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Abstract: Grain amaranth (Amaranthus hypochondriacus L.) is abundant in oxalate and can secrete
oxalate under aluminium (Al) stress. However, the features of Al-induced secretion of organic
acid anions (OA) and potential genes responsible for OA secretion are poorly understood.
Here, Al-induced OA secretion in grain amaranth roots was characterized by ion charomatography
and enzymology methods, and suppression subtractive hybridization (SSH) together with
quantitative real-time PCR (qRT-PCR) was used to identify up-regulated genes that are potentially
involved in OA secretion. The results showed that grain amaranth roots secrete both oxalate and
citrate in response to Al stress. The secretion pattern, however, differs between oxalate and citrate.
Neither lanthanum chloride (La) nor cadmium chloride (Cd) induced OA secretion. A total of 84 genes
were identified as up-regulated by Al, in which six genes were considered as being potentially
involved in OA secretion. The expression pattern of a gene belonging to multidrug and toxic
compound extrusion (MATE) family, AhMATE1, was in close agreement with that of citrate secretion.
The expression of a gene encoding tonoplast dicarboxylate transporter and four genes encoding
ATP-binding cassette transporters was differentially regulated by Al stress, but the expression pattern
was not correlated well with that of oxalate secretion. Our results not only reveal the secretion
pattern of oxalate and citrate from grain amaranth roots under Al stress, but also provide some
genetic information that will be useful for further characterization of genes involved in Al toxicity
and tolerance mechanisms.
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1. Introduction

Aluminium (Al) toxicity is one of the major constraints for crop production in acid soils,
which occupies approximately 50% of potentially arable lands worldwide [1]. The primary visible
symptom of Al toxicity is the inhibition of root elongation, which occurs even at micromolar
concentrations of Al [2]. A number of possible mechanisms responsible for the Al-induced
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inhibition of root elongation have been proposed. For example, Al may alter cytoskeletal structure,
interfere with DNA replication, disrupt signal transduction pathways, and trigger oxidative stress
response [3–5]. Transcriptional analysis also revealed that hundreds to thousands of genes were
up- and down-regulated within several hours of exposure to Al stress, which are involved in a variety
of physiological and molecular processes [6–10]. Thus, the inhibition of root elongation appears to be a
toxic syndrome that results from disorder of a series of physiological and biochemical processes.

On the other hand, different plant species or cultivars within the same species have evolved
mechanisms to deal with Al toxicity in the acidic soils. Al-induced organic acid anions (OA) secretion
has been well established as a very important Al resistance mechanism in a variety of plant species [4].
Among the various secreted OA in response to Al stress, extensively reported are three major species,
i.e., malate, citrate, and oxalate. Over the past decade, genes involved in Al-activated malate secretion
and Al-activated citrate secretion have been isolated in a number of plant species [11]. However, genes
involved in Al-activated oxalate secretion have not been reported in any plant species.

Secretion of oxalate from plant roots in response to Al stress has been reported in several plant
species such as taro (Colocasia esculenta) [12], common buckwheat (Fagopyrum esculentum) [13], spinach
(Spinacia oleracea) [14], Polygonum species [15], and tea plants (Camellia sinensis) [16]. Being a C4
dicotyledonous plant, Grain amaranth (Amaranthus hypochondriacus L.) belongs to the Amaranhaceae
family [17]. Because of the high protein content of the leaves and seeds, and the high levels of the
essential amino acid, lysine in the protein, grain amaranth has been becoming one of the world’s most
promising foods among health-conscious consumers [17]. In addition, grain amaranths are known to
be tolerant to adverse environmental conditions, including drought, acidic, poor and/or saline soils
and pests, which can be attributed to their high levels of stored carbon reserves in stem and roots,
high water use efficiency, and accumulated compatible solutes and hormones, such as jasmonic acid
(JA) [18–21]. Our previous study showed grain amaranth contains a substantial amount of oxalate
and secretes oxalate from roots while suffering from Al stress [22]. Although circumstantial evidence
implied that oxalate secretion under Al stress from some oxalate accumulators might be a common
feature [22], the physiological and molecular characterization of Al-induced organic acids secretion
from grain amaranth roots has not been conducted.

In screening of Al-responsive genes in plants, a number of molecular approaches have
been adopted such as differential display reverse transcription-polymerase chain reaction [23],
cDNA-amplified fragment length polymorphisms [24], microarray [25], suppression subtractive
hybridization (SSH) [26], and mRNA sequencing [9,10,27]. SSH method is a powerful technique
to identify multiple differentially expressed sequence tags (EST) in different mRNA populations,
and has been used to identify Al-responsive genes in wheat (Triticum aestivum) [28], common bean
(Phaseolus vulgaris) [29], alfalfa (Medicago sativa) [30], and rice bean (Vigna umbellata) [31].

In the present study, we analyzed both types and patterns of OA secretion from grain amaranth
roots in response to Al stress. The results showed that grain amaranth roots secrete both oxalate
and citrate into rhizosphere under Al stress, but secretion pattern differed between oxalate and
citrate. Using SSH method, we identified a total of 84 ESTs that were up-regulated by 9 h of Al stress.
Finally, 6 genes participating in ion transport process were evaluated with respect to their potential
role in Al-induced OA secretion.

2. Results

2.1. Characterization of Aluminium (Al)-Induced Organic Acid Anions (OA) Secretion from Grain
Amaranth Roots

We have previously demonstrated that some oxalate accumulators can secrete oxalate from their
roots in response to Al stress [22]. In this present study, we characterized secreted OA profiles and
patterns in an oxalate accumulator, grain amaranth (Amaranthus hypochondriacus L.). Al treatment
rapidly (within 30 min of exposure) stimulated the secretion of oxalate from grain amaranth roots
(Figure 1A), although oxalate was detected in the root exudates of grain amaranth without Al treatment
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(Figure S1). During the entire treatment period, the secretion rate of oxalate was at similar levels
(Figure 1A). On the other hand, citrate was not detected in the root exudates until 3 h of exposure
to 25 µM Al. The amount of secreted citrate was significantly increased after 6 h of exposure. In the
absence of Al stress, citrate was almost undetectable (Figure 1B).
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25, or 50 µM Al for 6 h. Root exudates were collected for determination of organic acids. Data are 
means ± SD (n = 3). Different letters indicate statistically significant differences (Tukey test, p < 0.05). 
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(Cd) stress for 6 h, both oxalate and citrate secretion were not induced. In contrast, exposure of 
roots to 10 µM Al induced secretion of both oxalate and citrate significantly (Figure 3). 

Figure 1. Time-course of aluminium (Al)-induced oxalic acid (A) and citric acid (B) secretion from grain
amaranth roots. Three-week-old seedlings were exposed to 0.5 mM CaCl2 solution (pH 4.5) containing
0 or 25 µM Al. Root exudates were collected at indicated intervals for determination of organic acids.
Data are means ˘ SD (n = 3). Asterisks indicate that mean values are significantly different between Al
treatment and control (Student’s t test, p < 0.05).

The secretion of both oxalate and citrate was in a likely dose-dependent manner. However, there
is no significant difference in secreted oxalate between 25 and 50 µM Al treatments (Figure 2).
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Figure 2. Effect of different Al concentrations on oxalic acid and citric acid secretion from grain
amaranth roots. Three-week-old seedlings were exposed to 0.5 mM CaCl2 solution containing 0, 10,
25, or 50 µM Al for 6 h. Root exudates were collected for determination of organic acids. Data are
means ˘ SD (n = 3). Different letters indicate statistically significant differences (Tukey test, p < 0.05).

When grain amaranth roots were exposed to lanthanum chloride (La) or cadmium chloride (Cd)
stress for 6 h, both oxalate and citrate secretion were not induced. In contrast, exposure of roots to
10 µM Al induced secretion of both oxalate and citrate significantly (Figure 3).
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Figure 3. Effect of lanthanum chloride (La) and cadmium chloride (Cd) on the secretion of organic
acids from grain amaranth roots. Three-week-old seedlings were exposed to 0.5 mM CaCl2 solution
containing 25 µM Al, 25 µM La, 10 µM Cd, or without metals as control. Root exudates were collected
by 6 h for determination of organic acids. Data are means ˘ SD (n = 3). Asterisks indicate that mean
values are significantly different between treatment and control (Student’s t test, p < 0.05).

2.2. Identification of up-Regulated Genes by Al Stress in Amaranth Roots

In order to identify genes potentially associated with Al-induced OA secretion, a forward cDNA
library (9 h Al treatment vs. control) was constructed. A total of 84 differentially expressed transcripts
were obtained, and were grouped into several functional categories according to the Gene Ontology
(GO) biological process defined by the TAIR and UniProt database (Figure S2). Among these functional
categories, the one that encompasses genes involved in “metabolism and energy” is most predominant.
For example, genes encoding malate dehydrogenase, succinate dehydrogenase, and citrate synthase
were observed (Table S1). In addition, up-regulation of eight genes involved in hormone metabolism
and signaling transduction pathways confirming the recent observation that hormone may partly
share Al signal to regulate Al tolerance mechanism such as OA secretion [32,33]. However, this present
study was restricted to the genes which could be potentially involved in the transport processes
of OA. Therefore, a total of nine genes involved in ion transport process were selected for further.
Among these candidates, genes encoding ADP, ATP carrier protein, plasma membrane intrinsic protein
(PIP2;1), and inorganic phosphate transporter were excluded, because they have somewhat defined
functions that are not associated with OA secretion (Table S1). Finally, six genes including one gene
encoding a multidrug and toxic compound extrusion (AhMATE1) protein, one gene encoding tonoplast
dicarboxylate transporter (AhTDT), and four genes encoding ATP-binding cassette (ABC) transporters
(AhABCG11, AhABCG21, AhABCA2, and AhABCB21, respectively) were chosen for further expression
analysis by qRT-PCR (Table 1).

Table 1. List of selected cDNA clones associated with ion transport processes and primer pairs used
for qRT-PCR analysis.

Gene Name a Annotation Primer Pairs Amplicon Size (bp)

AhABCG21
ABC transporter G
family member 21

for: AGGTGACTTGCCTATGGAACT
107rev: TCGTAAGGGTAAGGATAAATG

AhABCG11
ABC transporter G
family member 11

for: AAACACACTTTCTTCAATCCCAT
205rev: ACCCGTTATGATACCCATTAGAA

AhABCA2
ABC transporter A
family member 2

for: ACATCGCAAGACAAGCCG
116rev: CCCCACATACCTGGCTCC

AhABCB21 ABC transporter B family
member 21

for: TGCTATGGGGGAGAAGGT
122rev: AAAGGGGTATGGACGAAA

AhTDT
Tonoplast dicarboxylate

transporter
for: TACAGCGACTTCCGACGACTA

267rev: ACAAGCAACAAAGAACACCCC

AhMATE1 MATE protein for: GGTCCTTTGGTGCTCCTGC
163rev: CCACTGACACCCAAACGACAT

a Gene name was temporarily assigned to the selected cDNA clones according to their closest homologous genes.
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2.3. Expression Patterns of Selected Genes Encoding Transporter Proteins

A subgroup of MATE proteins has been reported to be associated with Al-activated citrate
transporter in some plant species [11]. Thus, it is likely that the gene encoding MATE protein could
be involved in Al-induced citrate secretion from grain amaranth roots. In order to verify whether
AhMATE1 is possibly involved in Al-induced citrate secretion, we characterized the expression pattern
of AhMATE1. The expression of AhMATE1 is in a time- and dose-dependent manner in response to
Al stress (Figure 4A,B), which is in line with citrate secretion pattern (Figures 1 and 2). However, its
expression was not affected by La or Cd stress (Figure 4C).
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Figure 4. Grain amaranth roots AhMATE1 gene expression analysis. (A) Time-course analysis of
AhMATE1 expression treated with 25 µM aluminium (Al) after various periods by real-time PCR;
(B) dose response analysis of AhMATE1 expression treated with different Al concentrations for 9 h;
(C) expression of AhMATE1 in response to 25 µM La or 10 µM Cd for 9 h. Total RNA was extracted from
roots and qRT-PCR was performed for each gene with glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) as an internal control. Data are means ˘ SD (n = 3). Asterisks indicate that mean values are
significantly different between treatment and control (Student’s t test, p < 0.05).

Among the four genes encoding ATP-binding cassette (ABC) transporters, the expression
of AhABCG21 was not significantly affected by Al stress in both time-course and dose-response
experiments (Figures 5 and 6). The expression of AhABCG11 and AhABCB21 were only significantly
increased after 9 h of exposure, whereas that of AhABCA2 was increased within 3 h of exposure
(Figure 5). The expression of both AhABCA2 and AhABCB21 displayed dose-dependent increase in
response to Al stress (Figure 6). The expression of AhABCG11, however, reached the maximum at
10 µM Al, and cannot be further increased with increased Al concentrations (Figure 6). The expression
of these four genes was not affected by either La or Cd stress with the exception of AhABCA2, which
was greatly induced by La treatment, and AhABCG21, which was inhibited by La (Figure 7).
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Figure 6. Dosage expression pattern of AhABCG21, AhABCG11, AhABCA2, AhABCB21, and AhTDT in
response to 0, 10, 25, or 50 µM Al for 9 h. Three-week-old seedlings were exposed to 0.5 mM CaCl2
solution (pH 4.5) containing different concentrations of Al or not. Total RNA was extracted from roots
and qRT-PCR was performed for each gene with GAPDH as an internal control. Data are means ˘ SD
(n = 3). Asterisks indicate that mean values are significantly different between treatment and control
(Student’s t test, p < 0.05). Dash line indicates expression level of 1.
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and AhTDT in grain amaranth roots. Three-week-old seedlings were exposed to 0.5 mM CaCl2 solution
containing 25 µM La, 10 µM Cd for 9 h, or without metals as control. Total RNA was extracted
from roots and qRT-PCR was performed for each gene with GAPDH as an internal control. Data are
means ˘ SD (n = 3). Asterisks indicate that mean values are significantly different between treatment
and control (Student’s t test, p < 0.05).

The expression of a gene encoding tonoplast dicarboxylate transporter, AhTDT, was observed to
be down-regulated within 6 h of exposure to 25 µM Al, and slightly increased after 9 h of exposure
(Figure 5). Compared to control conditions, exposure to Al at 10 µM for 9 h slightly inhibited the
expression of AhTDT, and higher Al concentrations resulted in a slight increase in expression levels
(Figure 6). Both La and Cd significantly inhibited its expression (Figure 7).

3. Discussion

Many plant species secrete OA from roots to neutralize Al toxicity [4,34]. Here we characterized
the secretion of OA from grain amaranth roots under Al stress, and some unique features are
highlighted. First, roots of grain amaranth secrete both oxalate and citrate in response to Al stress
(Figures 1 and 2). While some plant species secrete only a single type of OA into the rhizosphere
under Al stress, others secrete two types of OA simultaneously. For example, Al-induced specific
secretion of citrate in Cassia tora [35], malate in wheat [36], and oxalate in buckwheat [13] was observed.
Both citrate and malate were secreted from rye (Secale cereale) roots when exposed to Al stress [37].
Evidence for a similar situation has been demonstrated in Arabidopsis [38] and some Al-tolerant
wheat genotypes [39]. However, this study is the first report on simultaneous secretion of oxalate and
citrate from grain amaranth roots. Second, the secretion pattern differed between oxalate and citrate.
Based on the timing of secretion, OA secretion can be grouped into two patterns [34,40]. In pattern
I, organic acids were immediately secreted after the beginning of Al stress, whereas in the pattern
II, an induction period ranging from several hours to several days are required for the initiation of
OA secretion. The rapid secretion and similar secretion rate of oxalate during the entire exposure
period indicated that oxalate secretion from grain amaranth roots fits pattern I response (Figure 1A),
whereas increased secretion rate of citrate over time indicated that it belongs to pattern II response
(Figure 1B). Increased evidence showed that patterns I and II operate independently during activated
and regulated process [34], suggesting complexity in secretion of OA from grain amaranth in response
to Al. Thirdly, the amount of Al-induced oxalate secretion is far more than citrate secretion at 2 h,
but both of them were similar almost while treated Al more than 6 h (Figure 1), suggesting that the
key role of oxalate in detoxifying Al toxicity at early stage. Finally, the secretion of both oxalate and
citrate exhibited specificity to Al stress since other metals failed to stimulate the secretion (Figure 3).
In tomato, La stress failed to induce the secretion of oxalate [41]. Cd stress, however, stimulated the
secretion of oxalate in a time- and dose-dependent manner [42]. In both Cassia tora and rice bean,
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Al specifically induced citrate secretion from their roots [35,43]. The specificity of secretion to Al
stress indicates that secretion of both OA from grain amaranth roots is regulated by specific transport
pathways rather than by a common stress response.

Using the SSH method, we have identified a total of 84 genes that are up-regulated by Al stress in
grain amaranth roots (Table S1). These genes were functionally categorized into several physiological
and molecular events (Figure S2). For example, Al stress triggered the expression of genes involved
in “metabolism and energy” which are most predominant in our library. Similarly, a previous study
in rice bean suggested that metabolic changes act as an adaptive mechanism for plants to deal with
Al toxicity [31]. The importance of mitochondrial metabolism in Al resistance has recently been
summarized [44]. Here, up-regulation of a set of genes involved in tricarboxylic acid cycle points to the
possible contribution of citrate metabolism to its secretion (Table S1). However, the key genes encoding
enzymes that are involved in the oxalate biosynthesis are still poorly understood. It has been reported
that oxalate content is not related to the amount of secretion in amaranth plants, because its content is
far more than secreted [22]. Recent genome-wide transcriptome analysis of Al-responsive genes in
common buckwheat and tartary buckwheat also found that oxalate metabolism is not a limiting factor
of Al-induced oxalate secretion [9,10].

Our data showed that a gene-encoding MATE protein, AhMATE1, is a potential citrate transporter
in grain amaranth. MATE proteins represent a large family of transporters in prokaryotes and
eukaryotes [45]. For example, there are 58 and at least 40 MATE orthologs in Arabidopsis and
rice, respectively. The role of MATE proteins in Al resistance has been reported in a number of
plant species such as sorghum (Sorghum bicolor) [46], barley (Hordeum vulgare) [47], wheat [39], rice
(Oryza sativa) [48], Arabidopsis [38], rice bean [49], and Eucalyptus camaldulensis [50]. It has been
concluded that citrate-transporting MATE proteins are characteristic of having 12 transmembrane
domains and one highly conserved amino acid sequence in the cytosolic loop between the second
and third transmembrane domains [49]. Amplification of AhMATE1 full length by RACE PCR
revealed that it shares all conserved structures with other known citrate transporters (Data not shown).
Furthermore, the expression pattern of AhMATE1 fit the secretion pattern of citrate. Therefore, it is
very likely that this gene is responsible for Al-induced citrate secretion from grain amaranth roots.

Among 9 cDNA clones identified as ion transporters, nearly half of them belong to the family of
ABC transporters (Table S1). ABC transporter represents a very large gene family. Members of this
family can be found in all taxa, and shuttle a broad range of substrates such as lipids, phytohormones,
carboxylates, heavy metals, chlorophyll catabolites and xenobiotic conjugates [51]. In fact, experimental
evidence has pointed to the role of ABC transporters in transporting OA in plants. For example,
AtABCB14 has been reported to be implicated in transporting of malate from apoplast into guard
cells [52]. Knockout of AtPDR6, a member of the pleiotropic drug resistance protein (PDR) subfamily
of ABC transporters, resulted in significant decrease of OA (3-hydroxypropionic acid, succinic acid,
fumaric acid, and malic acid) in Arabidopsis root exudates [53]. These results raised the question as to
whether ABC transporter is involved in Al-dependent oxalate secretion. In the present study, although
both AhABCB21 and AhABCA2 exhibited at least partly time- and dose-dependent expression patterns
in response to Al stress (Figures 5 and 6), they did not correlate well with the pattern of Al-dependent
oxalate secretion. In addition, the expression of AhABCA2 was also significantly induced by La stress.
In wheat, the induction of TaMDR1, a member of ABC transporters, was demonstrated to be associated
with Al toxicity, and some calcium channel inhibitors including La could induce the expression of
TaMDR1 [54]. It is possible that up-regulation of AhABCA2 might be involved in Al toxicity rather than
Al resistance.

While whether ABC transporters are involved in Al-induced OA secretion remains unknown,
emerging evidence has suggested the importance of this gene family in other plant Al resistance
mechanisms. In a screening to identify genes involved in Arabidopsis Al resistance, both AtALS1
and AtALS3 have been found to contribute to Al detoxification. AtALS1 is a tonoplast-localized
half-type ABC transporter, and predicted to function to transport chelated Al into vacuoles [55].
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However, AtALS3 encodes a transmembrane domain of a bacterial ABC transporter, and may function
to redistribute accumulated Al away from sensitive tissues [56]. Huang et al. (2009) identified two rice
genes, OsSTAR1 and OsSTAR2, with the former encoding the nucleotide-binding domain and the
later encoding the transmembrane domain of one ABC transporter [57]. Interestingly, OsSTAR1 and
OsSTAR2 directly interact with each other to form a functional transporter complex, which possibly
transports UDP-glucose to mask cell wall composition to protect the binding of Al [57]. In the present
study, expression of some ABC transporter genes in response to Al stress was regulated, suggesting
that these genes should have roles in adaptation of grain amaranth to Al toxicity. However, the detailed
function of each member of the ABC transporters identified in this study has to be characterized in the
future study.

In the present study, the expression of a gene encoding tonoplast dicarboxylate transporter was
examined. Oxalate is the simplest dicarboxylate. Thus, transporters involved in oxalate secretion are
permeable to dicarboxylates. Ryan and Delhaize (2010) hypothesized that transporters responsible
for Al-induced malate or citrate secretion might be evolved from other malate or citrate transporters
that originally performed different functions [58]. It is therefore likely that mutations might occur in
the coding region of the tonoplast dicarboxylate transporter which alters its subcellular localization
and functions. Although this EST was enriched in our forward library, the expression of this gene
was only slightly increased at higher Al concentrations with relatively long exposure time (Figure 6).
The inconsistency between Al-induced oxalate secretion pattern and the expression pattern of AhTDT
precludes it being a potential candidate for oxalate transporter. However, it remains possible that
Al mediates oxalate secretion through post-translational regulation of the oxalate transporter gene.
For example, in both wheat and barley, TaALMT1 and HvAACT1 are constitutively highly expressed in
Al-resistant genotypes, and Al directly or indirectly activates their functions [28,47].

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

Grain amaranth (Amaranthus hypochondriacus L.) seeds were soaked in de-ionized water overnight.
Then the seeds were placed on the filter paper moistened with 0.5 mM CaCl2 solution at pH 4.5 and
kept in the dark at 26 ˝C. Germinated seeds were transferred to a net tray, which was floated on a 5 L of
0.5 mM CaCl2 solution at pH 4.5 in a plastic container. The seedlings were kept in the dark at 26 ˝C for
7 days, and then transferred to a controlled-environment growth room with a 14 h/26 ˝C day at a light
intensity of 300 µmol¨ photons¨ m´2¨ s´1 and 10 h/22 ˝C night regime. The solution was renewed daily.
At day 4, the seedlings were transplanted into 1.2 L plastic pots (four holes per pot, 2 seedlings for each
hole) containing aerated nutrient solution. One-fifth-strength Hoagland nutrient solution was used
consisting of the following macronutrients in mM: KNO3, 1.0; Ca(NO3)2, 1.0; MgSO4, 0.4; NH4H2PO4,
0.2, and the following micronutrients in µM: NaFeEDTA, 20; H3BO3, 3; MnCl2, 0.5; CuSO4, 0.2; ZnSO4,
0.4; (NH4)6Mo7O24, 1. The solution was adjusted to pH 4.5 with 1 M HCl and renewed every 3 days.

4.2. Treatments

Three-week old seedlings were subjected to the following treatments. Prior to each treatment, the
roots were rinsed by soaking in aerated 0.5 mM CaCl2 solution (pH 4.5) overnight. For the time-course
experiment, roots of seedling were exposed to 0.5 mM CaCl2 solution (pH 4.5) with or without
25 µM AlCl3 for 0.5, 1, 2, 3, 6, or 9 h. For the dose-response experiment, roots of seedling were exposed
to 0.5 mM CaCl2 solution (pH 4.5) containing 0, 10, 25, or 50 µM AlCl3 for 6 or 9 h. For LaCl3 or
CdCl2 treatment, seedlings were exposed to 0.5 mM CaCl2 solution (pH 4.5) containing 25 µM LaCl3 or
10 µM CdCl2 for 6 or 9 h. After treatments, root exudates were collected and immediately used to
analyze organic acids, and root tissues were frozen immediately in liquid N2 and stored in ´80 ˝C
refrigerator until use.
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4.3. Collection of Root Exudates

Collected root exudates were passed through a cation-exchange resin column (16 mm ˆ 14 cm)
filled with 5 g of Amberlite IR-102 B resin (H+ form), followed by an anion-exchange resin column
(16 mm ˆ 14 cm) filled with 2 g of Dowex 1 ˆ 8 resin (100–200 mesh, formate form). Organic acids
retained on the anion-exchange resin were eluted with 15 mL of 1 M HCl, and the eluate was
concentrated to dryness by a rotary evaporator (40 ˝C). The residue was dissolved in 2 mL of Milli-Q
water and subjected to organic acid determination.

4.4. Measurement of Oxalate and Citrate

Oxalic acid was determined by ion chromatography using an IonPac AS11 anion-exchange
analytical column (4 mm ˆ 250 mm) equipped with a guard column (4 mm ˆ 50 mm). The mobile phase
was 30 mM NaOH at a flow rate of 0.6 mL¨ min´1. A standard curve was made by analyzing different
concentrations of oxalic acid with the same procedure. Citric acid was determined enzymatically [59].
In briefly, to 1 mL of sample solution, 120 µL 1 M Tris/HCl buffer (pH 7.8) and 15 µL 10 mM NADH
were added. After incubation at 25 ˝C for 40 min, 2 µL enzyme mixture (1.25 U lactate dehydrogenase
and 0.5 U malate dehydrogenase) was added and the reaction mixture was incubated for an additional
40 min. the change in A340 was monitored after the reaction was initiated with addition of citrate
lyase (0.5 U).

4.5. RNA Isolation and Construction of SSH Library

Total RNA was extracted using the RNAeasy mini kit (Tiangen, Shanghai, China). cDNA
was amplified with Super SMART™ PCR cDNA synthesis Kit (Clontech, Palo Alto, CA, USA).
For identification of up-regulated genes, forward subtracted cDNA library was constructed. For this,
amplified cDNA from 25 µM Al-treated for 9 h roots was used as the “tester”, while amplified cDNA
from control as the “driver”. PCR-select cDNA subtraction was performed according to instruction
of PCR-Select™ cDNA Subtraction Kit (Clontech, Palo Alto, CA, USA). The PCR products were
sub-cloned into the pGEM-Teasy vector (Promega, Madison, WI, USA) and then transformed into
chemically competent E. coli (DH5α) cells. Transformed clones were grown on LB plates containing
X-gal and ampicillin for blue/white screening. Positive clones were selected and further checked by
PCR for the presence of gene inserts after plasmid isolation, and clones with >200 bp single fragment
insert were selected for DNA sequencing.

4.6. Sequence Homology and Functional Annotation

The cDNA sequences were compared with the GenBank database using the online Basic Local
Alignment Search Tool (BLAST) program [60]. The detailed search procedure was the same as our
previous report [31].

4.7. Quantitative Real-Time PCR

Total RNA was isolated from root tissues as described above. First-strand cDNA was synthesized
from 1 µg of total RNA using Superscript™ reverse transcriptase (Takara, Dalian, China). 1 µL
(100 ng¨µL´1) of cDNA in 10 µL volume system were used for quantitative analysis of gene
expression performed with SYBR Premix ExTaq (Takara, Dalian, China). The primer pairs for
each gene were listed in Table 1, and the PCR amplification conditions were as follows: 94 ˝C
for 5 min; 45 cycles of 94 ˝C for 10 s, 55 ˝C for 15 s and 72 ˝C for 20 s. The endogenous gene
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the internal control with the
following primers: 5’-TTCGGTCACAGGAACCCAGA-3’ and 5’-ACCTTCTTGGCACCACCCTT-3’.
For each target gene, the PCR reactions were carried out in three biological and technical repeats.
The relative expression level was calculated by formula 2–∆∆Cp.
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4.8. Statistical Analysis

Each result shown in the figures was the mean of three replicated treatments, and at least
two independent experiments were conducted for each result. The significant differences between
treatments were statistically evaluated by Students’s t or Tukey test method.

5. Conclusions

We characterized Al-induced OA secretion from grain amaranth roots and observed simultaneous
secretion of oxalate and citrate in response to Al stress with the secretion pattern differed. A total
of 84 genes up-regulated by Al stress were identified in grain amaranth roots, and several genes
encoding transporter proteins were highlighted. Although identification of oxalate transporter remains
a great challenge, the present results provide some genetic information that will be useful for further
characterization of genes involved in plant Al tolerance and toxicity mechanisms.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/4/
608/s1.
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