 µL MC3T3-E1
cells were seeded in 96-well plates at a concentration of 5 ˆ 103 cells/well. The cells were cultured
with 20 µL of prepared Rod-CC NPs solution at the concentrations of 0.001, 0.01, 0.1, 0.2, 0.4, 0.6, 0.8
and 1 mg/mL. Cells cultured without nanoparticles were used as control. After being incubated for
48 h, CCK-8 assays were conducted according to the instructions. Briefly, after changing with 100 µL
new growth medium, 10 µL CCK-8 solution was added to each well. Optical density (OD) values
were detected at 450 nm after incubation at 37 ˝C for 2 h. Each sample has six parallel replicates.
Cell viability was calculated as percentage of nanoparticles-cultured samples to control.

3.5. Cell Proliferation Study

Based on the cytocompatibility results, Rod-CC NPs at concentrations of 0.1, 0.2, 0.8 and 1 mg/mL
were chose for the proliferation study. In detail, after seeded in 96-well plates, the cells were treated
with 20 µL of 0.1, 0.2, 0.8 and 1 mg/mL of the prepared nanoparticle solution. Cells cultured without
nanoparticles were used as control. After being incubated for 1, 3, 5, 7 days, CCK-8 assays were
performed to determine the cell viability based on the above instructions. Each sample has six
parallel replicates.

3.6. Osteogenic Differentiation Study

3.6.1. Alkaline Phosphatase (ALP) Activity

ALP activity was measured to evaluate the early osteoblast differentiation [39]. Cells were seeded
into 96-well plates with 5 ˆ 103 cells/well. After 24 h, the medium was changed to new growth
medium with Rod-CC NPs in it, and the osteoinduced medium was used as positive control. Cultured
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for seven more days, the medium was discarded and cells were rinsed by PBS, then LabAssay ALP kit
(Wako Pure Chemical Industries, Ltd., Osaka, Japan) was used to measure the ALP activity. RIPA buffer
was used for protein extraction and BCA Protein Assay Reagent (Thermo Fisher Scientific, Waltham,
MA, USA) was employed to determine the protein concentration. ALP activity was calculated as nmol
of p-nitrophenol formation/min/mg of total proteins.

3.6.2. Osteocalcin and Bone Sialoprotein Production

To further demonstrate osteogenic differentiation, bone sialoprotein (BSP) and osteocalcin (OCN)
synthesis were measured by Western blot. After 21 days cultured with Rod-CC NPs at 6-well plates,
MC3T3-E1 cells were carefully washed by rinsing ice-cold PBS and lysed using Cell lysis buffer for
Western and IP on ice for 30 min. After being centrifuged at 12,000 rpm for 10 min at 4 ˝C, the
protein concentrations were measured by bicinchoninic acid (BCA) assay. For Western blot analysis,
20 µg of each protein sample was used for sodium dodecyl-sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and then was electrotransferred onto poly(vinylidene fluoride) (PVDF) membranes.
After being blocked with 5% bovine serum albumin for 2 h, the membranes were incubated with 1:1000
diluted primary anti-osteocalcin antibody (Sigma-Aldrich, St. Louis, MO, USA), anti-bone sialoprotein
antibody (Abcam, Cambridge, UK) and β-actin antibody (Beyotime Institute of Biotechnology, Haimen,
China) respectively at 4 ˝C overnight and then with 1:2000 diluted secondary antibody for 1 h at
room temperature. Signals were determined using the chemiluminescence image analysis system
(Tanon 5500, Shanghai, China).

3.7. Statistical Analysis

Significance Tests were conducted using Student’s t-test. A p-value less than 0.05 was considered
statistically significant. Pairwise comparisons were conducted with the Student-Newman–Keuls post
hoc comparison test.

4. Conclusions

Rod-like calcium carbonate nanoparticles with desired water dispersibility were successfully
synthesized. The prepared Rod-CC NPs had an average length of 240 nm, a width of 90 nm with
an average aspect ratio of 2.60 and a negative ζ-potential of ´22.25 ˘ 0.35 mV. Within three months,
the Rod-CC NPs degraded 23% and 45% in PBS solution at pH 7.4 and 5.6, respectively. The in vitro
study demonstrated the Rod-CC NPs at concentrations of 0.1 and 0.8 mg/mL had the capacity to
improve the proliferation and induce the differentiation of MC3T3-E1 cells.
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