Supplementary Materials: Down-Regulation of Ca^{2+} Activated K ${ }^{+}$Channel Kca1.1 in Human Breast Cancer MDA-MB-453 Cells Treated with Vitamin D Receptor Agonists

Anowara Khatun, Mayu Fujimoto, Hiroaki Kito, Satomi Niwa, Takayoshi Suzuki and Susumu Ohya

Figure S1. Expression of Kca channel subtypes in MDA-MB-453 cells, the negative control in Western blotting for Kca1.1, the inhibition of expression levels of Kca1.1/HDAC2/HDAC3 transcripts by the transfection of Kca1.1/HDAC2/HDAC3 siRNA, respectively. (A) Real-time PCR assays for Kca1.1, Kca2.1, Кса2.2, Kca2.3, and Kca3.1 in MDA-MB-453 cells ($n=3$ for each). Expression levels were expressed as a ratio to ACTB; (B) Protein lysates of MDA-MB-453, YMB-1, and MCF-7 cells were probed by immunoblotting with anti-Kca1.1 (upper panel) pretreated with excess antigens and antiACTB (lower panel) antibodies on the same filter; (C) Real-time PCR assay for Kca1.1 in MDA-MB453 cells transfected with control siRNA (si-ctrl) and Kca1.1 siRNA (si-Kca1.1) ($n=5$ for each); (D,E) Real-time PCR assay for HDAC2 (D) and HDAC3 (E) in MDA-MB-453 cells transfected with control siRNA (si-ctrl), HDAC2 siRNA (si-HDAC2), and HDAC3 siRNA (si-HDAC3) ($n=4$ for each). Results are expressed as means \pm SEM. ${ }^{* *}: p<0.01$ vs. si-ctrl.
A control
B paxilline ($1 \mu \mathrm{M}$)

Figure S2. Effects of $1 \mu \mathrm{M}$ paxilline on outward K^{+}currents in MDA-MB-453 cells. Currents were elicited by depolarizing voltage-step to +40 mV from holding potential (-60 mV) with 10 mV increment (A); The currents were almost completely inhibited by application of $1 \mu \mathrm{M}$ paxilline (B).

Figure S3. Effects of treatment with VDR agonists on transcriptional expression levels of E3 ubiquitinprotein ligases (NEDD4-1 and 4-2) in MDA-MB-453 cells. (A,B) Real-time PCR assay for NEDD4-1 (A), and NEDD4-2 (B) in VD agonist-treated MDA-MB-453 ($n=4$ for each). Expression levels were expressed as a ratio to ACTB. Results are expressed as means \pm SEM.

