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Abstract: Quinine is a bitter tasting compound that is involved in the regulation of body weight as
demonstrated in in vivo animal models and in vitro models of the adipogenic system. Arguments exist
over the positive or negative roles of quinine in both in vivo animal models and in vitro cell models,
which motivates us to further investigate the functions of quinine in the in vitro adipogenic system.
To clarify the regulatory functions of quinine in adipogenesis, mouse primary preadipocytes were
induced for differentiation with quinine supplementation. The results showed that quinine enhanced
adipogenesis in a dose dependent manner without affecting lipolysis. The pro-adipogenic effect of
quinine was specific, as other bitter tasting agonists had no effect on adipogenesis. Moreover, the
pro-adipogenic effect of quinine was mediated by activation of ERK/S6 (extracellular-signal-regulated
kinase/Ribosomal protein S6) signaling. Knockdown of bitter taste receptor T2R106 (taste receptor,
type 2, member 106) impaired the pro-adipogenic effect of quinine and suppressed the activation
of ERK/S6 signaling. Taken together, quinine stimulates adipogenesis through ERK/S6 signaling,
which at least partly functions via T2R106.
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1. Introduction

Obesity has become one of the biggest global challenges affecting human health in recent
decades. Obesity increases the risk for various diseases, such as type 2 diabetes, atherosclerosis,
hypertension, hyperlipidemia and certain types of cancers [1,2]. Society is under great economic
pressure to treat obesity. Hence, there is an urgent need for effective therapeutic approaches to combat
obesity and related diseases. Expansion of adipose tissue is the primary factor that contributes to the
development of obesity, which is caused by adipocyte hypertrophy and hyperplasia [3–5]. As the
main composition of adipose tissue, adipocytes are derived from preadipocytes through adipogenesis.
Although regulation of adipogenesis has been extensively studied, effective therapeutic approaches
are still in demand, thus further investigation of the mechanism of adipogenesis will facilitate our
understanding and potential therapeutic treatment of obesity and associated metabolic syndrome.

As an active antimalarial compound, quinine is a natural alkaloid extracted from the bark of the
cinchona tree [6]. Quinine is used for treatments of nocturnal leg cramps [7], and quinine is also used
as a bitter compound in many taste tests [8–11]. The first study that linked quinine with metabolism
was reported in 1973, they found quinine adulteration of the diet resulted in decreased body weight
in LH-lesioned and intact male rats [12], thereafter, several other studies also reported that both
food intake and body weight were remarkably decreased in rats consuming a quinine-supplemented
diet [13–17]. In addition, quinine was reported to control body weight without affecting food intake in
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male C57BL6/J mice [18]. However, another study revealed that quinine promoted body weight gain
and development of type 2 diabetes in humans, in which small doses of oral quinine sulfate led to
excessive weight gain and type 2 diabetes with long-term use [19]. These data suggest that quinine
may play important roles in adipogenesis and the development of obesity. However, the biological
effects and mechanisms of quinine on adipogenesis have not been well studied.

The controversial effects of quinine on body weight gain and food intake in in vivo animal models
and humans motivated us to further investigate the influences of quinine on adipogenesis in an in vitro
model. In this study, we provide the first evidence that quinine is a positive regulator of adipogenesis
in mouse primary preadipocytes functioning through ERK/S6 (extracellular-signal-regulated
kinase/Ribosomal protein S6) pathway without affecting lipolysis, and uncover a possible role for
the bitter receptor T2R106 (taste receptor, type 2, member 106) in mediating the effect of quinine on
adipogenesis. Taken together, our data demonstrate the positive role of quinine in adipogenesis in
mouse primary preadipocytes, and provide evidence of the presence of bitter taste receptors in the
adipogenic system.

2. Results

2.1. Quinine Increases Differentiation of Mouse Primary Preadipocytes

To evaluate the role of quinine in adipocyte differentiation, mouse primary preadipocytes
were induced to differentiate by an adipogenic cocktail with or without quinine for 14 days. As
shown in Figure 1A,B, the addition of quinine stimulated lipid accumulation of mouse primary
preadipocytes in a dose dependent manner, suggesting a positive role for quinine in adipogenesis.
Additional features of differentiation were assessed by qRT-PCR and Western blot. Consistent
with the morphology change, the mRNA expression levels of adipogenic markers including
PPARγ (peroxisome proliferator-activated receptor γ), C/EBPα (CAAT/enhancer binding protein
α) and FABP4 (fatty-acid-binding protein 4) were significantly increased (Figure 1C). Analysis of
protein expression confirmed the pro-adipogenic effects of quinine in mouse primary preadipocytes
(Figure 1D). We further investigated the effects of quinine on adipocyte function by characterization of
glucose uptake. As shown in Figure 1E, basal glucose uptake was unaffected but insulin-stimulated
glucose uptake was significantly increased by different concentration of quinine, and the highest
concentration (50 µM quinine) we used had the best 2-DOG glucose uptake, which suggests quinine
also enhanced adipocyte function in a dose dependent manner (Figure 1E). All these data demonstrate
that quinine enhances adipogenesis both at the morphological and genetic levels, and in a dose
dependent manner.
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Figure 1. Quinine stimulated adipogenesis of mouse primary preadipocytes in a dose dependent 
manner. The effect of quinine on differentiation of mouse primary preadipocytes was assessed using 
Oil Red O stain, qRT-PCR, Western blot and glucose uptake assay, all these measurements were 
undertaken on Day 14 of differentiation with induction of MDI in the presence of quinine with 
indicated concentrations. (A) Oil Red O scan and micrographs (100×) showed lipid accumulation 
(pictures shown here represent three independent experiments); (B) Quantification of Oil Red O 
stain from three independent experiments. Data are expressed as fold change compared with 0 µM 
quinine (mean ± SEM; one way ANOVA, *** p < 0.001); (C) mRNA expression of adipogenic markers 
(PPARγ, C/EBPα and FABP4) were measured with qRT-PCR. Results are expressed as fold change 
compared with 0 µM quinine (mean ± SEM; n = 6; one way ANOVA, * p < 0.05; ** p < 0.01; *** p < 0.001); 
(D) The corresponding protein levels of PPARγ, C/EBPα and FABP4 were detected with Western 
blot. Total ERK (T-ERK) as loading control; and (E) Basal and insulin-stimulated 2-deoxyglucose 
uptake was measured as outlined in Materials and Methods. Ins represents Insulin. Results are 
expressed as fold change compared with cells treated with 0 µM quinine (mean ± SEM; n = 6; two 
way ANOVA; * p < 0.05, ** p < 0.01, *** p < 0.001 indicated 4 nM insulin compared with 0 nM insulin 
under each quinine concentration; # p < 0.05, indicated fold change compared with cells treated with 
0 µM quinine under each insulin concentration). 
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Red O stain was used as indication of lipid accumulation, as shown in Figure 2A,B, stronger 
adipogenic inducer obviously enhanced the lipid accumulation of mouse primary preadipocytes, 
and with the addition of quinine, more remarkable increase of lipid accumulation was found under 
all induction conditions. Moreover, consistent with the morphology change, mRNA expression of 
adipogenic markers PPARγ, C/EBPα and FABP4 were elevated with addition of quinine in all 
induction media (Figure 2C). In addition, quinine is also referred to as a bitter compound [8–11], 
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(6-propyl-2-thiouracil), salicin, hesperidin and sodium benzoate were added to culture medium 

Figure 1. Quinine stimulated adipogenesis of mouse primary preadipocytes in a dose dependent
manner. The effect of quinine on differentiation of mouse primary preadipocytes was assessed using
Oil Red O stain, qRT-PCR, Western blot and glucose uptake assay, all these measurements were
undertaken on Day 14 of differentiation with induction of MDI in the presence of quinine with
indicated concentrations. (A) Oil Red O scan and micrographs (100ˆ) showed lipid accumulation
(pictures shown here represent three independent experiments); (B) Quantification of Oil Red O stain
from three independent experiments. Data are expressed as fold change compared with 0 µM quinine
(mean ˘ SEM; one way ANOVA, *** p < 0.001); (C) mRNA expression of adipogenic markers (PPARγ,
C/EBPα and FABP4) were measured with qRT-PCR. Results are expressed as fold change compared
with 0 µM quinine (mean ˘ SEM; n = 6; one way ANOVA, * p < 0.05; ** p < 0.01; *** p < 0.001); (D) The
corresponding protein levels of PPARγ, C/EBPα and FABP4 were detected with Western blot. Total
ERK (T-ERK) as loading control; and (E) Basal and insulin-stimulated 2-deoxyglucose uptake was
measured as outlined in Materials and Methods. Ins represents Insulin. Results are expressed as
fold change compared with cells treated with 0 µM quinine (mean ˘ SEM; n = 6; two way ANOVA;
* p < 0.05, ** p < 0.01, *** p < 0.001 indicated 4 nM insulin compared with 0 nM insulin under each
quinine concentration; # p < 0.05, indicated fold change compared with cells treated with 0 µM quinine
under each insulin concentration).

2.2. The Pro-Adipogenic Effects of Quinine Are Specific

To test whether the pro-adipogenic effects of quinine are specific, we examined the differentiation
status of mouse primary preadipocytes under diverse inductions including fetal bovine serum (FBS)
alone, FBS + Insulin, FBS + DI and FBS + MDI added with 20 µM quinine. Oil Red O stain was
used as indication of lipid accumulation, as shown in Figure 2A,B, stronger adipogenic inducer
obviously enhanced the lipid accumulation of mouse primary preadipocytes, and with the addition of
quinine, more remarkable increase of lipid accumulation was found under all induction conditions.
Moreover, consistent with the morphology change, mRNA expression of adipogenic markers PPARγ,
C/EBPα and FABP4 were elevated with addition of quinine in all induction media (Figure 2C). In
addition, quinine is also referred to as a bitter compound [8–11], thus we further tested whether the
pro-adipogenic effects of quinine are specific in comparison with other bitter compounds. To test this,
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several bitter compounds including caffeine, sucrose, PROF (6-propyl-2-thiouracil), salicin, hesperidin
and sodium benzoate were added to culture medium with different concentrations during mouse
3T3-L1 preadipocyte differentiation. As shown in Figure 3A,B, no obvious changes were observed in
cells with supplementation of caffeine, sucrose, PROF, salicin, hesperidin and sodium benzoate by Oil
Red O stain under tested concentrations, even when we use diverse concentrations of each compound.
Meanwhile, quinine supplementation induced adipogenesis of 3T3-L1 (Figure 3C,D), which further
confirmed quinine mediated adipogenesis in mouse primary preadipocytes. These results indicate
that the pro-adipogenesis effects are quinine specific.
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Figure 2. Quinine induced adipogenesis was independent of induction conditions. The effects of
quinine on differentiation of mouse primary preadipocytes were assessed using Oil Red O stain and
qRT-PCR on Day 14 of differentiation with different induction conditions (FBS alone, FBS + Insulin,
FBS + DI and FBS + MDI) in the presence of 20 µM quinine. FBS alone was used as control. Ins
represents Insulin. (A) Oil Red O stain showed lipid accumulation (pictures shown here represent
three independent experiments). The plates were scanned after Oil Red O stain; (B) Quantification
of Oil Red O stain from three independent experiments (mean ˘ SEM; one way ANOVA, * p < 0.05,
*** p < 0.001); and (C) Total RNA was isolated and used for detection of PPARγ, C/EBPα and FABP4
mRNA expression levels with qRT-PCR (mean ˘ SEM; n = 6; two way ANOVA; ** p < 0.01, *** p < 0.001,
indicated fold change compared with cells without quinine treatment under each induction condition).
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scanned after Oil Red O stain; (B) Quantification of Oil Red O stain from three independent 
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2.3. Quinine Has No Effect on Lipolysis 

Lipid accumulation is a chronic imbalance between triglyceride synthesis and lipolysis. There is 
also the possibility that the pro-adipogenic activity of quinine is due to decrease of adipocyte 
lipolysis. To explore this, we next measured the effects of quinine on lipolysis in fully differentiated 
mouse primary adipocytes. As shown in Figure 4, secretion of NEFA (non-esterifed fatty acid) in the 

Figure 3. The pro-adipogenic effect of quinine was specific among bitter compounds. (A) Mouse 3T3-L1
preadipocytes were induced for differentiation with supplementation of different concentrations (0,
10 and 100 µM) of six different bitter agonists, caffeine, sucrose octaacetate, PROP, salicin, hesperidin
and sodium benzoate. Oil Red O stain was performed to check the lipid accumulation at Day 8 of
differentiation with addition of different bitter compounds. The plates were scanned after Oil Red O
stain; (B) Quantification of Oil Red O stain from three independent experiments. Data are expressed as
fold change compared with 0 µM of each bitter compound (mean ˘ SEM; one way ANOVA); (C) Oil
Red O scan showed lipid accumulation (pictures shown here represent three independent experiments);
and (D) Quantification of Oil Red O stain from three independent experiments. Data are expressed as
fold change compared with 0 µM quinine (mean ˘ SEM; one way ANOVA, * p < 0.05, *** p < 0.001).

2.3. Quinine Has No Effect on Lipolysis

Lipid accumulation is a chronic imbalance between triglyceride synthesis and lipolysis. There is
also the possibility that the pro-adipogenic activity of quinine is due to decrease of adipocyte lipolysis.
To explore this, we next measured the effects of quinine on lipolysis in fully differentiated mouse
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primary adipocytes. As shown in Figure 4, secretion of NEFA (non-esterifed fatty acid) in the media had
no obvious changes after quinine supplementation in basal and stimulated conditions (Figure 4A,B).
Consistently, glycerol content in the media showed a similar trend after quinine supplementation
(Figure 4C,D). Moreover, as a lipolysis marker, phosphorylation of hormone-sensitive lipase (HSL)
showed no obvious change with different concentrations of quinine treatment both in basal and
stimulated conditions (Figure 4E,F). Together, these results suggest that quinine-mediated adipogenesis
is independent of lipolysis.
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Figure 4. Quinine has no effect on Lipolysis. Mouse primary preadipocytes were induced for
differentiation with MDI for 14 days. Mature adipocytes were serum starved for 2 h with HBSS,
and then treated with the indicated concentration of quinine or 10 µM forskolin for 2 h (A,C); or treated
with the indicated concentration of quinine in the presence of 10 forskolin for 2 h (B,D); cultured media
were collected for measurement of NEFA or glycerol (A–D); and adipocytes were collected and lysed for
Western blot assessment (E,F). (A) NEFA content from media was measured after quinine or forskolin
treatment; (B) NEFA concentration was detected after adding the indicated concentration of quinine
in the presence of forskolin; (C) glycerol content of the culture medium was assayed after quinine or
forskolin treatment; and (D) glycerol content in the media was detected after adding the indicated
concentration of quinine in the presence of forskolin. Results are expressed as fold change compared
with 0 µM quinine (mean ˘ SEM; n = 6; one way ANOVA; ** p < 0.01) (A–D). (E) Phosphorylated HSL
(p-HSL) was detected with Western blot after quinine or forskolin treatment. Total HSL (T-HSL) was
used as control; and (F) p-HSL was detected by Western blot after adding the indicated concentration
of quinine in the presence of forskolin.
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2.4. Quinine Activates the ERK/S6 Signaling Pathway

As a bitter compound [8–11], one of the possibilities for quinine-mediated adipogenesis is to
function through a bitter taste receptor. Previous reports showed that the bitter taste receptor T2R106 is
expressed in mouse adipose tissue and its expression was significantly changed in high fat diet treated
mice, suggesting that T2R106 might have a regulatory function in adipose tissue [20]. To determine
whether bitter taste receptor T2R106 is the mediator for the pro-adipogenic effect of quinine, we
measured quinine-induced adipogenesis in the absence of T2R106 and observed knockdown of T2R106
impaired quinine mediated adipogenesis. As shown in Figure 5A, expression of T2R106 increased
during preadipocyte differentiation, which hints at its potential role in adipogenesis. To confirm this,
knockdown of T2R106 was performed. T2R106 shRNA was effectively transduced into mouse primary
preadipocytes (as indicated by GFP, Figure 5C), and T2R106 expression was significantly decreased
with shRNA knockdown (Figure 5B). T2R106 knockdown and control cells were then induced for
adipogenesis in the presence of quinine. The result showed that the accumulation of lipid droplets
and expression of adipogenic genes in T2R106 knockdown cells were obviously decreased compared
with control cells (Figure 6A,B). In addition, quinine was shown to increase the phosphorylation
levels of ERK and S6 in control cells (Figure 7A,B). However, knockdown of T2R106 impaired the
activation of ERK/S6 signaling mediated by quinine (Figure 7C,D). These results suggest that the
pro-adipogenic effect of quinine functions through ERK/S6 pathways, and T2R106 at least partly
influences quinine-mediated adipogenesis.
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Figure 5. Expression and knockdown of T2R106 in mouse primary preadipocytes. (A) Expression of
T2R106 during adipogenesis of mouse preadipocytes. Cells were induced for differentiation with MDI
for 14 days, total RNA was isolated and used for detection of T2R106 mRNA expression levels with
qRT-PCR (mean ˘ SEM; n = 6; two way ANOVA; * p < 0.05, ** p < 0.01, *** p < 0.001, indicated fold
change compared with Day 0); (B) Knockdown efficiency of T2R106 in mouse primary preadipocytes
was assessed with qRT-PCR after 48 h infection (mean ˘ SEM; n = 6; two way ANOVA; * p < 0.05,
** p < 0.01, *** p < 0.001, indicated fold change compared with control). Sh1, sh2 and sh3 represent
T2R106 shRNA-1, shRNA-2 and shRNA-3 respectively. ShScramble represents scramble shRNA.
T2R106 shRNA-3 was used for further experiments; and (C) Infection efficiency of T2R106 shRNA was
indicated with GFP after 48 h infection.
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Figure 6. T2R106 knockdown inhibited quinine mediated adipogenesis. (A) The morphology changes
of control and T2R106 knockdown cells were observed by microscopy on Day 14 of differentiation
(magnification 100ˆ); and (B) Expression levels of PPARγ, C/EBPα and FABP4 in shScramble and
shT2R106 cells were detected by qRT-PCR. Cells were induced for differentiation with MDI for 14 days,
total RNA was isolated and used for detection of PPARγ, C/EBPα and FABP4 mRNA expression levels
with qRT-PCR (mean ˘ SEM; n = 6; two way ANOVA; * p < 0.05, ** p < 0.01, *** p < 0.001, indicated fold
change compared with shScramble at the indicated time).
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(B) Quantification of p-ERK and p-S6 protein expression; (C) Expression of p-ERK and p-S6 proteins in
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and T2R106 knockdown mouse preadipocytes were serum starved for 2 h with HBSS, cells were then
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ERK, p-ERK, S6 and p-S6 by Western blot (* p < 0.05, ** p < 0.01, *** p < 0.001, indicated fold change
compared with 0 min).

3. Discussion

Conflicting data exist in the literature on the regulation of quinine mediated body weight gain
and adipogenesis. We report here quinine robustly induced adipogenesis of both mouse primary
preadipocytes (Figure 1) and 3T3-L1 preadipocytes (Figure 3C), with increased lipid accumulation,
adipogenic marker expression and glucose uptake (Figure 1). Our data are consistent with prior
reports [19,20], in which long-term use of quinine resulted in excessive body weight gain and type
2 diabetes in humans [19], and addition of quinine has been shown to robustly stimulate 3T3-L1
adipogenesis [20]. However, very different findings were reported in rats and mice. Although quinine
was reported to control body weight in both mice and rats [13,14,16,18], quinine decreased food intake
in rats without affecting food intake in C57BL6/J mice. The basis for the difference in the in vivo
research could be related to the duration and concentration of quinine supplementation, or the specific
dietary content used for feeding rats and mice.

Although quinine was reported to affect food intake and body weight in in vivo animal
models [13,15–18], seldom these groups tested its effects on adipocyte differentiation and metabolism
in an in vitro cell model, which would add support to their observations in in vivo animal models. Until
recently, quinine was reported to induce weight loss of HFD-induced obese mice, resulting in a decrease
in fat pad weight and adipocyte size without affecting the weight of other organs and energy intake [21].
Meanwhile, 100 µM quinine supplementation inhibited 3T3-F442A preadipocyte differentiation by
decreasing lipid accumulation and expression of adipogenic markers [21]. In contrast, our study shows
for the first time that quinine robustly stimulated adipogenesis in both mouse primary preadipocytes
(Figures 1 and 2) and 3T3-L1 preadipocytes (Figure 3C,D). The reason for this difference could be that
a different cell type and quinine concentration was used in a different context. What is interesting,
however, is that 50 µM quinine presents an effective concentration for inducing adipogenesis in mouse
primary preadipocytes based on our results, and over 100 µM quinine treatment caused an unhealthy
morphology change in 3T3-L1 cells (Figure 3C,D), while 100 µM quinine shows an inhibitory effect on
3T3-F442A preadipocyte differentiation [21]. The disparities between our work and other groups can
hopefully be resolved with further research.

Quinine, caffeine, 6-propyl-2-thiouracil (PROP), sucrose, salicin, hesperidin and sodium benzoate
are substances well known for their bitter taste and function as bitter agonists [22]. These
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bitter compounds have been reported to be involved in the regulation of obesity and adiposity.
Caffeine supplementation attenuates HFD-induced obesity in rats by decreasing levels of cholesterol,
triglycerides, free fatty acid and the size of adipose tissue [23]. In addition, taste blindness to
bitter tasting of PROP has been identified as a genetic marker for food choice and adiposity in
human [24]. Furthermore, high sucrose diet results in hepatic steatosis, obesity and diabetes in mice,
which are commonly associated with increased body weight gain and insulin tolerance [25,26]. A
combination of glucosyl hesperidin (G-hesperidin) and caffeine resulted in decreased body weight,
adipose tissue weight and liver lipogenesis in HFD-induced mice, in which lipogenesis markers like
sterol regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS) were robustly
decreased compared with that in control mice, but none of these were observed in mice fed each
alone [27]. However, within the seven bitter compounds tested in this study, only supplementation
of quinine showed pro-adipogenic effect in mouse 3T3-L1 preadipocytes, while the other bitter
compounds had no effect on mouse adipogenesis (Figure 3). One possibility for this difference
could be the concentrations of bitter agonists tested were not at an effective concentration. However,
few effects of bitter agonists were tested and confirmed in the in vitro cell model, which makes it
worthwhile but also challenging to test in further experiments.

In mammals, it is well accepted that the sense of taste includes bitter, sweet, umami, sour and
salty [28]. Among them, bitter taste plays an essential role in host defense as a warning signal [29],
which protects the animal against the ingestion of toxic components by direct taste aversion and
nausea [28,30]. Bitter taste is sensed by bitter taste receptors (T2Rs), 25 T2Rs mediate bitter taste
sensation in human and more than 30 T2Rs mediate bitter taste sensation in mouse [31–34]. Although
the number of T2Rs varies among different species, most human T2Rs have similar homologs in
mouse [33,34]. Individual T2Rs respond to diverse bitter tasting compounds, one bitter agonist may
stimulate more than one T2R [35–37]. In our study, T2R106 expression increased during adipogenesis
(Figure 5) and knockdown of T2R106 impaired quinine-mediated adipogenic effects instead of totally
blocking quinine-mediated pro-adipogenesis (Figure 6), this suggest that quinine may activate more
than one of the T2Rs.

The T2Rs not only exist in the gustatory system, but are also expressed in other tissues such as the
respiratory system, gut system and adipose tissue [20,38]. In the gustatory and organ systems, bitter
taste receptors mainly function to prevent ingestion of toxic substances [39–41]. In the respiratory
tract, activation of T2Rs results in bronchodilation in response to inhalation of bitterants [39,41]. In
the gut system, SREBP-2 stimulated T2Rs expression in cultured mouse enteroendocrine cells, and
mT2R138 was shown to be a target of SREBP-2. During low cholesterol feeding, SREBP-2 enhanced
mT2R138 expression to block dietary toxins, which further result in an increase in CCK secretion to
slow gastric emptying and improve fat absorption in mice [40,42]. Expression of T2R106 in adipose
tissue was significantly changed with altered fat tissue weight in HFD-induced mice, suggesting it
could be involved in regulation of adipose tissue development [20]. Consistently, in this report, quinine
supplementation activated ERK/S6 signaling which is known to be involved in adipogenesis [43,44],
T2R106 knockdown impaired quinine mediated adipogenesis by inhibition of ERK/S6 signaling
activation (Figure 7). These results suggest that the adipogenic effects of quinine are at least partly
mediated by the modulation of ERK/S6 signaling and T2R106. ERK/S6 is one of the main signaling
pathways involved in regulation of adipogenesis [43,44]. Whether ERK/S6 signaling is regulated
by quinine or T2R106 through direct or indirect ways is still not clear. Moreover, further research is
necessary to better characterize the mechanisms by which quinine mediates its effect on adipogenesis
in the absence and presence of T2Rs.

Until now, expression of four T2Rs in human (h) and mouse (m) has been reported in the
adipogenic system including hT2R46, mT2R106, mT2R108 and mT2R135, suggesting their effect on
adipocyte development and metabolism in combination with bitter agonists [20,21,45]. Although
further research is required to clear the mechanisms by which quinine functions on adipogenesis, the
mild pro-adipogenic differentiation of quinine without induction components hints not only at specific
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adipogenic pathways but also that taste sense pathways are potential targets for further molecular
mechanism research.

4. Materials and Methods

4.1. Reagents

DMEM (Dulbecco’s Modified Eagle Medium), FBS (fetal bovine serum), Collagenase Type I
were purchased from Gibco (Life Technologies, Carlsbad, CA, USA). Restriction enzyme BglII and
HindIII were bought from New England Biolabs (Ipswich, MA, USA). Lipofectamine 2000 was
obtained from Invitrogen (Carlsbad, CA, USA). Antibodies for C/EBPα, PPARγ and FABP4 were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Antibodies for HSL, p-HSL, ERK,
p-ERK, S6 and p-S6 antibodies were purchased from Cell Signaling Technology, Inc. (Danvers, MA,
USA). Methylisobutylxanthine, dexamethasone, Insulin, Oil Red O, Quinine hydrochloride dehydrate,
Caffeine, Salicin, 6-propyl-2-thiouracil (PROP), Sucrose octaacetate, Hesperidin and Sodium Benzoate
were bought from Sigma-Aldrich Co. (St. Louis, MO, USA). All tested bitter compounds were selected
based on common knowledge and previous publications mentioned above. The bitter agonists were
either dissolved in DPBS or DMSO, and final DMSO concentration did not exceed 0.1% (v/v) to avoid
toxic effect on cells.

4.2. Cell Culture

Mouse primary preadipocytes were isolated from inguinal fat depot of 4-week-old C57BL/6 mice
and grown in 10% calf serum/DMEM media. For differentiation, two days after confluency (Day 0),
cells were stimulated with MDI/DMEM induction media (including 10% fetal bovine serum, 0.5 mM
methylisobutylxanthine, 10 µg/mL insulin and 1 µM dexamethasone, MDI). After two days (Day 2),
the media was changed to Insulin/DMEM media (containing 10% FBS and 10 µg/mL insulin, DI).
Two days later (Day 4), cells were fed with 10% FBS/DMEM media until fully differentiation. Mouse
3T3-L1 cells were maintained and differentiated in the same way as primary cells.

4.3. Plasmids

T2R106 was stably knocked down by expression of an shRNA from the pSuperior.retro.neo
vector (OligoEngine, Seattle, WA, USA). The shRNA was designed according to the manufacturer’s
instructions to target the following sequence of T2R106: 5’-GGCAGGTTTACCTCTATAAGA-31.
Sequences for shRNAs used to generate the two other T2R106 knockdown cell lines (data not shown)
are available upon request.

4.4. Oil Red O Staining and Quantification

Lipid accumulation of mouse primary preadipocytes was evaluated by Oil Red O stain. Briefly,
after fully differentiation, wash cells with DPBS for 3 times, and then fixed with 10% formaldehyde for
1 h at room temperature. Rinse cells with 60% isopropanol for 10 min and incubate cells with Oil Red
O working solution for 20 min. Cells were washed in H2O and photographed. Oil Red O was eluted
by adding 100 µL of 100% isopropanol per well (in 24 well plates), and incubated for 10 min. 300 µL of
60% isopropanol was added to each well. 250 µL of each sample was transferred into a 96 well plate
and read at 492 nm.

4.5. qRT-PCR

Total RNA was extracted from cells using TRIzol (Invitrogen) as described. Contaminating
genomic DNA was removed from mRNA by using DNA-freeTM Kit (Life Technologies). Total RNA was
reverse transcribed with RNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA)
according to the manufacturer’s protocols. Gene expression was measured by qPCR using MyiQTM
real-time PCR detection system (Bio-Rad Laboratories, Hercules, CA, USA). Primers for T2R106:
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Forward: 51-CACCAGCCTCAACCTCTTCT-31, Reverse: 51-GTGGGAAAGCAATTGACCAT-31.
Primers for PPARγ, C/EBPα, FABP4 and TBP were as described previously [46]. TBP was used
as internal control.

4.6. Western Blot

Cell extracts were lysed with lysis buffer (0.5% Triton X-100, 2 mM EDTA, 150 mM NaCl, 1 mM
PMSF, 50 mM Tris-HCl at pH 7.5) and quantified with BCA assay (Thermo Scientific, Waltham, MA,
USA). After adding 4XSDS loading buffer and heating, protein samples were separated by Bis-Tris
polyacrylamide gels (Life Technologies), transferred onto PVDF membranes (Millipore Corporation,
Bedford, MA, USA) and immunoblotted with antibodies specific for PPARγ, C/EBPα, FABP4, ERK,
p-ERK, HSL, p-HSL, S6 and p-S6.

4.7. Lipolysis

Lipolysis assays were performed in fully differentiated mouse primary adipocytes at Day 14 after
induction of adipogenesis. Secretion of glycerol and NEFA (non-esterifed fatty acid) from cultured
adipocytes into HBSS was determined with assay kits from Sigma-Aldrich Co. (FG0100), and Wako
Diagnostics (Richmond, VA, USA; NEFA-HR2). Cells were treated with the indicated concentration of
quinine or 10 µM forskolin for 2 h.

4.8. Glucose Uptake Assay

Fully differentiated mouse primary adipocytes were used for glucose uptake assay. Briefly,
adipocytes were washed twice in PBS, and serum-starved in HBSS with 0.5% BSA for 4 h. After
washing with Krebs–Ringer HEPES (KRH) buffer, the cells were incubated in KRH containing 4 nM
insulin for 20 min to activate glucose transporter. After the insulin stimulation, 0.1 µCi/mL of 2-[14C]
DOG (Perkin Elmer, Waltham, MA, USA) was added to incubate for another 10 min. Then, the cells
were washed three times in ice-cold PBS, solubilized in 0.1% SDS. 2-DOG uptake was detected in
liquid scintillation fluid using scintillation counter. For non-specific glucose uptake, cells were treated
with 50 µM cytochalasin B to block translocation and get a background reading.

4.9. Statistical Analyses

All data are presented as mean ˘ SEM and were determined by Student’s t-test or ANOVA. The
differences were indicated as follows: * p < 0.05, ** p < 0.01 and *** p < 0.001.

5. Conclusions

Taken together, our study demonstrates that quinine stimulates adipogenesis of mouse primary
preadipocytes through the ERK/S6 pathway without affecting lipolysis. Among the tested bitter
agonists, quinine is the only bitterant that showed a pro-adipogenic effect on mouse preadipocyte
differentiation, suggesting its special role in adipogenesis. Knockdown of T2R106 impaired
quinine-induced adipogenesis instead of totally blocking quinine’s adipogenic activity, suggesting a
partial contribution of T2R106 to quinine dependent adipogenesis.
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