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Abstract: In our efforts to develop new approaches to treat and prevent human vascular diseases,
we report herein our results on the proliferation and migration of human smooth muscles cells
(SMCs) and endothelial cells (ECs) using epigallocatechin-3-gallate conjugated gold nanoparticles
(EGCg-AuNPs) as possible alternatives to drug coated stents. Detailed in vitro stability studies of
EGCg-AuNPs in various biological fluids, affinity and selectivity towards SMCs and ECs have been
investigated. The EGCg-AuNPs showed selective inhibitory efficacy toward the migration of SMCs.
However, the endothelial cells remained unaffected under similar experimental conditions. The
cellular internalization studies have indicated that EGCg-AuNPs internalize into the SMCs and
ECs within short periods of time through laminin receptor mediated endocytosis mode. Favorable
toxicity profiles and selective affinity toward SMCs and ECs suggest that EGCg-AuNPs may provide
attractive alternatives to drug coated stents and therefore offer new therapeutic approaches in treating
cardiovascular diseases.
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1. Introduction

Nanotechnology will play a pivotal role in treating and preventing human diseases by improving
drug delivery to target cells/organs and tissues [1–7]. Nanomaterials serve as effective carriers of
diagnostic and therapeutic drug molecules to achieve optimum drug delivery for use in the treatment of
cancer, cardiovascular diseases and various other human diseases and disorders [8–13]. Functionalized
nanoparticles provide effective payload capacity for drug molecules, while displaying unique magnetic,
electrical, and physical properties [14–17]. For example, surface chemistry of gold nanoparticles allows
conjugation with receptor-specific antibodies, proteins, peptides and receptor-avid biomolecules and
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drugs to achieve target specificity and selectivity [18–21]. Among various types of nanoparticles,
functionalized gold nanoparticles have assumed a major dimension in nanomedicine because of
their biocompatibility and favorable surface chemistry [22–26]. A number of recent examples have
demonstrated that functionalized gold nanoparticles have been used to achieve superior delivery
pathways with consequent lowering/elimination of nonspecific uptake of drug molecules [27–34].

Atherosclerotic coronary artery disease (CAD) is the leading cause of death in the United States
and globally [35,36]. Catheter-based delivery of balloon-expandable metal stents into coronary arteries
narrowed by atherosclerotic plaque has become a mainstay of the treatment of patients with CAD.
Stents provide a rigid scaffold that helps prevent re-narrowing of blood vessels (restenosis)-a problem
that plagued balloon angioplasty in the pre-stent era [37]. However, despite remarkable technological
advances, significant limitations remain in stent-based treatment of CAD [38–41]. For example, stents
often cannot be deployed in small or tortuous arteries or at vessel branch points. In addition, drugs that
are coated on stents to inhibit cell proliferation in the vascular wall (the process that drives restenosis)
also inhibit the regrowth of endothelial cells, which line the inner surface of the vessel. Delayed
endothelial healing renders the artery vulnerable to blood clot formation (thrombosis), which can
abruptly obstruct blood flow and cause myocardial infarction [42]. Recent clinical trials in patients
treated with drug-eluting stents (DES) confirm the failure of this cardiovascular treatment modality in
a significant percentage of patients [43]. DES have been linked to severe risks of blood clots which
could develop months or even years after the stent is implanted [44]. As there are over one million
DES being implanted annually, experts have estimated that over 2000 people may die each year due
to the side effects of DES [45]. Several clinical investigations have concluded that approximately one
out of every 200 patients who receive a DES will experience a blood clot between six months and four
years after the stent is implanted. Prior studies of late stent thrombosis show that these blood clots lead
to a major heart attack or death approximately 70% of the time, with a fatality rate of 30% to 45% [43].

The development of in-stent restenosis (ISR) after DES implantation is a significant clinical
problem. Therefore, the development of safe and effective alternatives to DES to deliver wound healing,
anti-inflammatory and plaque stabilizing drugs to blood vessels are needed. We hypothesize that gold
nanoparticles capable of selectively delivering drugs within narrow blood vessels will bring about
a paradigm shift as alternatives to drug-coated stents. Toward this objective, we have discovered
a number of functionalized nanoparticles including epigallocatechin-3-gallate (EGCg)-coated-gold
nanoparticles (EGCg-AuNPs) in our laboratory [22,24,26,29,32,33,46,47]. The polyphenolic EGCg
from tea extract has been shown to exert anti-thrombotic, anti-inflammatory and anti-oxidant
activities [33,48–50]. EGCg conjugated gold nanoparticles are readily internalized by laminin
receptor-positive cells, thus overcoming the hydrophobic barrier of cell membranes [33]. Laminin
receptors are expressed on endothelial and smooth muscle cells that are found in abundance within
the arterial walls [51]. Oxidative stress is implicated in the pathogenesis of neointimal hyperplasia
and restenosis, and therefore effective delivery of powerful antioxidants, such as EGCg, could play
significant roles to repair vascular injury aiding the prevention and treatment of neointimal hyperplasia
and restenosis.

Therefore, we hypothesized that EGCg-AuNPs will show laminin receptor specificity and
internalize through endocytosis into smooth muscle and endothelial cells, and thus will serve as
an effective delivery vehicle of the therapeutic agent (EGCg), within vascular cells. We have validated
our hypothesis through extensive experiments, which unequivocally provide experimental evidence
for the internalization of EGCg-AuNPs within smooth muscle and endothelial cells. We herein report:
(i) complete in vitro analysis for cellular internalization of EGCg-AuNPs by dark field microscopy
and transmission electron microscopy (TEM); (ii) in vitro cytotoxic efficacy of free EGCg and the
EGCg-AuNPs against human umbilical vein endothelial cells (HUVECs), human aortic endothelial
cells (HAECs), and human coronary artery smooth muscles cells (HCASMCs); and (iii) effect of free
EGCg and EGCg-AuNPs on endothelial and smooth muscles cells migration by scratch assay. The
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overall implications of EGCg-AuNPs as an effective strategy to prevent adverse vascular remodeling
are presented.

2. Results

2.1. Synthesis and Characterization of Epigallocatechin-3-Gallate Conjugated Gold Nanoparticles (EGCg-AuNPs)

Spectrophotometric analysis of EGCg-AuNPs revealed the characteristic surface plasmon
resonance (SPR) band was observed at 535 nm, which confirmed the formation of gold nanoparticles
(Figure 1). TEM analysis showed that EGCg-AuNPs are spherical, mono disperse, and homogeneous
with mean diameter 40 ˘ 5 nm. The hydrodynamic size and ζ potential charges of EGCg-AuNPs
are 65 ˘ 5 nm and ´35.0 ˘ 2 mV respectively (Table 1). The hydrodynamic size of AuNPs is greater
than the core size, thus inferring the coating of EGCg onto gold nanoparticles. The negative ζ potential
value (´35.0 ˘ 2 mV) of AuNPs provides the necessary repulsive forces for the particles to remain stable
in solution. The concentration of gold metal in gold nanoparticles, as determined by atomic absorption
spectrometry (AAS); was found to be 0.52 mg/mg (52%) of dried AuNPs. These results corroborated
with the data obtained by AAS analysis and therefore confirmed that EGCg-AuNPs have ~48%
coating of EGCg, These findings fully validate our previous findings published by Katti et al. [33,52].
EGCg-AuNPs are stable in various biological fluids at physiological pH under in vitro conditions. It
is noticeable that these AuNPs are stable in aqueous media for over one year, thus corroborating the
high ζ potential which keeps these nanoparticles stable against agglomeration. It is very significant
that EGCg serves a dual role of transforming the gold salt to the corresponding nanoparticles (through
chemical reduction) and also as an effective encapsulant around the nanoparticles providing optimum
in vitro and in vivo stability [33].

Int. J. Mol. Sci. 2016, 17, 316 3 of 16 

 

2. Results 

2.1. Synthesis and Characterization of Epigallocatechin-3-Gallate Conjugated Gold  
Nanoparticles (EGCg-AuNPs) 

Spectrophotometric analysis of EGCg-AuNPs revealed the characteristic surface plasmon 
resonance (SPR) band was observed at 535 nm, which confirmed the formation of gold nanoparticles 
(Figure 1). TEM analysis showed that EGCg-AuNPs are spherical, mono disperse, and homogeneous 
with mean diameter 40 ± 5 nm. The hydrodynamic size and ζ potential charges of EGCg-AuNPs are 
65 ± 5 nm and −35.0 ± 2 mV respectively (Table 1). The hydrodynamic size of AuNPs is greater than 
the core size, thus inferring the coating of EGCg onto gold nanoparticles. The negative ζ potential 
value (−35.0 ± 2 mV) of AuNPs provides the necessary repulsive forces for the particles to remain 
stable in solution. The concentration of gold metal in gold nanoparticles, as determined by atomic 
absorption spectrometry (AAS); was found to be 0.52 mg/mg (52%) of dried AuNPs. These results 
corroborated with the data obtained by AAS analysis and therefore confirmed that EGCg-AuNPs 
have ~48% coating of EGCg, These findings fully validate our previous findings published by  
Katti et al. [33,52]. EGCg-AuNPs are stable in various biological fluids at physiological pH under  
 in vitro conditions. It is noticeable that these AuNPs are stable in aqueous media for over one year, 
thus corroborating the high ζ potential which keeps these nanoparticles stable against 
agglomeration. It is very significant that EGCg serves a dual role of transforming the gold salt to the 
corresponding nanoparticles (through chemical reduction) and also as an effective encapsulant 
around the nanoparticles providing optimum in vitro and in vivo stability [33]. 

A

B C

535

 
Figure 1. (A) UV–Vis absorption spectra of epigallocatechin-3-gallate conjugated gold nanoparticles 
(EGCg-AuNPs); (B) Size distribution histogram of gold nanoparticle solution; (C) Metallic core size 
of AuNPs by transmission electron microscopy. 
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Table 1. Physicochemical parameters of epigallocatechin-3-gallate (EGCg)-coated-gold
nanoparticles (EGCg-AuNPs).

UV Visible Spectrophotometry DLS ζ Potential TEM AAS

535 nm 65 ˘ 5 nm ´35.0 ˘ 2 mV 40 ˘ 5 nm 0.52 mg Au/mg of AuNPs

DLS: Dynamic light scattering, TEM: Transmission electron microscopy, AAS: atomic absorption spectroscopy.

2.2. Cellular Internalization Study

The cellular internalization of EGCg-AuNPs in HUVECs and HCASMCs cells was evaluated
using dark field optical microscopy and transmission electron microscopic techniques at various
concentrations and time points. Dark field microscopic images unequivocally delineate that
EGCg-AuNPs internalize effectively within HUVECs and HCASMCs within 2 h (Figure 2). TEM
images unambiguously indicated that these nanoparticles are internalized into vacuoles and lysosomes
of both the cell lines within 2 h (Figure 3). Our cellular internalization observations, in conjunction with
the high level of expression of laminin receptors by HUVECs and HCASMCs cells [33,53], suggested
that the high affinity and the endocytosis of EGCg-AuNPs is presumably mediated through laminin
receptor expression by these cells (Figures 2 and 3).
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Figure 2. Cellular internalization of EGCg gold nanoparticles; images were captured via Cyto Viva dark
field microscope. (A) human umbilical vein endothelial cells (HUVECs) untreated; (B) HUVECs treated
with EGCg-AuNPs 20 µg/mL; 2 h; (C) human coronary artery smooth muscles cells (HCASMCs)
untreated; (D) HCASMCs treated with EGCg-AuNPs 20 µg/mL; 2 h. HUVECs: Human umbilical vein
endothelial cells, HCASMCs: Human coronary artery smooth muscle cells. Images were captured at
40ˆ magnification.
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Figure 3. Cellular internalization of EGCg gold nanoparticles in HUVECs (A,B) and HCASMCs (C)
with concentration 20 µg/mL, 2 h; images were captured by transmission electron microscopy. HUVECs
(Human umbilical vein endothelial cells); HCASMCs (Human coronary artery smooth muscle cells).

2.3. Laminin Receptor Blocking Studies

To demonstrate the laminin receptor affinity of EGCg-AuNPs towards ECs and SMCs, we
performed extensive laminin receptor blocking studies using the laminin receptor specific antibody
(ABLR). ABLR binds to laminin receptors to inhibit ligand binding. We incubated ECs and SMCs
cells independently with ABLR for 60 min, followed by treatment with EGCg-AuNPs for 2 h. TEM
analysis was performed after receptor blocking and subsequent incubation with EGCg-AuNPs did not
reveal the presence of gold nanoparticles within these cells Figure 4B. In sharp contrast, significant
endocytosis of EGCg-AuNPs was observed in the cells where laminin receptors were not blocked
(Figure 4A). Likewise, laminin receptor blocking studies using the ABLR antibody on SMCs clearly
demonstrated that with pre blocking of the laminin receptors, there was minimal/no uptake of
EGCg-AuNPs (Figure 5B); whereas significant endocytosis of EGCg-AuNPs was observed in the cells
where laminin receptors were not blocked (Figure 5A).

To further establish the laminin receptor specificity of EGCg-AuNPs, we compared endocytosis
patterns with a nonspecific gold nanoparticulate construct. For example, starch functionalized gold
nanoparticles are nonspecific and show no affinity toward laminin receptors. The TEM images shown
in Figures 4C and 5C clearly demonstrate that starch-conjugated gold nanoparticles are not internalized
into ECs and SMCs, respectively. Therefore, these blocking studies provide compelling support for
the selectivity and specificity of EGCg-AuNPs toward laminin receptors, which are expressed on ECs
and SMCs.
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Figure 4. Cellular internalization of gold nanoparticles in HUVECs: (A) cells treated with GCg-AuNPs
(50 µg/mL), 2 h; (B) cells pretreated with laminin receptor blocking antibody (ABLR), then treated
with EGCg-AuNPs (50 µg/mL), 2 h; (C) cells treated with starch functionalized gold nanoparticles
(50 µg/mL), 2 h; images were captured by transmission electron microscopy. HUVECs (human
umbilical vein endothelial cells).
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Figure 5. Cellular internalization of gold nanoparticles in HCASMCs : (A) cells treated with
EGCg-AuNPs (50 µg/mL), 2 h; (B) cells pretreated with laminin receptor blocking antibody (ABLR),
then treated with EGCg-AuNPs (50 µg/mL), 2 h; (C) cells treated with starch functionalized gold
nanoparticles (50 µg/mL), 2 h; images were captured by transmission electron microscopy. HCASMCs
(human coronary artery smooth muscle cells).

2.4. In Vitro Cell Viability and Cytotoxicity Profile of EGCg and EGCg-Coated Gold Nanoparticles

We studied the effects of free EGCg and EGCg-AuNPs on the viability of HUVECs and HCASMCs.
Free EGCg inhibited the proliferation of endothelial cells by 70% ˘ 2.2% (Figure 4A). In contrast,
EGCg-AuNPs showed 36% ˘ 2.8% inhibition of endothelial cells proliferation at concentrations
of 40 µg/mL (Figure 6A). These results clearly reveal that the free EGCg showed significant toxic
effects on endothelial cells as compared to the EGCg-AuNPs. The inhibitory effect of EGCg and the
EGCg-AuNPs was further tested against the smooth muscles cell line. The results suggest that free
EGCg and EGCg-AuNPs both inhibited the proliferation of smooth muscles cells at concentration
of 40 µg/mL (Figure 6B). Our results indicate that EGCg and EGCg-AuNPs showed a statistically
significant inhibitory effect on smooth muscles cells proliferation (~50% inhibition).
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Figure 6. Effect of EGCg-AuNPs and free EGCg on endothelial and smooth muscles cells viability;
(means ˘ SE; n = 3), cells treated for 24 h. (A) HUVECs (Human umbilical vein endothelial cells):
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We further investigated the possible cytotoxic effects of the free EGCg and the corresponding
EGCg-conjugated gold nanoparticles on endothelial cells through LDH (lactate dehydrogenase) assay.
The cytotoxicity was measured in terms of the amount of LDH released from the damaged cells, which
is a sensitive marker for cellular toxicity. EGCg induced significant cytotoxic effect as compared to
EGCg-AuNPs at concentration of 40 µg/mL (Figure 7).
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2.5. Effect of EGCg and EGCg-AuNPs on Endothelial and Smooth Muscle Cells Migration

We investigated whether EGCg and EGCg-conjugated gold nanoparticles affect endothelial cell
migration. Cells were separately treated with free EGCg and EGCg-AuNPs at concentrations of 20 and
40 µg/mL. EGCg-AuNPs did not significantly inhibit the migration of HAECs, whereas free EGCg
significantly inhibited the migration of HAECs by 81% ˘ 3.4% at the same concentration (Figures 8
and 9). These data are statistically significant and comparable to the control group, where we observed
that the scratched area was fully populated with cells within 24 h. These results corroborate that
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EGCg-AuNPs did not affect the migration of endothelial cells whereas the free EGCg inhibited the
migration of endothelial cells at concentration of 40 µg/mL (Figure 9).
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We also studied the effects of EGCg-AuNPs and free EGCg on SMC migration at a concentration
of 40 µg/mL, free EGCg inhibited the migration of SMCs by 52% ˘ 1.7% whereas EGCg-AuNPs
inhibited the migration of SMCs by 35% ˘ 3.2% (Figures 10 and 11). The results obtained for EGCg
and EGCg-AuNPs were statistically significant and comparable to the effects observed with the control
group, where we observed that the denuded area was populated with cells within 24 h (Figure 10).
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3. Discussion

The nanotechnology revolution is making major impacts in biomedical sciences as numerous
examples have demonstrated applications of engineered nanoparticles as effective delivery vehicles
for drugs, and for theranostic agents [54,55]. While a plethora of tumor specific nanoparticles are
being used in early diagnostics and therapy of cancer [56], the utility of functionalized nanoparticles
as diagnostic or therapy agents in the treatment of cardiovascular diseases has remained relatively
unexplored [57]. As part of our ongoing research on the intervention of nanotechnology in solving
vexing medical problems, we are therefore, interested in exploring if biocompatible gold nanoparticles
can be used in the treatment of cardiovascular diseases. In this context, we are focusing on the utility
of gold nanoparticles functionalized with epigallocatechin gallate (EGCg), obtained from a naturally
occurring polyphenol from tea, as potential nano cardiotherapeutic agents [33]. EGCg-AuNPs were
produced, through a novel green nanotechnology process discovered by Katti et al., [33] by simple
mixing of gold salt with EGCg solution at room temperature in aqueous media. These nanoparticles
have been fully characterized with hydrodynamic sizes of 65 ˘ 5 nm which is the optimum size
for cell penetration for use in various biomedical applications [27]. The negative ζ potential value
(-35.0 ˘ 2 mV) for EGCg-AuNPs indicates that these nanoparticles are highly stable due to the
repulsive forces exerted by multiple groups of –OH functionalities from the polyphenols, which are
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conjugated to the AuNPs. The repulsive force from the –OH groups keeps the EGCg-AuNPs repelling
each other strongly and thus prevents agglomeration of these nanoparticles. Our extensive in vitro
investigations have demonstrated that these nanoparticles are stable in various biological media e.g.,
human serum albumin and in different aqueous dilutions that mimic cellular concentrations found in
biological profiles.

In order to understand the possible interaction between EGCg-conjugated gold nanoparticles
and endothelial/smooth muscles cells, we have performed cellular internalization studies using
dark field microscopy and TEM techniques. This study was performed to understand whether these
nanoparticles are involved in the phagocytosis and/or receptor mediated endocytosis pathways. Our
results revealed that EGCg-AuNPs internalize into both SMCs and ECs within 2 h. Furthermore,
the specificity of EGCg-AuNPs for laminin receptors expressed on ECs and SMCs was confirmed by
receptor blocking studies. The TEM analysis clearly showed reduction of EGCg-AuNPs uptake in ECs
and SMCs cells after blocking the laminin receptors. The results were comparable with the samples
treated with EGCg-AuNPs, without blocking LR, where the uptake of AuNPs was significantly higher.
We have further investigated the receptor specificity of EGCg-AuNPs by comparing the endocytosis
pattern with non-specific gold nanoparticles. The TEM images indicated that there was no uptake of
AuNPs in ECs and SMCs. These results together corroborate laminin receptor-mediated endocytosis
of EGCg-AuNPs because it is well established that both SMCs and ECs express this receptor [33,53].

In cardiovascular diseases, endothelial and smooth muscles cells play key roles in the pathogenesis
of arteriosclerosis and anti-angiogenesis therapy. The proliferation and migration of smooth muscles
cells are of critical significance leading to neointima formation after vascular injury [58]. Neointima
formation is mediated by thrombotic and inflammatory mediators, growth factors, cytokines and
oxidative stress [59]. In this investigation, we have tested the effects of EGCg conjugated gold
nanoparticles against endothelial and smooth muscles cells in terms of viability, toxicity, and migration
using in vitro systems. The cytotoxicity data suggests that EGCg-AuNPs at 40 µg/mL concentration
did not affect endothelial cells proliferation whereas free EGCg was toxic and inhibited the proliferation
of endothelial cells. The cytotoxic effect was also confirmed by the LDH assay against the endothelial
cells. The data obtained from LDH assay supported that the EGCg-AuNPs did not show any toxicity
towards endothelial cells whereas the free EGCg showed significant toxicity. It is important to note that
the results obtained from EGCg-AuNPs were comparable with the control group, where endothelial
cells were viable and healthy.

Our studies of in vitro migration revealed selectivity of the toxic effects of EGCg and the
nontoxic nature of the corresponding EGCg-AuNPs on human aortic endothelial cells (HAECs).
The EGCg-AuNPs treated HAECs showed a migration pattern that was similar to the control group at
concentrations of 40 µg/mL at 24 h. Under similar experimental conditions, we observed reproducible
inhibition in the migration of human aortic endothelial cells by 81.4% when the free EGCg was used.
These results provide compelling evidence that EGCg-AuNPs are non-toxic towards endothelial cells
as compared to the free EGCg. These results, taken together, clearly demonstrate that the coating of
EGCg phytochemical on gold nanoparticles results in their effective delivery into the cellular matrix
with no toxicity towards endothelial cells as compared to the free EGCg.

The abundance of smooth muscle cells within the arterial walls and also their vulnerability for
damage during artery ruptures prompted us to investigate the inhibitory effects of EGCg-AuNPs
and their comparisons with free EGCg against these cells. The proliferation and migration of smooth
muscles cells lead to neointimal hyperplasia resulting in the thickening of the arterial wall. Therefore,
it is important to inhibit the over growth of SMCs without damaging the ECs. From our experiments,
we have confirmed the effect of EGCg-AuNPs and the free EGCg on SMCs viability and migration.
The cell viability data revealed that both the free EGCg and EGCg-AuNPs significantly inhibit the
proliferation of smooth muscles cells at 40 µg/mL concentration. This infers that the free EGCg and
EGCg-AuNPs significantly delay the migration of smooth muscles cells as revealed by the minimum
population of cells in the denuded area (Figure 10). In contrast, the control group of SMCs, which
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were not treated either with EGCg or EGCg-AuNPs, under similar experimental conditions showed
considerable population of cells within the denuded area (Figure 10). These results, taken together,
unequivocally confirm that both EGCg-AuNPs and free EGCg inhibit the migration of smooth muscles
cells. These results suggest that EGCg-conjugated gold nanoparticles may have the potential for use as
alternatives to drug-eluting stents in the treatment of cardiovascular diseases.

The selective efficacy of EGCg towards ECs and SMCs could be attributed to its molecular
structure, which includes a plethora of hydroxyl groups and galloyl group [60]. Effects of
EGCg for their cardioprotective properties as well as for their efficacy as anti-atherosclerotic and
anti-hypercholesterolemic characteristics have been explored in the past [61,62]. Our previous
investigations related to the in vitro and vivo antitumor efficacy have demonstrated that EGCg
conjugated onto AuNPs has better efficacy compared to the free EGCg due to the larger surface
area of AuNPs [22,33]. A number of additional studies have also reported that EGCg and related
polyphenols present in green tea affects SMCs proliferation via activating p53, by down regulating
NF-κB, or by suppressing mitogen activated protein kinase pathway [63,64]. A study reported in the
literature depicts that EGCg decreases oxidative stress and inflammation in ECs by reducing NADPH
oxidase expression at the transcriptional level [65]. Our findings corroborate earlier observations
reported by Han and co-workers [66], related to the effects of EGCg on ECs and SMCs migrations.
Our present study has confirmed the laminin receptor affinity, which makes these gold nanoparticles
selective towards ECs and SMCs. This is an important finding corroborating significant selectivity
of EGCg-functionalized gold nanoparticles. The targeting ability of EGCg toward laminin receptors,
which are over expressed in SMCs, is presumably responsible for the selective and effective delivery of
EGCg through AuNPs.

4. Experimental Section

4.1. Materials

Epigallocatechin gallate (EGCg), gold salt (NaAuCl4), dyes-Trypan blue, and DAPI
(4’,6-diamidino-2-phenylindole) were obtained from Sigma, St. Louis, MO, USA. Fetal calf serum and
TryplE, Media 200 and Media 231, low serum growth supplement (LSGS), and smooth muscle growth
supplement (SMGS) were obtained from Life Invitrogen, New York city, NY, USA. Human umbilical
vein endothelial cells (HUVECs), human aortic endothelial cells (HAECs), and human coronary artery
smooth muscles cells (HCASMCs) were obtained from American Type Culture Collection (ATCC;
Manassas, VA, USA). The protocol for the “in vitro cell culture experiments” was approved by MU
Institutional Biosafety Committee (protocol #08-04), University of Missouri, Columbia, MO, USA.

4.2. Synthesis of EGCg Coated Gold Nanoparticles (EGCg-AuNPs)

The EGCg-AuNPs were synthesized using a slightly modified procedure. [33] Briefly, EGCg
(2.2 mg) was added to 6 mL of DI water in a scintillation vial and stirred for 20 min at room
temperature (rt) on a magnetic stirrer. Then, 100 µL of 0.1 M NaAuCl4 solution was added and the
color of the solution turned to ruby-red within 5 min, indicating the formation of gold nanoparticles.
Nanoparticles were centrifuged twice at 8000 rpm at 12 ˝C for 15 min to remove the unreacted EGCg.
The gold nanoparticles were characterized and were stored at 4 ˝C. The treatment concentrations of
EGCg-AuNPs were calculated on the basis of amount of EGCg within the nanoparticles. However,
for the free EGCg, the concentrations were the same as the EGCg concentration present in the
EGCg-AuNPs. The amount of gold in the nanoparticles was calculated by atomic absorption
spectrometry technique (AAS, Perkin Elmer, MA, USA). The amount of EGCg in the AuNPs was
determined by AAS and was also quantitatively determined through chemical methods as reported by
Katti et al. [33,52].
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4.3. Characterization of EGCg-AuNPs

Transmission Electron Microscopic (TEM) images were obtained on a JEOL 1400 TEM (JEOL,
LTE, Tokyo, Japan). The absorption measurements were made using a Varian Cary 50 UV-Vis
spectrophotometer, Shimadzu, Columbia, MD, USA. The hydrodynamic diameter and ζ potentials
were measured using Zetasizer Nano S90 (Malvern Instruments Ltd., Westborough, MA, USA).

4.4. Quantification of AuNPs by Furnace Atomic Absorption Spectroscopy (fAAS)

Gold metal content in EGCg-AuNPs was estimated by fAAS using a standard curve spanning
0–100 µg/mL. EGCg-AuNPs samples were digested with HNO3 and HCl (1:2 ratios) and kept into an
oven at 85 ˝C overnight. After cooling at 25 ˝C, the digest was diluted in 1:10 ratio with ultrapure water
for analysis. Quality-control materials (duplicates, spikes, and instrument-calibration verification)
were within appropriate ranges.

4.5. Endocytosis and Cellular Uptake Assay of EGCg-AuNPs by Dark Field Microscopy

The in vitro cellular internalization (endocytosis) analysis of EGCg-AuNPs was performed by
dark field cytoviva microscopic technique. Ultra clean and sterile cover slips were kept in 6 well
plates. The HUVECs and HCASMCs (5 ˆ 105 cells) were seeded into 6 well plates in Media 200/231
separately and incubated for 24 h in CO2 incubator at 37 ˝C. EGCg-AuNPs (10 and 20 µg/mL) were
added to cells followed by 2 h of incubation at 37 ˝C. The cells were washed 10–12 times with 1ˆ PBS,
and fixed with 4% para-formaldehyde (PFA). Cells were further washed 2 times with cold 1ˆ PBS.
Slides were prepared by using DAPI nuclear dye and observed under CytoViva dark field microscope
coupled with dual mode fluorescence. Cell morphology was initially observed, followed by uptake of
nanoparticles. Images were captured via Dage Imaging Software, (CytoViva Inc., Auburn, AL, USA)
at 40ˆ magnification.

4.6. Cellular Internalization of EGCg-AuNPs by Transmission Electron Microscopic (TEM)

The HUVECs & HCASMCs cells (5 ˆ 105 cells) were seeded into 6 well plates in Media 200/231
separately and allowed to adhere for 24 h in CO2 incubator at 37 ˝C. The media was replaced with
EGCg-AuNPs (10 and 20 µg/mL) containing medium and incubated for 2 h at 37 ˝C. The cells were
washed 12 times with PBS, centrifuged into small pellets, and fixed with 2% glutaraldehyde and 2%
paraformaldehyde in sodium cacodylate buffer (0.1 M) and stored at 4 ˝C for further use. The cells
were further fixed with 1% buffered osmium tetraoxide in 2-Mercaptoethanol buffer and dehydrated
in graded acetone series and embedded in Epon-Spurr epoxy resin. Sections were cut at 85 nm using a
diamond knife (Diatome, Hatfield, PA, USA). The sections were stained with Sato’s triple lead stain
and 5% aqueous uranyl acetate for organelle visualization. The cellular samples were examined, for
endocytosis of EGCg-AuNPs, on JEOL 1400 TEM microscope (JEOL, Peabody, MA, USA) operated at
80 kV at the Electron Microscopy Core Facility, University of Missouri (Columbia, MO, USA).

We have also evaluated the receptor binding affinity of EGCg-AuNPs towards ECs and SMCs
by blocking laminin receptors. ABLR (Laminin receptor blocking antibody) is well known to bind to
laminin receptors. ECs and SMCs were incubated independently with ABLR (10 µg/mL) for 60 min in
order to block the laminin receptors of these cells followed by the treatment with EGCg-AuNPs for 2 h.
The samples were processed and images were captured on JEOL 1400 TEM microscope (JEOL).

4.7. Cell Viability Assay

The in vitro cytotoxicity evaluation of EGCg-AuNPs and free EGCg was determined using MTT
kit (Promega). The intensity of developed color was measured by micro plate reader (BioTek, Winooski,
VT, USA) operating at 570 nm wavelength. Percent cell viability was calculated by using the formula:
(T/C) ˆ 100, where C = Absorbance of control, T = Absorbance of treatment.
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4.8. Cytotoxicity Assay

The lactate dehydrogenase leakage assay (LDH) was determined using a LDH Kit (Thermo
Scientific, Waltham, MA, USA). The LDH activity and the absorbance were measured at 490 and 680 nm
by ELISA reader (BioTek).

4.9. Cell Migration Assay

HAECs and HCASMCs (5 ˆ 105) suspended in serum containing Media 200/media 231 were
added to 12-well tissue culture plates and incubated at 37 ˝C until the cells reached 95% confluence.
Media was changed to serum starvation conditions using 2% serum containing media overnight.
A linear “scratch” was made across the entire diameter of each well with a disposable pipet tip, which
completely removed cells from a linear region of the well. Medium was changed with different
dilutions of EGCg and EGCg-AuNPs and incubated for 24 h. Digital photographs of two segments
of each scratch were taken at 4ˆ magnification with a microscope, both immediately after creating
the scratch and after 24 h. Images were imported into cellSens digital imaging software, (Olympus,
Center Valley, PA, USA) which precisely recorded the X–Y axis coordinates of each image to ensure
that identical regions of the well were being compared at 0 and 24 h. The number of cells that migrated
into the scratch zone was counted and the average of the 3 regions was determined for each well.

Statistical Analysis

All experimental data were given as mean ˘ SE. Statistical analysis was carried out using the
Student’s t test using Graph Pad Prism software online. A p value less than 0.05 was determined as
statistically significant.

5. Conclusions

The experimental results of our investigation corroborate laminin receptor-avidity and effective
internalization of EGCg-AuNPs into endothelial and smooth muscles cells, which possess a high
abundance of laminin receptors. Our studies have further inferred that cellular internalization of
EGCg-AuNPs drastically affected the growth and proliferation of plaque-causing smooth muscles cells
with relative nontoxic effects towards endothelial cells. Therefore, antioxidant and anti-inflammatory
effects of EGCg-AuNPs can be transported across endothelial cells for possible wound healing of
damaged and ruptured arteries. Overall, our aforementioned studies and experimental results have
allowed us to validate our hypothesis that EGCg-AuNPs could serve as promising nanoparticulate
drug-coated alternatives to stents for use in the treatment of various cardiovascular diseases.
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