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Abstract: Growth arrest specific 6 (Gas6) is a multimodular circulating protein, the biological actions
of which are mediated by the interaction with three transmembrane tyrosine kinase receptors:
Tyro3, Axl, and MerTK, collectively named TAM. Over the last few decades, many progresses
have been done in the understanding of the biological activities of this highly pleiotropic system,
which plays a role in the regulation of immune response, inflammation, coagulation, cell growth,
and clearance of apoptotic bodies. Recent findings have further related Gas6 and TAM receptors to
neuroinflammation in general and, specifically, to multiple sclerosis (MS). In this paper, we review
the biology of the Gas6/TAM system and the current evidence supporting its potential role in the
pathogenesis of MS.
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1. The Gas6/TAM Receptors System

Growth arrest specific 6 (Gas6) is a gene firstly identified in murine fibroblasts in 1988 [1],
expressed during the G0 phase and down-regulated upon induction of growth by serum. The human
gene was cloned in 1993 [2] and encodes for a vitamin K-dependent protein which is expressed in
different tissues, such as the gut, bone marrow, endothelial cells, and fibroblasts [2–4]. Structurally,
Gas6 shares a high homology with protein S (ProS), another vitamin K-dependent circulating protein,
which plays an anticoagulant role in vivo. Gas6 and ProS are both characterized by the presence
of a C-terminal sex hormone-binding globulin (SHBG)-like structure composed by two globular
laminin-G-like domains. The N-terminal region contains 11 γ-carboxyglutamic acid residuals
(Gla), a loop region and four epidermal growth factor (EGF)-like domains. The post-translational
carboxylation of γ-glutamyl residuals is the vitamin K-dependent process that confers a high affinity
for negatively-charged membrane phospholipids, crucial for some Gas6 functions [2,5].

Gas6 and ProS are both ligands of three different tyrosine kinase receptors, collectively named
TAM, an acronym for Tyro3, Axl, and MerTK; Axl is characterized by the highest affinity for
Gas6 [6–8]. The extracellular region of the receptor consists of an immunoglobulin (Ig) domain,
followed by a tandem fibronectin 3 domain; the Ig domain interacts with the SHBG-like structure
of the biological ligands. The single transmembrane domain is followed by the intracellular region,
which is responsible for the tyrosine kinase activity activated by receptor dimerization [9]. This is
coupled to the downstream activation of different pathways, including phosphoinositide 3 kinase
(PI3K)/Akt, mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK)
1/2, phospholipase C [10–12].
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All three TAM receptors can be detected in a circulating, soluble form (respectively named
sTyro3, sAxl, and sMer), which is the result of the proteolytic cleavage of the transmembrane receptor
by a metalloproteinase (Figure 1) [13,14]. This cleavage results in the inactivation of the receptors;
furthermore, these soluble forms act as decoy receptors for the ligands [15].
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Figure 1. Interaction between growth arrest specific 6 (Gas6) and TAM (Tyro3, Axl and Mer) receptors.
The sex hormone-binding globulin (SHBG) domain of Gas6, made of two globular laminin-G like
repeats, interacts with the immunoglobulin-like domain of the TAM receptors. The extracellular
portion is completed by two fibronectin 3 repeats, while the tyrosine kinase activity is played by the
intracellular region of the receptor. ADAM10 and ADAM17 are two metalloproteinases responsible of
TAM receptors cleavage. Their proteolytic domain cleaves TAM receptors in close proximity to the
transmembrane domain, leading to the formation of soluble TAM (sTAM). sTAM receptors inhibit Gas6
activity by acting both as decoy receptors and reducing the number of ligand sites on the cell membrane
(see text for further explanations and references). Ig, immunoglobulin; EGF, epidermal growth factor.

TAM receptors are differentially expressed in human tissues. Tyro3 predominates in mouse
and human central nervous systems (CNS) [16,17], but it is also expressed by platelets [18],
the heart [19], ovaries and testis [20], breasts [21], osteoclasts [22], and the retina [23]. Axl is widely
expressed in many tissues and organs, including the brain [24], liver [25], kidney [26], heart [19],
monocytes/macrophages [27], and endothelial [28] and vascular smooth muscle cells [29]. Finally,
MerTK is the main mediator of Gas6 activity on immune cells [30,31], but is also expressed by the
brain [24], platelets [32], gonads and prostate [33,34], lung [35], retina [23], kidney [36], and heart [19].

The Gas6/TAM system is highly pleiotropic and has many biological functions. Hence, it has
been studied in many conditions. Gas6 and TAM regulate cell growth and an overactivation of the
system has been associated to several neoplastic conditions and proposed as a novel therapeutic
target [37–48]. Furthermore, TAM receptors are involved in haemostasis. It is well known that their
ligand ProS is a master regulator of the coagulative cascade, by working as a non-enzymatic cofactor
for activated protein C in the breakdown of coagulation factors (F) Va and FVIIIa [49]. Gas6 seems
to play a complementary role on platelet function, which is impaired in Gas6 knockout (KO) mice,
resulting in a defective thrombus formation [50].



Int. J. Mol. Sci. 2016, 17, 1807 3 of 15

2. Gas6 and TAM Receptors System, a Regulator of Innate Immunity

One of the best defined activities of the Gas6/TAM system, however, is the regulation of innate
immunity. MerTK and Axl have been isolated in circulating monocytes and tissue macrophages,
but not in granulocytes, T and B lymphocytes [27,51,52]. Studies on sections of spleen, lymph nodes,
and thymus in mice confirmed that the mRNAs for Tyro3, Axl, and MerTK are abundant in regions
populated by macrophages, but are absent in lymphocyte-rich areas [53]. Interesting lessons come
from the TAM receptor KO mouse model; despite a normal phenotype of immune system at birth,
within the first year of life these animals develop lympho-splenomegaly and aberrant proliferation
of active T and B lymphocytes, with diffuse infiltration of tissues [53]. This constitutive activation
of the immune system leads to the development of autoimmune manifestations similar to those of
several human autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, Sjögren’s
syndrome, pemphigus vulgaris) and to high serum autoantibody titres [53,54]. Since lymphocytes
do not express any of the TAM receptors, the splenomegaly, lymphadenopathy, and lymphocyte
hyperactivation seen in TAM KO mice need to be driven by monocytes and macrophages. In fact,
these cells show both an increased expression of major histocompatibility complex (MHC) class II and
B7 co-receptors and an enhanced production of pro-inflammatory cytokines, including tumor necrosis
factor α (TNF-α) and interleukin (IL) 12 [53].

In vitro experiments have shown that the TAM system is up-regulated when antigen-presenting
cells (APCs) become activated. Toll-like receptor (TLR) activation induces the expression of Axl
receptors through type I interferon (IFN) signalling, leading to suppressor of cytokine signalling
proteins (SOCS) 1 and SOCS3 up-regulation, which have a critical role in switching off the inflammatory
response in activated dendritic cells [55–57]. Consistent with these findings is the observation
that the Gas6/TAM system exerts an anti-inflammatory role [58]. Gas6 is able to suppress IL-1,
IL-6, and TNFα expression through the activation of MerTK-PI3K-Akt pathway in TLR-activated
monocytes/macrophages, with the down-regulation of NFκB (nuclear factor kappa light chain
enhancer of activated B cells) nuclear translocation [31]. Furthermore, the TAM system is involved
in the regulation of type 2 immunity. In a house dust mite (HDM) murine model of allergic airway
inflammation, HDM-sensitized wild-type (WT) mice developed classical signs of allergic asthma.
Interestingly, HDM-sensitized Tyro3−/− mice displayed a larger increase in leukocytes and eosinophils
in bronchoalveolar lavage fluid and lung, an increased infiltration of total and effector memory CD4+

T cells in the mediastinal lymph nodes, a higher percentages of CD4+ T cells producing type-2 cytokines
and higher serum immunoglobulin E (IgE). This exacerbated type-2 response correlated with the lung
histopathological score [59].

A second key feature of the Gas6/TAM system is the regulation of innate immunity through
direct involvement in phagocytosis/efferocytosis. Again, this evidence comes from the TAM receptor
single and triple mutant mice. MerTK−/− mice display a delayed clearance of apoptotic thymocytes
after dexametasone stimulus, and the same occurs with the Axl−/− and Tyro3−/− single and double
mutants [60–62]. Gas6 recognizes phosphatidylserine (PtdSer) through its amino-terminal Gla
domain [63]; this lipid, normally, is expressed on the inner face of the plasma membrane but,
during apoptosis, the inactivation of flippases leads to the exposure of PtdSer on the external cell
membrane of apoptotic bodies [64,65]. Consequently, Gas6 bridges this lipid with TAM receptors,
driving macrophages to the recognition of apoptotic cells and to their subsequent phagocytosis [54,60].
The clearance of apoptotic bodies and the production of pro-inflammatory cytokines are two tightly
linked processes; in vitro, apoptotic cells, but not necrotic cells, are able to inhibit the NFκB-mediated
production of pro-inflammatory cytokines by dendritic cells. Notably, MerTK binding of apoptotic
bodies is required for mediating this effect. MerTK downstream cascade leads to the activation of the
PI3K/Akt pathway, which inhibits IKK (IkB kinase); as a consequence, the release of NFκB from the
complex with IkB is blocked, preventing its translocation to the nucleus and the transcription of the
genes of pro-inflammatory cytokines, including TNF-α [66].
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It is, therefore, not surprising that a dysfunction of this system has been linked to the development of
autoimmune diseases, since an impaired clearance of apoptotic bodies and an inappropriate inflammatory
response are considered critical for the misdirected immune response observed in these conditions.

3. Gas6/TAM System Regulates Survival and Functions of Neuronal and Glial Cells

In recent years a role for Gas6/TAM receptors has been postulated in the regulation of the
nervous system. Gas6 is extensively expressed in the CNS [67], suggesting that interactions between
Gas6 and its receptors are likely to have physiologically relevant functions [68]. All three TAM
receptors are also expressed in the CNS, as reported since 1991 by Lai and Lemke [69], with Tyro3
being the most represented. The Gas6/TAM system, Tyro3 in particular, is relevant to brain
development during embryogenesis. In adult mice, Tyro3 is strongly expressed by cerebral cortex and
hippocampal neurons [70]; moreover, it is expressed by the amigdala, cerebellum, olfactory bulbs,
and gonadotropin-releasing hormone (GnRH) neurons [71]. On the other hand, Axl and MerTK are
expressed at low and constant levels during embryogenesis and adult life in mice, mainly in cerebellar
and hippocampal neurons [72]; all three TAM receptors are also expressed by glial cells [73] and by
endothelial and vascular smooth muscle cells in the CNS [74–76].

Several experiments have disclosed a role of Gas6 in promoting the survival of different neuronal
cell types. In vitro, recombinant Gas6 protects hippocampal rat neurons from apoptosis induced by the
deprivation of serum [77]. Moreover, Gas6 protects cortical neurons of mice from apoptosis induced
by β amyloid protein and phospholipase A2 (PLA2-IIA), inhibiting chromatin condensation and
DNA fragmentation. The fact that the cell cultures of these studies contained few non-neuronal cells
indicates that Gas6 has a direct neuroprotective effect, not indirectly through supporting cells [78,79].
The anti-apoptotic action of Gas6 has also been described in gonadotropin-releasing hormone (GnRH)
secreting neurons from mice, through the ERK cascade and PI3K [80,81]. The Gas6/TAM functional
effect on adult neurons remains to be clarified; Tyro3 has been detected in clusters at dendritic, somatic,
and axonal levesl but, apparently, not in synaptic connections. In view of its distribution, a role in
the regulation and integration of synaptic inputs has been hypothesized; furthermore, Tyro3 might
help the axonal pathfinding, being expressed by growth cones [70]. Moreover, a role in cell adhesion
and cell migration had been previously suggested for Axl [72], which was identified, together with
Tyro3, as a factor involved in GnRH neuronal migration along olfactory nerves from their origin in
the olfactory placode to the forebrain [80]. Double KO mice for Tyro3 and Axl are characterized by
a defective GnRH neuron number and migration which are responsible for impaired sexual function
in female mice [71,82].

With reference to neuroglial cells, microarray analyses revealed that transcripts of tyrosine kinase
Axl and MerTK receptors are expressed at high levels in isolated oligodendrocytes in the human
fetal spinal cord of the second quarter [83]. The latter study also shows that human oligodendrocyte
2′,3′-cyclic nucleotide 3′-phosphodiesterase+ (CNP+) and myelin basic protein+ (MBP+) obtained
from fetal spinal cord grown in the presence of recombinant human Gas6 (rhGas6) are protected
from apoptosis, and develop more primary processes and arborization compared to those not treated.
The effect is mediated by the Axl receptor and—downstream—by PI3K/Akt activation, and is abolished
by the soluble receptor Axl-FC [83]. In a later paper by the same group a protective activity of Gas6
on TNFα-mediated cytotoxicity on human oligodendrocytes was shown, with an increase in the
survival rate from 18.7% to 64.3%. This effect was Axl-dependent, being completely abrogated in
oligodendrocytes derived from Axl KO mice [84]. Additionally, Gas6 stimulates the growth of human
Schwann cells, increasing both the number of cells and the incorporation of tritiated thymidine, and has
synergic effects with other mitogens; indeed, human Schwann cells express both Axl and MerTK and their
phosphorylation is driven by Gas6 [85]. In the mice model of sciatic nerve injury, Axl is overexpressed
after the nerve is damaged, again suggesting a role in the survival and protection against apoptosis [85].

Gas6 is able to regulate the inflammatory activity of glial cells, similarly to what is reported
in monocytes and macrophages [31]. In 2008, Grommes et al. [86] showed that the treatment of
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cultured murine microglial cells with Gas6 significantly reduces the pro-inflammatory response
induced by lipopolysaccharide (LPS) stimulation (IL-1β and inducible nitric oxide synthase, iNOS,
are significantly down-regulated by Gas6). The Gas6/TAM system has recently been described to be
relevant in physiological functions of microglia, the tissue macrophages of the brain and spinal cord.
In fact, MerTK−/− and Axl−/− double-KO mice are characterized by impairment in the clearance of
apoptotic bodies, reduced motility of microglial cells, and delayed recruitment to sites of brain injury;
moreover, both Gas6 and ProS serve as ligands in this process [87,88].

4. Evidence about the Role of the Gas6/TAM System in Multiple Sclerosis: Lessons from Animal
Models and Human Studies

Multiple sclerosis (MS) is an immune-mediated disorder of the CNS. The complex interactions
between adaptive and innate immunity determine an inflammatory aggression to the myelin
of neuronal fibers. In this context, macrophages and microglial cells are involved in myelin
degradation and in oligodendrocyte loss by producing proinflammatory cytokines [89]. Therefore,
systems involved in dampening macrophages activation are promising targets for studies addressing
MS pathogenesis. Furthermore, in the animal model of myelin oligodendrocyte glycoprotein
(MOG)-induced experimental allergic encephalomyelitis (EAE) an increased apoptosis in lymphoid organs,
as well as the injection of apoptotic bodies, could worsen the disease course from a relapsing-remitting
clinical pattern to a more severe secondary progressive course. However, while the underlying
mechanisms have not been fully elucidated, an increase in anti-MOG antibody is observed under these
circumstances [90]. Hence, impaired apoptosis also seems of significance in MS pathogenesis as it
occurs for other systemic autoimmune diseases, such as systemic lupus erithematosus [91].

As mentioned before, the Gas6/TAM system has been linked to the development of autoimmunity,
in the pathogenesis of which an impaired clearance of apoptotic bodies and an inappropriate
inflammatory response by macrophages and dendritic cells are considered critical [54]. Additionally,
the clearance of cellular and myelin debris after inflammatory demyelination might be an initial and
important early step for the recovery of damaged myelin fibers; it turned out that the Gas6/TAM
system is also a relevant system for both neuron and glial cell survival, including specialized cells
involved in myelination processes of the CNS [83]. Thus, a role of this system in MS pathogenesis seems
possible either via control of inflammation, or through the regulation of the myelination process, or both.

Again, the strongest evidence of Gas6/TAM system involvement in MS pathogenesis come from
animal models, in particular those in which either Gas6 or TAM receptors are knocked down. Both the
cuprizone demyelination and the EAE models have been used (Table 1 and Figure 2).

Cuprizone (bis-cyclohexanone-oxaldihydrazone) induces a toxic demyelination without altering
the blood/brain barrier; it determines the loss of oligodendrocytes and microglial/macrophage
accumulation in the damaged tissues. This model allows the study of myelin damage and repair,
without the confounding factors of the intense inflammation present in mice with EAE [92,93].
In mice undergoing cuprizone challenge, a change in TAM and Gas6 expression occurs, Tyro3 is
down-regulated, while Gas6, Axl, and MerTK transcription are enhanced, paralleling microglial
activation. Gas6−/− mice, under the same conditions, show a more severe demyelination, a greater
reduction in oligodendrocytes number, and an overactivation of microglia [94]. A further study
confirmed a possible relevant role of Gas6 in myelin repair processes; in fact, Gas6−/− mice had
a delayed remyelination at four weeks after cuprizone discontinuation with respect to WT, along with
a reduction of oligodendrocytes. These differences, however, disappeared after 10 weeks; additionally,
Gas6 significantly increased remyelination in vitro, in a dose-dependent manner [95]. Others obtained
similar results. In fact, injection of rhGas6 into the CNS improved the recovery from damage
after cuprizone withdrawal, with a beneficial effect on the clearance of cellular and myelin debris,
enhancement of remyelination and of maturation of oligodendrocyte progenitor cells, and an increase
in the number of myelinated axons [96]. The effect of Gas6 described above is mediated, at least in part,
by the Axl receptor, since the clearance of damaged cells and of myelin debris, which likely impacts
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upon remyelination and cell survival, is impaired in Axl−/− mice. These animals have a delayed
clearance of apoptotic oligodendrocytes and of myelin debris with deferred recovery from cuprizone
demyelination [97]. Other in vitro and in vivo experiments link MerTK to the phagocytosis of apoptotic
debris in the CNS [79,88,98].

Altogether, these data from the cuprizone mice model indicate that the Gas6/TAM receptors’
interaction is important, both during demyelination and remyelination, independently of the effects on
inflammation. This system favours myelin repair after damage directly, by enhancing the clearance of
cellular and myelin debris and through the support to oligodendrocyte survival and myelin restoration.

Further evidence to support Gas6/TAM involvement in the pathogenesis of MS come from
the EAE model. The induction of EAE with MOG administration damages the blood-brain barrier,
resulting in the infiltration of T cells and monocytes with a severe inflammation, expression of
pro-inflammatory molecules, demyelination, and axonal damage. This model creates an inflammatory
demyelination process similar to what happens in MS and allows studying the role of the Gas6/TAM
system in neuroinflammation [92].

After EAE induction, Gas6, Axl, and MerTK RNA expression (but not Tyro3 or ProS) are
significantly increased in the lumbar spinal cord; the direct intracerebral delivery of Gas6 is protective,
with evidence of less demyelination and/or enhanced remyelination relative to controls. When EAE
was induced in Gas6−/− mice, worse clinical scores and delayed recovery from damage were observed,
and the inflammation in the spinal cord was more severe, with greater expression of pro-inflammatory
molecules and a significantly increased infiltration of macrophages [99]. These data fill the gap of
the previously mentioned experiments with the cuprizone model, suggesting that Gas6 is relevant in
both limiting inflammatory demyelination and favouring recovery. Consistent with this hypothesis,
Axl−/− mice are characterized by a more severe course of EAE than wild-type (WT) mice. Specifically,
these mice develop worse spinal cord lesions with larger infiltrates, more demyelination, and more
axonal damage. This is associated with larger amounts of pro-inflammatory cytokines and chemokines,
such as TNFα, monocyte chemoattractant protein 1 (MCP1) and CCL5/regulated on activation,
normal T cell expressed and secreted (RANTES) in the spinal cord [100]. Of note, Axl−/− mice had
a strikingly impaired clearance of myelin debris by microglia/macrophages [100].

In conclusion, the data from animal models of MS altogether indicate that the Gas6/TAM system
is relevant both in dampening inflammatory demyelination and in supporting myelin repair. The Axl
receptor seems to be the principal effector of these actions. Thus, the Gas6/Axl interaction may be
a promising target of anti-inflammatory, neuroprotective, and promyelinating treatments.

To date, very few studies replicated the above evidences in patients with MS. In 2009
Weinger et al., [101] in an autopsy study on MS patients, reported an up-regulation of sAxl and
sMer in homogenates derived from chronic silent and chronic active lesions, respectively. Conversely,
the full-length form of these receptors was not upregulated; intra-lesion glial cells are responsible of
this expression. In normal tissue homogenates, Gas6 positively correlates with sAxl and sMer; on the
contrary, in chronic active and silent lesions, Gas6 correlates inversely with sAxl and sMer. However,
it is not known whether the low Gas6 concentration is due to the decoy action of sAxl and sMer
leading to ligand removal or, alternatively, Gas6 secretion is reduced and, therefore, receptor cleavage
enhances in the attempt to eliminate the excess of membrane-bound receptors and to restore the
homeostatic ligand-to-receptor ratio. Axl and MerTK are solubilised by two metalloproteinases also
called ADAM10 (a disintegrin and metalloproteinase 10) and ADAM17 (see Figure 1); in established
MS lesions, the expression of these enzymes is up-regulated [101]. The shift from a positive correlation
in normal tissue to an inverse correlation in established MS lesions could impair Gas6/TAM activity,
affecting the functions of the system on immune response and on cell debris clearance, and favouring,
in turn, a chronic demyelination environment in spite of ongoing remyelination and repair [101].

Similar observations have been reported in other human autoimmune diseases, such as
juvenile systemic lupus erythematosus, where an impairment of the physiological balance between
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transmembrane and soluble TAM has been described. This might justify a complex derangement of
the system, leading to a deficient phagocytosis and persistent inflammatory response [102].

A further clue of the association between Gas6/TAM and MS in humans has been provided by
genome-wide association studies (GWAS). Several single nucleotide polymorphisms (SNPs) within the
MerTK gene are associated with susceptibility to MS [103]. This finding was later confirmed in a large
cohort of 1140 MS cases and 1140 healthy controls using a candidate gene approach. The authors
identified 12 intronic SNPs related to MS susceptibility, in strong linkage disequilibrium with each
other [104]. Recently, the same group reported that one specific variant of MerTK gene, so called
rs7422195, has discordant association to MS according to HLA (human leukocyte antigen)-DRB1*15:01
status, being protective in DR15 homozygosity and favouring the disease in the absence of DR15.
The minor allele of rs7422195 is also associated to an increased gene and protein expression of
MerTK in monocytes and CD4+ cells [105]. Whether this subset of cells was formed by T cells or
contaminated by monocytes expressing CD4 is not yet known. In any case, a recent study assessed the
transcriptomic modification that Th17 CD4+ T cells undergo, derived from mice following induction
of EAE. Interestingly, MerTK is among the genes overexpressed upon EAE induction [106].

Very limited evidence comes from clinical studies; our group evaluated both cerebrospinal
fluid (CSF) and plasma concentration of Gas6 of MS patients by an enzyme-linked immunosorbent
assay (ELISA) validated for human use and tested in other diseases and in CSF [107–109].
Sixty-five consecutive patients with clinically-isolated syndrome (CIS) or MS who underwent a spinal
tap to confirm MS diagnosis were evaluated in relation to 45 controls affected by a non-inflammatory
neurological disease. All MS patients were sampled during a relapse. The score for each functional
system (FS) and the total expanded disability status scale (EDSS) score were calculated at onset,
at maximum worsening, and at the first examination after the day of maximum improvement of
the relapse. Relapse duration, severity, number of FS involved, and relapse recovery were obtained.
We observed that patients with MS do not have substantial alterations of plasma Gas6 concentration
with respect to controls, but a CSF/plasma dissociation was observed as being CSF Gas6, significantly
higher with respect to other non-inflammatory neurologic diseases. Interestingly, those patients
suffering a more severe or longer relapse or with more FS had a lower CSF Gas6 concentration,
no different from controls, in comparison to those showing shorter and milder relapses and with fewer
FS, who had significantly higher concentrations (nearly 2×). On the other hand, CSF Gas6 concentration
did not change according to the completeness of recovery. Finally, neither plasma nor CSF Gas6 were
related to the relapse rate or EDSS progression in a follow up cohort [110]. These findings fit with
experimental evidences, according to which Gas6 is induced during demyelination in MS murine
models and probably acts with a protective role in dampening neuroinflammation and in favouring
myelin repair, and are in line with the report from Weinger et al., showing that Gas6 expression was
very low in chronic MS lesions [101].

Table 1. Summary of the current in vivo studies supporting a role for the Gas6/TAM system in
multiple sclerosis.

Author Year Main Findings

Hoehn et al. [97] 2008 The deletion of Axl is associated with a delayed recovery and prolonged
axonal damage following cuprizone toxicity

Binder et al. [94] 2008 Gas6, Axl and MerTK are upregulated upon cuprizone-induced
demyelination; Gas6 knockout (KO) mice have more severe demyelination

Weinger et al. [101] 2009 In chronic multiple sclerosis (MS) lesions sAxl and sMer are upregulated
and inversely related to cerebrospinal fluid (CSF) Gas6 concentration

Tsiperson et al. [96] 2010 Gas6 stimulates remyelination following cuprizone toxicity

Ma et al. [104] 2011 SNPs in MerTK gene confer susceptibility to MS

Binder et al. [95] 2011 Gas6 KO mice show a defective remyelination, after cuprizone-induced
demyelination, which can be corrected by administering exogenous Gas6
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Table 1. Cont.

Author Year Main Findings

ANZgene consortium [103] 2011 Many SNPs of MerTK gene are associated to MS risk in a genome wide
association study

Weinger et al. [100] 2011 Axl KO murine models of experimental allergic encephalomyelitis (EAE)
are characterized by a more severe phenotype than wild type mice

Sainaghi et al. [110] 2013 Gas6 CSF concentration is higher in patients with shorter and less severe
MS flares

Gruber et al. [99] 2014 Intracerebral delivery of Gas6 protects against damage in EAE

Hoppmann et al. [106] 2015 CD4+ T cells from EAE mice show an up-regulation of Gas6 and MerTK

Binder et al. [105] 2016 SNPs in MerTK can protect or confer risk of MS on the basis of
HLA-DRB1*15:01
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5. Conclusions

The important functions exerted in human biology by TAM receptors and their ligand Gas6,
including cell growth regulation, inflammation, and clearance of apoptotic bodies, make this relatively
novel system a promising target in different pathological conditions, especially if immune-driven [58].
Specifically, Gas6 and TAM seem to play a protective role against inflammatory demyelination, likely as
the result of multiple mechanisms: a neurotrophic effect [24], an anti-inflammatory effect on microglia,
and [86] a trophic effect on oligodendrocytes mediated by Axl [83,84], and a pro-phagocytic action,
mediated by both Axl and MerTK [61]. Fewer, but consistent, evidence comes from human studies.
However, the fact that Gas6 is scarcely expressed and sAxl and sMer decoy receptors are overexpressed
in chronic MS lesions [101], and that the higher the CSF Gas6 concentration is, the milder the clinical
MS relapse phenotype [110], are strong suggestions that activation of the TAM system in this setting
is beneficial. The mechanisms by which Gas6 might exert this putative protection from the effects of
inflammatory demyelination remain highly speculative; however, dysregulation of TAM cleavage is
a hypothesis worthy of further testing. Indeed, a deeper understanding of the Gas6/RAM system may
contribute to elucidation of MS pathogenesis and, possibly, to give us new therapeutic tools.
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