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Abstract: Metabolomics, which is based mainly on nuclear magnetic resonance (NMR),
gas-chromatography (GC) or liquid-chromatography (LC) coupled to mass spectrometry (MS)
analytical technologies to systematically acquire the qualitative and quantitative information of
low-molecular-mass endogenous metabolites, provides a direct snapshot of the physiological
condition in biological samples. As complements to transcriptomics and proteomics, it has played
pivotal roles in agricultural and food science research. In this review, we discuss the capacities
of NMR, GC/LC-MS in the acquisition of plant metabolome, and address the potential promise
and diverse applications of metabolomics, particularly lipidomics, to investigate the responses of
Arabidopsis thaliana, a primary plant model for agricultural research, to environmental stressors
including heat, freezing, drought, and salinity.
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1. Introduction

Metabolomics, defined as a powerful platform for the global identification and quantification of
low-molecular-weight metabolites in a biological sample, is rapidly evolving into a principal tool in
the functional annotation of genes; and confers high-resolution snapshot of various physiological and
biological aspects of cellular responses to specific environmental stimuli [1].

The field of metabolomics relies mainly on the technologies of nuclear magnetic resonance
(NMR) and mass spectrometry (MS) with or without chromatography, which allows the detection of
an organism’s metabolite pool characterized by plethora of chemical structures with an enormous
diversity of chemical and physical properties [1–5]. Since its introduction by Nicholson et al. in 1999,
metabolomics has been extensively applied to various fields of science in the post-genomic era, such as
agricultural research [6–10].

Arabidopsis thaliana was one of the first established model organisms worldwide [11], and has been
extensively studied, rendering it an ideal research model. Metabolomics has been broadly applied to
a myriad of studies pertaining to the metabolic responses of Arabidopsis to various abiotic or biotic
stresses, including heat, freezing, drought, and salinity [12,13]. Lipidomics, as a comparably young
branch in the realm of metabolomics area, has emerged as a burgeoning arena within the last few
years [14]; and has been applied to various analyses to elucidate the physiological mechanisms of
Arabidopsis [15–20].

In this review, we discuss the capacity of NMR and gas-chromatography/liquid-chromatography
coupled to mass spectrometry (GC/LC-MS) in acquiring qualitative and quantitative information
on carbohydrates, amino acids, organic acids, and lipids in plants, as well as the application of
metabolomics and lipidomics in providing the mechanistic details of the physiological responses
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of Arabidopsis to heat, freezing, drought, and salt stresses. The technical routes of this review are
illustrated in Figure 1.
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conventional GC/LC analyses due to the drawback of poor migration time reproducibility and lack 
of reference libraries for CE [22], and fluid compressibility for SFC [23]. 
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Figure 1. Two leading techniques, nuclear magnetic resonance (NMR) and gas chromatography/liquid
chromatography–mass spectrometry (GC/LC-MS), and their applications to the elucidation of the
physiological mechanisms of Arabidopsis to various environmental stressors.

2. Techniques of Plant Metabolome Acquisition

Quantitative plant metabolomics provides us with an in-depth understanding of plant metabolism,
and helps to improve crop yields [21]. At present, NMR and GC/LC-MS techniques dominate the
data acquisition strategies in metabolomics studies, which enable the identification of a myriad of
species belonging to the three major classes of nutrient components (i.e., carbohydrate, amino acid,
and lipids) in plants [6,21]. Other chromatographic techniques, including capillary electrophoresis (CE)
and supercritical fluid chromatography (SFC), can also be coupled to MS for metabolomics studies.
However, CE and SFC are being applied to a less extensive extent than conventional GC/LC analyses
due to the drawback of poor migration time reproducibility and lack of reference libraries for CE [22],
and fluid compressibility for SFC [23].

2.1. Metabolite Coverage of NMR in Plant Metabolomics

NMR spectroscopy, one of the two leading analytical techniques in the field of metabolome
research, is characterized by its reproducibility in quantification, structure identification, and
non-biased detection of metabolites [24]. NMR can quantify metabolites in large batches of samples
with higher reproducibility and greater accuracy, coupled with a wider time span and dynamic ranges
than GC/LC-MS can perform. Particularly in untargeted MS-based metabolomics, the measurements
are semi-quantitative. NMR guarantees stable sensitivity as samples and instruments are devoid of
contact during detection, eliminating the concerns of gradual contamination by residual metabolites
that may compromise sensitivity in MS analyses. In addition, NMR provides the same signal sensitivity
for all metabolites regardless of the complexities of the biological matrix, and is independent of the
chemical properties of the metabolites [25]. NMR is a powerful technique for the analysis of metabolite
structures, as it can differentiate compounds with identical masses and two-dimensional structures that
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differ only in spatial configuration [26,27]. NMR is also preferred in metabolomics studies due to its
simple detection requirements using intact bio-specimens without requirements for prior separation.

In terms of plant metabolome analysis, NMR mainly covers metabolites, carbohydrate, amino
acids, and organic acids [6–8].

A major drawback of NMR technique, however, lies in its sensitivity [24,25,28], which restrains
its application to the detection of metabolites of low-abundance in plants. In addition, as molecular
weight increases, for example, for lipids comprising long fatty chains, its identification capacity is
weakened rapidly due to more complex and overlapping signals from the extended hydrocarbon
chains in such compounds. The long-carbon-chain lipids, such as fatty acids (FAs) and phospholipids
carrying single or multiple long fatty chains, can be further differentiated into hundreds of thousands
of subtype species according to the lengths of fatty chains, the number of double bonds, and the
functional groups, etc. As NMR can only provide classification based on the characteristic signals
located in functional groups, it falls short in terms of conferring specific compound identification due
to overlapping signals of methylene in long fatty chains. As can be seen from Table 1, only hundreds
of metabolites can be identified by NMR, which falls way behind GC/LC-MS.

2.2. Metabolite Coverage of GC/LC-MS in Plant Metabolomics

MS coupled to GC or LC is by far the most frequently applied analytical technique in plant
metabolomics studies due to its unparalleled sensitivity and extensive coverage of biological
information relevant to the metabolism of the organism [29,30]. The plant metabolome reported
to date is composed of approximately 30,000 endogenous metabolites that mainly comprises various
lipid classes, the majority of which can be easily characterized and quantified via MS.

GC-MS is excellent for the detection of biological samples with very complex matrices, offering
highly efficient separation and resolution. Not only can it analyze many of the aforementioned
carbohydrates, amino acids, and organic acids detectable by NMR, but it aslo accurately identify
a plethora of volatile and thermally stable lipids, or volatile derivatized metabolites, such as
FAs [9,31,32]. More importantly, an immense number of well-curated compound reference libraries,
including the NIST [33], FiehnLib [34] and Golm metabolic databases (GMD [35]) are availabe for peak
identification and prediction across different models of mass spectrometers, which have been proven
very useful in terms of analysing metabolome data. Major limitations of GC-MS, however, lie in its
inability to ionize thermolabile metabolites, such as di- and triphosphates, lysophosphatidycholine
(LPC), lysophosphatidylethanolamine (LPE), or higher molecular masses phosphatidylcholine (PC)
and phosphatidylethanolamine (PE), due to their non-volatile properties even after derivatization,
circumscribing its application for global metabolic profiling in plants. This limitation narrows the
GC-MS-derived metabolome both in terms of metabolite number and subtypes compared to that
obtained using LC-MS (Table 1).

In comparison to GC-MS, LC-MS is useful in handing thermolabile, polar metabolites, and
high-molecular weight compounds without derivatization, such as phosphatidylinositol (PI), PE,
phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylserine (PS), sulfoquinovosyldiacylglycerol
(SQDG), PC, monogalactosyldiacylglycerol (MGDG), and digalactosyldiacylglycerol (DGDG) [15,16,36].
More importantly, with the advancement in ionization techniques, increasing scan speed,
and improvement in terms of instrument sensitivity, metabolite coverage of LC-MS can be expanded
into greater array of metabolite classes, traditionally dominated by GC-MS [37–39]. For example,
volatile metabolites involved in tricarboxylic acid cycle (TCA), which are generally detected by GC-MS,
can now also be analyzed by LC-MS [40]. Even though GC-MS exhibits higher senstitivity for these
volatile compounds aforementioned than LC-MS; the detectability of such compounds in LC-MS per
se is enough for the quantitative analysis of targeted metabolites in plant.
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Table 1. Coverages of plant metabolome by NMR and GC/LC-MS techniques.

Techniques Metabolite Coverage Advantages and Disadvantages

NMR
Hundreds of metabolites

Same signal sensitivity for all metabolites,
independent of metabolite properties and matrix
effects, powerful ability in structural elucidation
of plant metabolomics [24–27,30]

Mainly carbohydrates, organic acids, amino
acids, etc. [6–8,25] Less sensitive than MS [24,25,28,30]

GC-MS
Thousands of metabolites Sensitive for the detection of volatile, thermally

stable metabolites [31,32]

Mainly carbohydrates, organic acids, amino
acids, fatty acids (Fas), etc. [25,31,32]

Inability for the detection of thermolabile
metabolites [30,41]

LC-MS

Thousands of metabolites Sensitive for thermoliable, polar metabolites,
and high-molecular weight metabolites [30,41]

Mainly carbohydrates, organic acids, amino
acids, lipids (PI, PE, PA, PG, PS, SQDG, PC,
MGDG, DGDG etc.), etc. [15,25,36]

Weak sensitivity for samples with high salt
content, less sensitive for the detection of volatile
metabolites [31,32]

PI: phosphatidylinositol; PE: phosphatidylethanolamine; PA: phosphatidic acid; PG: phosphatidylglycerol;
PS: phosphatidylserine; SQDG: sulfoquinovosyldiacylglycerol; MGDG: monogalactosyldiacylglycerol;
and DGDG: digalactosyldiacylglycerol.

3. The Application of Metabolomics to Arabidopsis Model-Based Research

Metabolomics has been widely applied to a number of studies pertaining to the metabolic
responses of Arabidopsis to various abiotic or biotic stresses. In this part, we summarized the potential
promise and diverse applications of metabolomics, particularly lipidomics, to investigate the responses
of Arabidopsis to environmental stressors including heat, freezing, drought and salinity (Table 2).

Table 2. Metabolomic profiling of the physiological responses to heat, freezing, drought, and salt
stresses in Arabidopsis.

Stresses Metabolic Markers Alterations Pathway References

Heat

PG 32:0, SQDG 36:5, TG 54:6, TG 54:7, TG 54:8, TG 54:9 ↑ Lipid [36,42]
PE 36:6, PG 36:4, PG 36:5 ↓
GABA, AA ↑ Amino acid [13]

Maltose, raffinose, trehalose ↑ Amino sugar metabolism [13]

Putrescine, glycerol, salicylic acid, malate, succinate ↑ Carbohydrate [13]

Freeze

Maltose, raffinose, trehalose ↑ Amino sugar metabolism [13]

Malate, succinate, salicylic acid, gluconapin, putrescine,
glycerol, kaempferol-3,7-O-dirhamnoside,
kaempferol-neohesperidoside-7-rhamnoside

↑ Carbohydrate [13]

GABA, BCAA, AAA ↑ Amino acid [13]

PG (16:0/18:3) ↑ Lipid [43]

PG (16:1/18:2), PG (16:1/18:3) ↓

Drought

Anthocyanin, flavonoid, glycosides, cis-aconitate,
isocitrate, putrescine, spermidine, guanidine,
dehydroascorbate, citrate, fumarate, 2-oxoglutarate,
succinate, malate, glycolate

↑ Carbohydrate [44,45]

Fructose, galactose, glucose, maltose, mannose, raffinose,
ribose, sucrose, trehalose ↑ Amino sugar metabolism [45]

GABA, BCAA, AAA ↑ Amino acid [46]

DGDG 18:3, PC 18:3, TG 54:6, TG 54:7, TG 54:8, TG 54:9 ↑ Lipid [42,47]

Triunsaturated FA 16:3 and 18:3 ↓ Lipid [45]

GIPC, ASG, SG ↑ Lipid [43]

Phosphatidic acid ↓ Lipid [48]
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Table 2. Cont.

Stresses Metabolic Markers Alterations Pathway References

Salt

GABA, BCAA, AAA ↑ Amino acid [46,49]

Jasmonate ↑ Lipid [49]

Disaccharides, sucrose, fructose, raffinose, myo-inositol ↑ Amino sugar metabolism [50]

malate, citrate, 2-ketoglutarate, succinate ↑ TCA [50]

ethanolamine, valine, leucine, proline, glycine ↑ Amino acid [50]

TG 54:6, TG 54:7, TG 54:8, TG 54:9 ↑ Lipid [42]

“↑” and “↓”: represents up- and down-regulated concentration in response to stress, respectively; GABA:
gamma-aminobutyric acid; AA: amino acid; BCAA: branched-chain amino acid; AAA: aromatic amino acid;
GIPC: glycosylinositolphosphoceramide; ASG: acylated steryl glycoside; SG: steryl glycoside.

3.1. Temperature Stress-Induced Alterations of Arabidopsis Metabolome

Environmental stressors, including heat, freezing, drought, and salinity, are detrimental to the
normal growth of plants [51–53]. The sessile nature of plants makes them particularly susceptible
to such environmental stressors, and thus plants have evolved various physiological and metabolic
responses to effectively deal with such environmental extremities [54]. Temperature extremes can lead
to oxidative stress, which is extremely harmful to various biomolecules including lipids, nucleic acids,
and proteins in plants [55,56].

Temperature extremes can lead to severe crop-yield losses [52,53,57,58], and elevated temperature
is predicted to result in severe food crises in the future with global warming on the rise [59,60].
To improve thermotolerance in crops, it is essential to understand the molecular basis of thermotolerance
adaptation in plants.

On the other hand, low temperature represents a key determinant in influencing the geographical
distribution of plants worldwide. Cold acclimation is an important mechanism that enables plant
species to survive through the low temperature of the harsh winters in their natural habitats [61].
Complex changes in plant transcriptome, proteome, and metabolome occurs during the cold
acclimation process [61,62], initiating specific mechanisms to protect plants against freezing [63].

Cold stress (CS) influenced plant metabolism far more profoundly than heat stress (HS).
Analysis on temperature-stressed metabolome of Arabidopsis revealed that, with regard to metabolite
markers, heat stress and cold stress shared many comparable responses [13]. Increased concentrations
of branched-chain amino acids (BCAA), like isoleucine (Ile), leucine (Leu), and valine (Val),
and aromatic amino acids (AAA), such as tyrosine (Tyr) during both temperature stresses were
detected. Increased concentrations of tryptophan (Trp) and phenylalanine (Phe) were, however,
only observed during cold accumulation [8].

Salicylic acid, which plays a crucial function in guarding the plant hosts against pathogen
intrusion [13,64–68], was enhanced during both HS and CS accumulations, suggesting that salicylic
acid could be the initial signaling molecule of plant tolerance to various stresses, and could possibly
help plants prepare for combat against pathogens.

The promoters of a number of genes induced by temperature stresses contain sugar-responsive
elements [13,69,70], indicating that sugar signaling may be important in the establishment and
maintenance of both acquired heat and freeze tolerance. A metabolic profiling study on Arabidopsis
showed that gluconapin is characteristic in CS accessions, while kaempferol-3,7-O-dirhamnoside and
kaempferol-neohesperidoside-7-rhamnoside are specific to highly cold-tolerant accessions, which can
facilitate the screening of cold tolerance in Arabidopsis accessions [71].

Secondary metabolism-generated metabolites, such as Ile, Leu, Val, Tyr, Trp, and Phe can defend
against pests, pathogenic fungi, and bacteria [72]. It is plausible that BCAA accumulation functions to
enhance secondary metabolism, facilitating the development of resistance against pathogens during
stress conditions.
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In plants, cold response and day-night cycles share many regulation genes [73]. Metabolic and
transcriptional analyses on Arabidopsis exposed to CS revealed that the expression of day-regulation
genes was profoundly influenced by CS, indicating a disrupted clock function, and the importance of
understanding the mechanism of cold acclimation in the correct day-night context.

Environmental conditions, especially temperatures, can directly affect cell membrane properties,
which subsequently influence membrane fluidity, and this can be balanced by plants via regulation
of membrane glycerolipids saturation indices, as the presence of unsaturated bonds decreases the
phase-transition temperature [74]. In this area, lipidomics has been broadly applied to the study of the
influence of temperature on Arabidopsis [36]. In the initial stage of adaptation to HS (32 ◦C), increases
in PG 32:0 and SQDG 36:5 were observed in Arabidopsis, while PE 36:6, PG 36:4, and PG 36:5 showed
decreases in response to HS, indicating that membrane lipid compositions can be fine-tuned to counter
temperature changes, principally via modulating desaturation leading to compensatory decreases
in membrane fluidity in response to high temperatures. Furthermore, SGDG, PG, and PE represent
anionic glycerolipids reported to aid in stabilizing membrane proteins [75].

With the advances in analytical methods in the field of lipidomics, a LC-MS lipidomic platform
was developed, which extended the coverage of plant lipidome [43]. In particular, PG (16:0/18:3)
concentration was up-regulated upon cold acclimation. In addition, the degree of unsaturation in
long-chain bases of sphingolipids was observed to increase during CS [43], presumably enhancing
Arabidopsis CS tolerance [76].

Moreover, lipid changes were reported during all phases of the freezing/cold exposure, including
cold acclimation, the freezing process per se, as well as recovery from low temperature [77–80].
CS-induced lipid alterations can limit detrimental lipid phase changes that may result in the cell
membrane leakage [77]. Indeed, CS- or freezing-induced alterations in plant lipid metabolism can
modulate subsequent damage during stress exposure [20,77–79]. For instance, desaturases producing
trienoic fatty acids are required for effective photosynthesis under cold conditions [80]. Therefore,
much still remains to be explored on the role of lipids in cold and freezing responses, and these
necessitate the development of more sensitive and extensive lipidomics and metabolomics analytical
strategies tailored to Arabidopsis.

3.2. Drought-Stress (DS) Induced Alterations of Arabidopsis Metabolome

DS can result in significant loss of plant productivity [81–83]. In the drought of 2012 in the United
States, the most severe drought experienced in the past 25 years, the production and yields of corn and
soybean were severely afflicted, leading to huge economic repercussions [84]. Such weather extremities
call for a better understanding of the metabolic mechanisms of stress response, which would be crucial
for improving crop tolerance to ensure agricultural outputs and economic stability [85].

Flavonoids represent a major component of specialized/secondary metabolites in plants [86]
that are thought to be defense metabolites against environmental stresses [87], and accumulation of
flavonoids in Arabidopsis have been previously observed in response to various stresses [88–94]. It was
reported that flavonoid accumulation, which was shown to participate in radical scavenging activity,
increases the oxidative and drought tolerance of plants, thereby preventing water loss [95].

Increased concentrations of three types of flavonoids, glycosides of kaempferol (f1, f2, and f3),
quercetin (f6 and f8), and cyanidin (A5, A8, A9, A10, and A11) were noted in Arabidopsis during DS,
indicating that all flavonoids are DS responsive metabolites that can be used as positive markers and
potential mitigators of DS [44]. Nonetheless the signaling/regulation mechanisms of flavonoids or the
individual role of each molecule in the stress mitigation mechanism has remained unclear.

The diversity of secondary metabolites is critical for their roles in plant stress response [96].
Metabolomics can aid transcriptomics to elucidate cellular machinery of metabolic tolerance towards
stress. The characterization of the flavonoid pathway transcription factor TRANSPARENT TESTA8
(TT8) in Arabidopsis using an integrative omics strategy revealed that two phytohormone biosynthesis
pathways of jasmonic acid and brassinosteroids, which are implicated in stress response [96],
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are directly regulated by TT8 [97]. Furthermore, at least eight stress response proteins, which
are implicated in the tolerance against salt and drought stress [98–100], are directly regulated in
a TT8-dependent manner, thus implicating TT8 in reprogramming defense response. In addition,
TT8 has a direct role in increasing the diversity of core metabolites, particularly by regulating
glycosylation of brassinosteroids and flavonoids.

Mitochondrial metabolism was reported to be highly active during DS responses [45]. DS-induced
metabolic reprogramming leads to up-regulated concentrations of amino acids and intermediates
from TCA cycle, including cis-aconitate, isocitrate, citrate, fumarate, 2-oxoglutarate, succinate, malate,
glycolate, putrescine, spermidine, gamma-aminobutyric acid (GABA,) guanidine, fructose, galactose,
glucose, maltose, mannose, raffinose, ribose, sucrose, trehalose, dehydroascorbate, alanine (Ala),
aspartate (Asp), glutamate (Glt), glutamine (Gln), Ile, Leu, lysine (Lys), methionine (Met), ornithine
(Orn), Phe, proline (Pro), serine (Ser), threonine (Thr), Try, and Val, as well as the decreased
concentrations of protein, starch and nitrate. The increased concentrations of the BCAA appear
to be associated with their increased utilization as TCA cycle substrates [101,102], and functions in
the short-term DS, most likely by retarding stress initiation. A multiplicity of primary metabolites
(osmolytes, osmoprotectants) accumulate under stress conditions, which could serve as building blocks
for macromolecules to stabilize membranes and therefore contribute to cell osmotic pressure [9,13].
Indeed, this may be why it is often infeasible to generate powerful stress tolerance varieties via
engineering the overproduction of merely a single compatible solute compound in plants.

Lipids, as major membrane components, function to preserve the membrane integrity during
DS process [47]. Concentrations of glycosylinositolphosphoceramide (GIPC), steryl glycoside (SG),
acylated steryl glycoside (ASG), DGDG, and PA in Arabidopsis were reported to be altered by
DS [43,47,48]. In response to DS, increased DGDG 18:3 and PC 18:3, and diminished levels of
triunsaturated fatty acid 16:3 and 18:3 were observed in leaves of Arabidopsis [47]. These results
indicated that Arabidopsis have a strong capacity for tolerating DS at the cellular level via modulating
membrane lipid proportions.

3.3. Salt Stress-Induced Alterations in Arabidopsis Metabolome

Soil and water salinity is pervasive throughout the globe, and may adversely impact the crop
yield [103]. Plants have evolved tolerance against saline stress, which may involve osmotic adjustment
and the sequestration of ions into respective cellular compartments [104]. Numerous metabolomic
studies that elucidate the tolerance mechanisms of Arabidopsis in response to salt stress have been
reported [105,106].

Using global transcriptional and metabolomic analyses, a study on the regulation mechanism
of polyamine in Arabidopsis salinity tolerance revealed that activation of abscisic acid and jasmonate
biosynthesis, and accumulation of important compatible solutes; as well as TCA cycle intermediates,
was observed [49]. Expression analyses indicated that thermospermine regulates the transcript levels
of certain target genes associated with the biosynthesis and signaling of jasmonate, some of which are
proven to enhance salinity tolerance.

The osmotic potential in the plants cell is increased upon hyperosmolarity challenge. The osmotic
potential of the cell cytosol is reduced by plant cells via building up compatible osmolytes to maintain
the activity of enzymes [46]. Concentrations of Pro, histidine (His), glutathione, and GABA in
Arabidopsis were strongly affected by salt stress. Pro, polyamines, organic acids, and Gly betaine,
as compatible osmolytes, can greatly decrease stress-induced destruction of plant cells [107–112].
The compatible osmolytes are synthesized via shifting basic intermediary metabolites towards
stress-activated biochemical reactions. Cytochrome P450s generally participate in primary and
secondary metabolism and may be implicated in some osmolytes biosynthesis. Many other potential
biochemical compounds, which are associated with salt tolerance, can also be uncovered by metabolic
analysis [113–115].
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4. Future Perspectives

Although metabolomics represents a relatively new realm of science that emerged not more
than two decades ago, it has already exhibited considerable potential in agricultural and food
science research, especially pertaining to the elucidation of metabolome and lipidome changes in
response to environmental or pathophysiological stimuli; thereby contributing to the crop production
improvement. Despite the rapid advances in the techniques of NMR and MS coupled to GC or LC,
and their broad applications to the field of metabolomics, thus far, no single analytical platform by
itself can offer a holistic coverage of the metabolome in plants. While NMR possesses the advantage of
capturing the structural information of metabolites as well as their abundances, LC-MS emerges as
the probable optimal choice in terms of the acquisition of global metabolome in plants, and the rapid
advances in MS instrumentation is greatly driving its diverse applications in agricultural sciences.

In face of adverse environmental conditions, a series of primary metabolites (osmolytes,
osmoprotectants) and secondary metabolites (defense metabolites) in plants accumulate to enhance
their stress tolerance, thus it is impossible to generate plants with high levels of stress adaptation via
engineering the levels of a just a few selected metabolites. Future studies will focus on increasing the
resolution and coverage of the metabolome to obtain a comprehensive understanding of how plants
adapt themselves to environmental stresses, providing new avenues to increase crop production.

Apart from the identification of critical metabolic pathways to uplift crop production,
metabolomics also confers a powerful tool to assess food crop quality. For example, global profiling of
plant/crop metabolome could also facilitate in the identification of genetic manipulations that may
serve to increase the nutritional value and quality of crops. For instance, previous lipidomic analysis
has revealed that GmMYB73 manipulation promotes lipid accumulation in soybeans, thus providing
a potential avenue for increasing oil production in legume crop plants [116]. Another example is
given by the establishment of an integrated lipidomic approach comprising multiple analytical arms
specifically tailored to the analysis of the fine lipidomic fingerprints of palm oil, currently the leading
edible oil consumed around the globe, which could be applied to the evaluation of oil quality and the
health benefits/risks associated with different oil refinement techniques [117]. Again, resolution of
the metabolome (lipidome) is instrumental in such applications, since a highly sensitive analytical
methodology is indispensable in detecting trace amounts of critical components such as oxidized lipids
including oxidized triacylglycerols that could be auxiliary in determining the oil quality.

In conclusion, while metabolomics holds great promise in forwarding agricultural research,
a pressing need exists to expand its analytical capacity in order to derive fully integrated functional
networks of metabolites that have true biological meaning. The systemic construction of metabolome
libraries with sufficient resolution is therefore expected to further broaden the translational applications
of metabolomics in various sub-arenas of agricultural research. Finally, the plethora of metabolomics
data also calls for the development of competent information processing tools that allow data to
be processed, integrated, interpreted, and verified alongside with proteomics and transcriptomics
strategies in order to fully unravel the various intricate biological networks under study.
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Abbreviations

Ile Isoleucine
Val Valine
Trp Tryptophan
Ala Alanine
Glt Glutamate
Lys Lysine
Orn Ornithine
Ser Serine
His Histidine
Leu Leucine
Tyr Tyrosine
Phe Phenylalanine
Asp Aspartate
Gln Glutamine
Met Methionine
Pro Proline
Thr Threonine
Gly Glycine
AA Amino acid
AAA Aromatic amino acid
LPC Lysophosphatidycholine
PC Phosphatidylcholine
PI Phosphatidylinositol
PG Phosphatidylglycerol
SQDG Sulfoquinovosyldiacylglycerol
DGDG Digalactosyl-diacylglycerol
GABA Gamma-Aminobutyric acid
SG Steryl glycosides
BCAA Branched-chain amino acid
FA Fatty acid
LPE Lysophosphatidylethanolamine
PE Phosphatidylethanolamine
PA Phosphatidic acid
PS Phosphatidylserine
MGDG Monogalactosyldiacylglycerol
TCA Tricarboxylic acid cycle
GIPC Glycosylinositolphosphoceramides
ASG Acylated steryl glycosides
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