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Abstract: The aim of this study was to investigate whether a Keap1-dependent oxidative stress
detector-luciferase (OKD-LUC) mouse model would be useful for the visualization of oxidative stress
induced by experimental periodontitis. A ligature was placed around the mandibular first molars for
seven days to induce periodontitis. Luciferase activity was measured with an intraperitoneal injection
of D-luciferin on days 0, 1, and 7. The luciferase activity in the periodontitis group was significantly
greater than that in the control group at seven days. The expressions of heme oxygenase-1 (HO-1) and
malondialdehyde in periodontal tissue were significantly higher in the periodontitis group than in the
control group. Immunofluorescent analysis confirmed that the nuclear translocation of nuclear factor
erythroid 2-related factor 2 (Nrf2) occurred more frequently in the periodontitis group than in the
control group. This study found that under oxidative stress induced by experimental periodontitis,
the Nrf2/antioxidant defense pathway was activated and could be visualized from the luciferase
activity in the OKD-LUC model. Thus, the OKD-LUC mouse model may be useful for exploring
the mechanism underlying the relationship between the Nrf2/antioxidant defense pathway and
periodontitis by enabling the visualization of oxidative stress over time.
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1. Introduction

Periodontitis is a chronic inflammatory disease of the periodontal tissue that is caused by the
accumulation of dental plaque biofilm and its products on the tooth surface [1]. In the disease process,
host cells, including polymorphonuclear leucocytes, produce reactive oxygen species (ROS) as part
of the host defense against bacterial pathogens [2]. However, excessive ROS production beyond
antioxidant defenses induces damage to DNA, proteins, and lipids in host tissue (oxidative stress) [3].
Experimental periodontitis models have shown that oxidative stress is involved in the progression of
periodontitis [4–7].

In orchestrating cellular antioxidant defenses, the redox-sensitive transcription factor nuclear
factor erythroid 2-related factor 2 (Nrf2) plays a key role [8,9]. Under normal conditions, Nrf2 interacts
with Kelch-like ECH-associated protein 1 (Keap1) that limits Nrf2-mediated gene expression [10,11].
However, under oxidative stress, the Keap1-Nrf2 complex dissociates and Nrf2 translocates into
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nuclei to bind antioxidant response elements (AREs) [12]. Nrf2 activates antioxidant defense enzymes,
including heme oxygenase-1 (HO-1), to attenuate cellular oxidative stress [13] (Figure 1). Some studies
have shown that the activation of Nrf2 is involved in oxidative stress due to periodontitis [7,14].
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or Northern blotting after the animals were killed, but these require cell lysis and involve multiple 
complicated procedures, and are time-consuming [15]. In contrast, the OKD-LUC mouse model uses 
a luminescence reaction to overcome these problems, providing a simple, less invasive, and highly 
sensitive in vivo detection method [15]. Despite the advantages of the OKD-LUC mouse model,  
little is known about its usefulness in periodontology. We hypothesized that the OKD-LUC mouse 
model would be useful for exploring the mechanism underlying the relationship between the 
Nrf2/antioxidant defense pathway and periodontitis. The aim of this study was to investigate 
whether the OKD-LUC mouse model could be used to visualize the oxidative stress induced by 
experimental periodontitis. We showed that experimental periodontitis induced oxidative stress  
(i.e., an increase in malondialdehyde (MDA)) and luciferase activity, indicating that Nrf2 translocated 
into the nucleus and increased the levels of the antioxidant defense enzyme HO-1. 

2. Results 

There were significant differences in the distance from the alveolar bone crest (ABC) to the 
cemento-enamel junction (CEJ) between the periodontitis and control groups at day 7 (Figure 2). 

A higher luminescence intensity was observed in the mandibular area of the periodontitis  
group than in the control group at day 7 (Figure 3). This intensity was significantly greater in the 
periodontitis group than in the control group (p < 0.05) (Figure 3). 
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glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the periodontitis group was 1.7 times 
higher than that of the control group. 

Figure 1. Scheme for Keap1-Nrf2 defense pathway. Under oxidative stress, the Keap1-Nrf2 complex
dissociates and Nrf2 translocates into nuclei to bind AREs. Nrf2 activates HO-1 to attenuate cellular
oxidative stress. Keap1, Kelch-like ECH-associated protein 1; Nrf2, nuclear factor erythroid 2-related
factor 2; AREs, antioxidant response elements; HO-1, heme oxygenase-1.

Recently, a Keap1-dependent oxidative stress detector-luciferase (OKD-LUC) mouse model
has been developed to visualize Nrf2 expression, and it allows real-time monitoring of oxidative
stress [15]. Activation of the Keap1-Nrf2 pathway has previously been monitored using Western
blotting or Northern blotting after the animals were killed, but these require cell lysis and involve
multiple complicated procedures, and are time-consuming [15]. In contrast, the OKD-LUC mouse
model uses a luminescence reaction to overcome these problems, providing a simple, less invasive,
and highly sensitive in vivo detection method [15]. Despite the advantages of the OKD-LUC mouse
model, little is known about its usefulness in periodontology. We hypothesized that the OKD-LUC
mouse model would be useful for exploring the mechanism underlying the relationship between the
Nrf2/antioxidant defense pathway and periodontitis. The aim of this study was to investigate whether
the OKD-LUC mouse model could be used to visualize the oxidative stress induced by experimental
periodontitis. We showed that experimental periodontitis induced oxidative stress (i.e., an increase in
malondialdehyde (MDA)) and luciferase activity, indicating that Nrf2 translocated into the nucleus
and increased the levels of the antioxidant defense enzyme HO-1.

2. Results

There were significant differences in the distance from the alveolar bone crest (ABC) to the
cemento-enamel junction (CEJ) between the periodontitis and control groups at day 7 (Figure 2).

A higher luminescence intensity was observed in the mandibular area of the periodontitis group
than in the control group at day 7 (Figure 3). This intensity was significantly greater in the periodontitis
group than in the control group (p < 0.05) (Figure 3).

In real-time polymerase chain reaction (PCR) analysis, the relative expression of HO-1 per
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the periodontitis group was 1.7 times higher
than that of the control group.
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Figure 2. Alveolar bone loss at day 7. Representative photographs of mandibular bone in the control 
(a) and periodontitis (b) groups are shown. Red lines indicate the distance from the alveolar bone 
crest (ABC) to the cemento-enamel junction (CEJ). The distance was significantly higher in the 
periodontitis group than in the control group at day 7 (c) (* p < 0.05, t-test) (n = 6/group). White scale 
bar = 200 µm. 

 
Figure 3. Bioluminescence imaging in oxidative stress detector-luciferase (OKD-LUC) mice. The color 
scale bar shows the photon counts. Representative photographs taken at baseline (a); the control 
group at day 1 (b) and day 7 (c); the periodontitis group just after ligation (d); and the periodontitis 
group at day 1 (e) and day 7 (f). In the periodontitis group, a high luminescence intensity was 
observed in the mandibular area at day 7 (d). This luminescence intensity was significantly higher in 
the periodontitis group than in the control group (* p < 0.05, t-test) (n = 6/group) (g). 

Using an Nrf2 nuclear translocation assay, the nuclear level of Nrf2 was investigated using 
immunofluorescence staining to support the data of luminescence intensity. Nuclear Nrf2 was 
minimally expressed in the control group. It was observed more frequently in areas adjacent to the 
alveolar bone surface within the periodontal ligament in the periodontitis group (Figure 4). 
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Figure 2. Alveolar bone loss at day 7. Representative photographs of mandibular bone in the control
(a) and periodontitis (b) groups are shown. Red lines indicate the distance from the alveolar bone crest
(ABC) to the cemento-enamel junction (CEJ). The distance was significantly higher in the periodontitis
group than in the control group at day 7 (c) (* p < 0.05, t-test) (n = 6/group). White scale bar = 200 µm.
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Figure 3. Bioluminescence imaging in oxidative stress detector-luciferase (OKD-LUC) mice. The color
scale bar shows the photon counts. Representative photographs taken at baseline (a); the control group
at day 1 (b) and day 7 (c); the periodontitis group just after ligation (d); and the periodontitis group at
day 1 (e) and day 7 (f). In the periodontitis group, a high luminescence intensity was observed in the
mandibular area at day 7 (d). This luminescence intensity was significantly higher in the periodontitis
group than in the control group (* p < 0.05, t-test) (n = 6/group) (g).

Using an Nrf2 nuclear translocation assay, the nuclear level of Nrf2 was investigated using
immunofluorescence staining to support the data of luminescence intensity. Nuclear Nrf2 was
minimally expressed in the control group. It was observed more frequently in areas adjacent to
the alveolar bone surface within the periodontal ligament in the periodontitis group (Figure 4).
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Figure 4. Translocation of Nrf2. For the Nrf2 nuclear translocation assay, the nuclear level of Nrf2 was 
determined using immunofluorescence staining (red) (a,d). The cell nuclei were visualized by DAPI 
staining (blue) (b,e). In the control group, Nrf2 expression was observed (a), but there was less 
translocation (c) than in the periodontitis group (f). Arrows show cells that are positive for both Nrf2 
and DAPI in the nucleus. The arrowhead in white box shows a magnification of an area of cells with 
positive staining for both Nrf2 and DAPI in the nucleus. These double-positive cells mainly existed 
adjacent to the alveolar bone surface within the periodontal ligament. 4’,6-diamidino-2-phenylindole, 
DAPI; AB, alveolar bone; PDL, periodontal ligament; T, tooth. Scale bar = 50 µm. 

In the periodontitis group, HO-1-positive cells were observed in areas adjacent to the alveolar 
bone surface within the periodontal ligament at day 7. The ratio of HO-1-positive cells was 
significantly higher in the periodontitis group than in the control group (p < 0.05) (Figure 5). 

 
Figure 5. Immunohistochemical staining of heme oxygenase-1 (HO-1) in periodontal tissue at day 7. 
Arrows show HO-1-positive cells. A higher number of HO-1-positive cells was observed in areas 
adjacent to the alveolar bone surface within the periodontal ligament in the periodontitis group (b) 
than in the control group (a) (×400). Panel (c) shows a negative control. The ratio of HO-1-positive 
cells was significantly higher in the periodontitis group than in the control group (* p < 0.05, t-test)  
(n = 6/group) (d). AB, alveolar bone; PDL, periodontal ligament; T, tooth. 

Figure 4. Translocation of Nrf2. For the Nrf2 nuclear translocation assay, the nuclear level of Nrf2
was determined using immunofluorescence staining (red) (a,d). The cell nuclei were visualized by
DAPI staining (blue) (b,e). In the control group, Nrf2 expression was observed (a), but there was less
translocation (c) than in the periodontitis group (f). Arrows show cells that are positive for both Nrf2
and DAPI in the nucleus. The arrowhead in white box shows a magnification of an area of cells with
positive staining for both Nrf2 and DAPI in the nucleus. These double-positive cells mainly existed
adjacent to the alveolar bone surface within the periodontal ligament. 4′,6-diamidino-2-phenylindole,
DAPI; AB, alveolar bone; PDL, periodontal ligament; T, tooth. Scale bar = 50 µm.

In the periodontitis group, HO-1-positive cells were observed in areas adjacent to the alveolar
bone surface within the periodontal ligament at day 7. The ratio of HO-1-positive cells was significantly
higher in the periodontitis group than in the control group (p < 0.05) (Figure 5).
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Figure 5. Immunohistochemical staining of heme oxygenase-1 (HO-1) in periodontal tissue at day 7.
Arrows show HO-1-positive cells. A higher number of HO-1-positive cells was observed in areas
adjacent to the alveolar bone surface within the periodontal ligament in the periodontitis group (b)
than in the control group (a) (×400). Panel (c) shows a negative control. The ratio of HO-1-positive
cells was significantly higher in the periodontitis group than in the control group (* p < 0.05, t-test)
(n = 6/group) (d). AB, alveolar bone; PDL, periodontal ligament; T, tooth.
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In the periodontitis group, MDA-positive cells were observed in areas adjacent to the alveolar
bone surface within the periodontal ligament at day 7. The ratio of MDA-positive cells was significantly
higher in the periodontitis group than in the control group (p < 0.05) (Figure 6).
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Figure 6. Immunohistochemical staining of malondialdehyde (MDA) in periodontal tissue at day 7.
Arrows show MDA-positive cells. A higher number of MDA-positive cells was observed in areas
adjacent to the alveolar bone surface within the periodontal ligament in the periodontitis group (b)
than in the control group (a) (×400). Panel (c) shows a negative control. The ratio of MDA-positive
cells was significantly higher in the periodontitisgroup than in the control group (* p < 0.01, t-test)
(n = 6/group) (d). AB, alveolar bone; PDL, periodontal ligament; T, tooth.

3. Discussion

Since the OKD-LUC mouse model has been developed and can be used for visualizing Nrf2
expression under oxidative stress [15], we used it to investigate the relationship between Nrf2
expression, oxidative stress, and periodontitis. In this study, luciferase activity and HO-1 expression
were significantly greater in the periodontitis group than in the control group at day 7. Furthermore,
in the immunofluorescent analysis, we confirmed that the nuclear translocation of Nrf2 occurred
more frequently in the periodontitis group than in the control group. Nrf2 is the master regulator of
antioxidant defense genes, and under oxidative stress, activated Nrf2 translocates into the nucleus
to bind AREs [12]. Subsequently, Nrf2 activates antioxidant defense enzymes, including HO-1,
to attenuate cellular oxidative stress [13]. Oxidative stress induced by periodontitis can also activate
the Nrf2/antioxidant defense pathway [14,16]. Taken together, we interpreted that, under oxidative
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stress induced by experimental periodontitis, the Nrf2/antioxidant defense pathway was activated
and could be visualized from the luciferase activity in the OKD-LUC model.

OKD48 transgenic mice can provide valuable information regarding oxidative status during
development and under pathological conditions [15]. The OKD48 transgenic mice provide luminescent
images and are useful for identifying living organs or cells under oxidative stress in vivo without
fluorescent probes. In this study, the OKD48 transgenic mice actually permitted the visualization of
oxidative stress due to periodontitis. We previously reported that oxidative stress due to periodontitis
affects systemic conditions, and that antioxidants attenuated oxidative stress and inflammation [17–19].
Using this model, in the future, we may be able to visualize systemic oxidative stress by periodontitis
in living animals, which may allow us to address various issues regarding oxidative stress in human
chronic periodontitis and antioxidant development.

In periodontal tissue, both protein and gene expression levels of HO-1 were higher in the
periodontitis group than in the control group. In rats, the gene expression level of HO-1 was
significantly increased in a ligature-induce periodontitis group when compared to the control group
in a three-week experiment [14]. Although the species and experimental period of that study were
different from those of our study, the finding supports our results.

The level of MDA in periodontal tissue was significantly higher in the periodontitis group
than in the control group. Our results indicated that ligature-induced periodontitis successfully
increased oxidative stress in the periodontal tissue. When polyunsaturated lipids undergo a series
of non-enzymatic reactions that produce a wide range of intermediate and end products due to ROS,
MDA was the most specific molecule and the one most often used for the measurement of biological
lipid oxidation [20]. MDA in serum, saliva, or gingival crevicular fluid is a marker of oxidative stress
in human chronic periodontitis [21–23]. In experimental periodontitis, an increased MDA level was
observed in the periodontal tissue [24]. For these reasons, we measured MDA in this study.

In our preliminary study, we confirmed the reproducibility of luciferase activity measurements,
and the luciferase activity in the mandibular area peaked at one week after ligation and decreased
after two weeks. The maximum change in alveolar bone loss was also observed within one week in
the same model (data not shown). As such, we selected a one-week experimental period. However,
the longer-term effects of the Nrf2/antioxidant pathway remain unknown, which was a limitation of
this study.

Our study had other limitations. First, the bioluminescence signal was weak in our periodontitis
model. The order of magnitude in the previous study was ×108 [15], which was greater than in our
study. We should contrive to enhance the signal to be able to detect minute changes in oxidative
stress due to periodontitis. For example, the use of other types of periodontitis models that induce
more oxidative stress [25] or luminescence proteins that have stronger light-emitting ability might
allow us to overcome this problem. Second, we only focused on the Nrf2/HO-1 pathway as a
major pathway of Nrf2/antioxidant defense. Further research on other pathways, such as NAD(P)H:
quinine oxidoreductase 1, is required. Third, we just found the induction of the Nrf2-mediated
anti-oxidative defense system, but did not find bone destruction as a result of the induction of the
Nrf2-mediated anti-oxidative defense system. Considering a balance between the Nrf2-mediated
anti-oxidative defense system and bone destruction, we need further experiments to explore the
mechanism underling the balance.

4. Materials and Methods

4.1. Animals

All animal experiments were approved by the Animal Care and Use Committee of Okayama
University (OKU-201323). Keap1-dependent Oxidative stress Detector, No-48-luciferase (OKD48)
mice [15,26] were purchased from Trans Genic Inc., Ltd. (Kobe, Japan). Twelve male OKD48
mice (age, eight weeks) were housed in an air-conditioned room (23–25 ◦C) with a 12-h light-dark
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cycle. They had free access to standard chow (NMF; Oriental Yeast Co., Ltd., Osaka, Japan) and
drinking water.

4.2. Experimental Design

The mice were randomly divided into two groups: a periodontitis group (n = 6) and a control
group (n = 6). In the periodontitis group, a 5/0 cotton ligature was placed in the submarginal
position on the mandibular first molars under intraperitoneal anesthesia (sodium pentobarbital at
0.5 mL/kg body weight) to induced periodontitis for seven days [25]. The mice in the control group
received intraperitoneal anesthesia (sham treatment). We checked the body weight. There were no
significant differences in body weight change between the periodontitis and control groups during the
experimental period.

4.3. Bioluminescence Imaging

Bioluminescence imaging was performed as previously described [12]. Briefly, OKD48 mice were
imaged using an imaging system (Lumazone®; Nippon Roper, Tokyo, Japan). Ten minutes before
the imaging session, the mice received an intraperitoneal injection of a D-luciferin potassium salt
solution (0.15 mg/g body weight) (Promega, Madison, WI, USA) and were anesthetized with an
isoflurane/oxygen gas mix. Data were collected during a 5-min exposure. Imaging (one image per
animal) was performed at days 0, 1, and 7. Luciferase activity was quantified from images displaying
surface radiance using circular regions of interest (ROIs) [26] (60-pixel diameter circle in the mandibular
area) (Figure 7) and then converted to the total flux of photons (photons/s) using software (MetaMorph,
Nippon Roper).
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Figure 7. Scheme of bioluminescence imaging. Imaging of the head area was performed (a). The red
circle shows the region of interest (ROI) (b). Luciferase activity was quantified from images displaying
surface radiance using circular ROIs. Scale bar = 1 cm.

4.4. Sampling

The mice were sacrificed under general anesthesia (diethyl ether) after seven days. For histological
analysis, the right mandibular molar regions were resected en bloc from each mouse and fixed in 4%
paraformaldehyde in 0.1 mol/L phosphate buffer (pH 7.4) for one day. Gingival biopsy samples of the
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left mandibular molar regions were homogenized using a frozen cell crusher (Microtec Co., Chiba,
Japan) and used for real-time PCR.

4.5. Determination of Alveolar Bone Loss

After fixation, the mandible was stained with 1% methylene blue (Muto Pure Chemicals
Co., Tokyo, Japan). Images of the mandible were captured using a Nikon digital camera D3200
(Nikon Instruments Inc., Tokyo, Japan). Horizontal bone loss, evaluated by the distance between the
CEJ and the ABC along the long axis of the roots of the mandibular first molar at six sites corresponding
to the mesio-lingual root, lingual furcation, disto-lingual root, mesio-buccal root, buccal furcation,
and disto-buccal root, was measured. The values were calculated using mathematical morphology
software (WinROOF; Mitani Co., Fukui, Japan).

4.6. Real-Time PCR Analysis

Total RNA was isolated from the gingival biopsy samples using Trizol reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instructions. Isolated RNA was quantified by
measuring the absorbance at 260 nm, and purity was determined by the 260/280 nm absorbance ratio.
Only samples with a ratio of >1.8 were used [27]. Total RNA was reverse-transcribed using AMV
Reverse Transcriptase (Takara Bio Inc., Shiga, Japan) at 42 ◦C for 30 min. Real-time PCR was performed
using SYBR Green Real-time PCR Master Mix (Toyobo, Osaka, Japan) in a real-time QPCR system
(Agilent Technologies, Tokyo, Japan). The primer sequences for HO-1 [28] and GAPDH [29] are shown
in Table 1. The amplification conditions were as follows: 42 cycles at 95 ◦C (5 s), 53 ◦C (30 s), and 72 ◦C
(30 s) for GAPDH; 40 cycles at 95 ◦C (30 s), 60 ◦C (60 s), and 72 ◦C (60 s) for HO-1. The mRNA levels
were calculated in terms of the relative copy number ratio of each mRNA to GAPDH for each sample.

Table 1. Primer sequences.

Gene Primer Sequences (5′-3′) Accession No. Length (bp)

HO-1
F: CGT GCT CGA ATG AAC ACT CT

NM_010442.2 266R: GGA AGC TGA GAG TGA GGA CC

GAPDH
F: TGT GAT GGG TGT GAA CCA CGA GAA

NM_001289726.1 130R: GAG CCC TTC CAC AAT GCC AAA GTT

4.7. Immunohistochemical Analysis

The right mandibular samples were decalcified with a 10% tetrasodium ethylenediaminetetraacetic
acid aqueous solution (pH 7.4) for two weeks at 4 ◦C after fixation. The samples were embedded in
paraffin following dehydration with ethanol (70%, 80%, 90%, and 100%) and immersion in xylene.
The paraffin-embedded bucco-lingual 5-µm sections were stained for immunohistochemistry as
described below.

To confirm Nrf2 translocation to the nucleus, the staining procedure included double-fluorescence
staining of the slides. Antigen retrieval was performed using 10 mM citric acid at 98 ◦C for
30 min followed by incubation for 20 min at room temperature. A polyclonal antibody against
Nrf2 (Santa Cruz Biotechnology Inc., Dallas, TX, USA) was diluted to 1:200 in phosphate-buffered
saline [30]. Alexa Fluor 594-conjugated anti-rabbit IgG (1:250) (Thermo Fisher Scientific K.K., Kanagawa,
Japan), which produces a red fluorescence with an excitation maximum at 561 nm and emission
at about 594 nm, was used as a secondary antibody [31]. Afterwards, a mounting medium with
4′,6-diamidino-2-phenylindole (DAPI) (ImmunoSelect Antifading Mounting Medium; Dianova,
Hamburg, Germany), which produces a blue fluorescence with an excitation maximum at 365 nm and
emission at about 460 nm, was used to cover the slides [32].

Immunohistochemical staining for HO-1 and MDA was performed. Commercial kits (Nichirei Co.,
Tokyo, Japan) were used to determine the levels of HO-1 and MDA. Polyclonal antibodies
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against HO-1 (an indicator of anti-oxidation) (#ab85309; Abcam, Cambridge, MA, USA) and MDA
(an indicator of oxidative damage) (#ab6463; Abcam) [33] were diluted to 1:400 and 1:500, respectively,
in phosphate-buffered saline. For the negative controls, sections were processed as above, except the
primary incubation was performed without the primary antibodies. The color was developed with
3-3′-diaminobenzidine tetrahydrochloride. Sections were counterstained with Mayer’s hematoxylin.

The numbers of HO-1-positive cells, MDA-positive cells, and total cells in standard areas
(0.05 mm × 0.05 mm each) adjacent to the alveolar bone surface within the periodontal ligament
(three serial areas from the top of the alveolar bone crest) were determined [4], and then the ratios
of the positive cells were calculated. Three sections stained with HO-1 or MDA antibody from each
animal were selected for the analyses.

4.8. Statistical Analysis

Power analysis and sample size were calculated using statistical software (SamplePower ver.
3.0; IBM, Tokyo, Japan) based on the results of bioluminescence intensity from a preliminary study.
A sample size of six animals per group was required for the detection of significant differences in
bioluminescent intensity with 85% power and a two-sided 5% significance level.

The data are presented as the mean ± standard deviation. The t-test was used for statistical
comparisons of body weight, bioluminescent intensity, and the density of HO-1- or MDA-positive cells
between the control and periodontitis groups. A statistical software (SPSS ver.21 for Windows; IBM)
was used. A p < 0.05 was considered to be statistically significant.

5. Conclusions

Under oxidative stress induced by experimental periodontitis, the Nrf2/HO-1 pathway was
activated and could be visualized from the luciferase activity in the OKD-LUC model. Thus,
the OKD-LUC mouse model may be useful for exploring the mechanism underlying the relationship
between the Nrf2/antioxidant defense pathway and periodontitis.
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