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Abstract: We present the linear response function of bond-orders (LRF-BO) based on a real space
integration scheme for molecular systems. As in the case of the LRF of density, the LRF-BO is defined
as the response of the bond order of the molecule for the virtual perturbation. Our calculations show
that the LRF-BO enables us not only to detect inductive and resonating effects of conjugating systems,
but also to predict pKa values on substitution groups via linear relationships between the Hammett
constants and the LRF-BO values for meta- and para-substituted benzoic acids. More importantly,
the LRF-BO values for the O-H bonds strongly depend on the sites to which the virtual perturbation
is applied, implying that the LRF-BO values include essential information about reaction mechanism
of the acid-dissociation of substituted benzoic acids.
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1. Introduction

During the past decades, the main branch of contemporary computational chemistry has
been developed mainly to simulate chemical phenomena realistically, typically with quantum
mechanics/molecular mechanics (QM/MM) methods [1,2]. In the QM/MM methods, it is required
to cover environmental effects such as solvent effects for chemical reactions in liquid states and
effects of surrounding proteins and lipids for enzyme reactions. As a result, this type of approach
involves huge computational costs to achieve reliable simulations. In contrast, another branch of
computational chemistry has also grown steadily, which involves a strategy to inspect intrinsic
properties of molecules that are related to functionality and chemical reactivity in order to comprehend
and predict chemical phenomena. One of the well-established properties is the Fukui functions,
which are defined as the left (−) and right (+) side derivatives of density with respect to the number of
electrons, N, i.e., f±(r) ≡ (∂ρ(r)/∂N)±v , and are known to be typical indicators for nucleophilic and
electrophilic attacking sites, respectively [3–5]. Also, a derivative of density with respect to external
potential (v) with fixing the number of electrons (N), (∂ρ(r)/∂v(r′))N, called the linear response
function (LRF), has been found to be a measure of electron delocalization properties such as induced
and resonating effects of conjugated systems [4–16]. Also, the LRF is reported to have maximum
values at transition states for several Diels-Alder reactions, being another important descriptor of
chemical reactions [13]. These two properties, together with other properties, such as softness and
hardness that have been well-known concepts in general chemistry, are defined as energy derivatives or
grandcanonical potential (at T = 0 K) derivatives with v, N, and chemical potential, µ, and are related
to each other [3,5,14], enabling us to understand intrinsic properties of molecules in a quantitative
way using ab initio computational results. This type of theory is now well established and called
“conceptual density functional theory (DFT)”.

Since the purpose of the second branch of computational chemistry is to understand and to
predict chemical phenomena via inspecting intrinsic properties of molecules as descriptors of chemical
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reactivities without implementing realistic simulations like QM/MM molecular dynamics approaches,
it is also possible to consider other reactivity descriptors that are not based on density functional theory.
Considering that the change of bond-orders is a more direct property that describes the essence of
chemical reactions, it is valuable to try to see linear response functions of the bond-orders (LRF-BO)
of molecules. However, to our best knowledge, this property, the LRF-BO, has not been investigated
in ab initio quantum chemistry. It should be noted that Coulson and Longuet-Higgins [17,18],
and Fukui et al. [19] formulated linear response functions of off-diagonal parts of density matrices
(DM) within the Hückel model of conjugated organic molecules more than 50 years ago, but they
investigated perturbation energies rather than the LRF of DM itself as a descriptor of chemical
reactivities of molecules. Our purpose is to inspect the sensitivity of a specific chemical bond-order,
on which we focus our attention, for virtual perturbations.

For this purpose, we presented the LRF-BO using DFT computational results in a previous
study [20]. As a continuation of the previous work, but with essential improvements for avoiding
ambiguity of the numerical treatments in our previous definition, we explore the possibility of the
LRF-BO as a useful descriptor of chemical reactivities of molecules. We first show the LRF-BO values
of water molecule and those interpretations as a typical example of the use of the LRF-BO. Then,
we examine the LRF-BO calculations of conjugated and non-conjugated organic molecules, to show that
the LRF-BO can be used as a complement to the LRF of density. Further, we present the relationship
between the Hammett constants and the LRF-BO values for the meta- and para-substituted benzoic
acids. In addition, we inspect dependency of δBOH/δv(K) values on K, i.e., the site to which we apply
the perturbation, and discuss the implication of the LRF-BO values in describing chemical reaction
mechanism of the acid dissociations.

2. Linear Response Function of Bond-Order

Let us derive the linear response function (LRF) of the bond-order (BO). For simplicity, we assume
that the target molecules are closed-shell systems, but the generalization of the following formulation
to the open-shell systems is straightforward.

We start from an expression of the LRF of density matrix in real space, which can be obtained by
using the first-order perturbation theory as

δρ(r1, r2)

δv(r)
= ∑α,β

σ ∑Occ
i ∑Unocc

j

ψσ
j (r)ψ

σ
i (r)

εσ
i − εσ

j
(ψσ

j (r1)ψ
σ
i (r2) + ψσ

i (r1)ψ
σ
j (r2)). (1)

Here the unperturbed state is supposed to be described as a single-determinant wave function
consisting of Hartree-Fock or Kohn-Sham orbitals, {ψσ

k }. The summations run over the spin variables
(σ), occupied orbitals (i) and unoccupied orbitals (j). Expanding both sides in terms of atomic orbitals
with molecular orbital coefficients, {Cσ

kµ},

∑µν

δPµν

δv(r′)
φµ(r1)φν(r2) = ∑α,β

σ ∑ij
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j (r
′)ψσ

i (r
′)

εσ
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j
∑µν

(Cσ
jµCσ

iν + Cσ
iµCσ

jν)φµ(r1)φν(r2), (2)

and extracting the expansion coefficient, we have

δPµν

δv(r)
= ∑α,β

σ ∑ij

ψσ
j (r)ψ

σ
i (r)

εσ
i − εσ

j
(Cσ

jµCσ
iν + Cσ

iµCσ
jν). (3)

Note that we neglect the change of AOs due to the perturbation in order to derive Equation (3):
this is because we assume that the perturbation arises from reactants, catalysts, solvents, and other
environments, not from the changes of the nuclear configuration of the target molecule.
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Now we move on to the definition of linear response function of bond-order. As for the bond-order,
we employ the Mayer bond order [21], the most standard definition of the bond-order in the field of ab
initio quantum chemistry, which is defined as,

BIJ ≡∑I
µ ∑J

ν
QµνQνµ. (4)

The two summations of basis sets’ indices, µ and ν, run over the I-th atom and the J-th atom,
respectively and the matrix, Q, is the product of the density matrix (P) and the overlap matrix (S),

Qµν ≡∑η
PµηSην. (5)

From Equation (3), we have an expression for the linear response function of the Q matrix as

δQµν

δv(r)
= ∑α,β

σ ∑ij

ψσ
j (r)ψ

σ
i (r)

εσ
i − εσ

j
∑η

(Cσ
jµCσ

iη + Cσ
iµCσ

jη)Sην. (6)

Finally, the linear response function of the bond-order can then be defined as

δBIJ/δv(r) ≡∑I
µ ∑J

ν

(
δQµν

δv(r)
Qνµ + Qµν

δQνµ

δv(r)

)
. (7)

It is convenient to consider perturbations that are applied to atomic sites. For this purpose,
we define the LRF-BO for the local perturbation, δv(ξ), that is applied to a specific atomic orbital φξ

via the following relation,

∑ξ

δBIJ

δv(ξ)
≡

w
dr

δBIJ

δv(r)
(8)

and we then have an expression of LRF-BO for the perturbation to an L-th atom,

δBIJ

δv(L)
≡∑L

ξ

δBIJ

δv(ξ)
. (9)

Here, the summation, ∑ξ , at the left side of Equation (8) runs over all AOs, and that at the right
side of Equation (9), ∑L

ξ is limited to the AOs that belong to the L-th atom. This is the scheme we
employed in reference [20], which is the first implementation of the LRF-BO. The LRF-BO based on
AO perturbations (Equation (8)) suits the linear combination of AOs (LCAO) formalism: for instance,
we easily see the LRF-BO for the case that the perturbation is applied to a π orbital at a specific carbon
atom in a π-conjugated system. However, when we would like to see the effects due to a nucleophilic
or electrophilic attack to a specific atom, it is unclear whether the perturbation, δv(ξ), is attractive or
repulsive since atomic orbitals except 1s orbitals have different (positive and negative) phases’ parts in
their distributions. To avoid such ambiguity, we here define δBIJ/δv(L) using a numerical integration

δBIJ

δv(L)
≡

w L
dr

δBIJ

δv(r)
, (10)

where the domain of integration for the L-th atom at the left side is defined as the Wigner-Seitz cell.
The Wigner-Seitz cell for molecular systems is constructed in a similar manner to that of solid systems:
the region for a specific atom in the molecule can be defined as a region encircled by all perpendicular
bisectors with neighboring atoms (See Figure S1).

From the above definition, we can derive some fundamental features of the LRF-BO. First,
the integration of the LRF-BO over the whole space always vanishes,

w
dr

δBIJ

δv(r)
= ∑

All
atoms
L

δBIJ

δv(L)
= 0, (11)
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because the occupied orbital, ψσ
i , and the unoccupied orbital, ψσ

j in the right side of Equation (6)
are orthogonal each other. If we notice that the left side of Equation (11) is the total response of
the bond-order for the case that the perturbation is homogeneous for the whole system, we deduce
Equation (11) trivially: the homogeneous perturbation is equivalent to addition of a constant term
to the original Hamiltonian. Second, the summation over all atomic pairs (I, J) of the LRF-BO also
vanishes as,

∑
All

atoms
I, J

δBIJ

δv(r)
= ∑

All
atoms
I, J

δBIJ

δv(L)
= 0. (12)

We should note that the summation includes I=J, so that this equation does not mean that the sum
of the bond-orders is conserved. Equations (11) and (12) are the results from the fact that the LRF-BO
in this paper is defined for constant N, which is parallel to a known relation for the LRF of density by
fixing the number of electrons,

r
drδρ(r)/δv(r′) =

r
dr′δρ(r)/δv(r′) = 0.

As for computational details, three dimensional integration in Equation (10) is approximated in a
manner similar to that used in usual DFT computations [22], namely by employing the combination of
the Euler-Mclaurin formula for the radial integration and the Lebedev quadrature for the spherical
integration for the L-th center integral [23]:

w L
dr

δBIJ

δv(r)
∼= ∑

Radial
Points

RL(i) ∑
Spherical

Points
SL(j)

w (R L(i))w (S L (j))
δBIJ

δv(RL(i) , SL (j))
. (13)

Note that, for the integration over the L-th center integral, we do not use the Becke’s fuzzy cell [22],
which is usually used in the DFT numerical integral scheme, but the Wigner-Seitz cell. The reason why
the Becke’s fuzzy cell is not used is that we would like to apply the virtual perturbation to a specific
localized region in the space (if the Becke’s fuzzy cell is used, the region defined as the L-th center
integral partially spreads over other atomic sites).

For all molecules we examined below, we used the B3LYP functional [24] and the 6-311G** basis
set for exchange correlation functional and basis set, respectively. First, we optimized the geometries
and subsequently we calculated the LRF-BO values for the geometries. All calculations were done
using a locally modified version of GAMESS [25] unless stated otherwise.

3. Computational Results

3.1. Water Molecule

We will begin by considering a water molecule to exemplify how to interpret LRF-BO values.
The computational values of the LRF-BO for the water molecule are summarized in Figure 1.

When the virtual perturbation is applied to the oxygen site, the LRF-BO value for both of the OH
bonds is 1.456 as shown in Figure 1a. When the perturbation is applied to the left hydrogen site
(H1), the LRF-BO values of two O-H bonds are different each other, i.e., δBOH1 /δv(H1) = −1.758 and
δBOH2 /δv(H1) = +0.303 (Figure 1b). Naturally, the left and right become reverse for the perturbation
to the right hydrogen (H2), i.e., δBOH2 /δv(H2) = −1.758 and δBOH1 /δv(H2) = 0.303, which are shown
in Figure 1c.
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Figure 1. The linear response function of bond-order (LRF-BO) values of a water molecule for 
perturbations that are applied to the various sites: (a) the oxygen atom; (b) the left hydrogen atom; 
and (c) the right hydrogen atom.  

Figure 1. The linear response function of bond-order (LRF-BO) values of a water molecule for
perturbations that are applied to the various sites: (a) the oxygen atom; (b) the left hydrogen atom;
and (c) the right hydrogen atom.
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A positive value of δBIJ/δv(X) indicates that if the virtual perturbation (δv(X)) is repulsive for
electrons, the bond order increases, and that if the virtual perturbation is attractive for electrons,
the bond-order decreases. This is because the following relation holds:

∆BIJ ∼=
δBIJ

δv(X)
δv(X). (14)

Then, for the case of Figure 1a, the LRF-BO value, δBOH/δv(O) = 1.456, indicates not only that
the repulsive potential to the oxygen site strengthens O-H bonds of water, but also that the attractive
potential weakens the bond, of which situations are illustrated in Figure 2a. Similarly, the meaning of
δB/δv(H1) values shown in Figure 1b is two-fold, as shown in Figure 2b.
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(a) the oxygen atom; and (b) the left hydrogen atom.

We summarized the relation among the sign of the LRF-BO values, the sign of the perturbation,
and the change of the bond-order in Table 1. For a specific LRF-BO value, there are two cases concerning
the sign of the virtual perturbation, which leads to two situations for the molecular system. Thus,
we have to choose the sign of the virtual perturbation that is appropriate for the situation we consider.
For example, it can be deduced from Figure 2(a2),(b1) that an attractive δv(O) and an repulsive δv(H1)

induce the dissociation of the O-H1 bond of the water molecule, which corresponds to a decrease of the
pKa value of water due to the ligation of H2O to a metal ion, which is a well-known fact in inorganic
chemistry [26],

H2O + M2+ → M-OH+ + H+ . (15)

For the reaction in water solution, this chemical reaction formula is rewritten in a more
realistic form,

H2O + M2+ + H2O → M-OH+ + H+
3 O . (16)

Table 1. Relation among the sign of LRF-BO, the sign of the perturbation, and the change of
the bond-order.

Sign of A LRF-BO Value Plus
(δBIJ/δv(X) > 0)

Minus
(δBIJ/δv(X) < 0)

A virtual perturbation (δv(X)) Repulsive (+) Attractive (−) Repulsive (+) Attractive (−)
Change of the Bond-order (δBIJ) Increase (+) Decrease (−) Decrease (−) Increase (+)

For instance, when a water molecule ligates to M2+ = Zn2+, the pKa value decreases from 14.0 to
10.0 [26]. As an interpretation of the LRF-BO results shown in Figure 2(a2),(b1), the attractive δv(O)

plays the role of the Zn2+ ion and the repulsive δv(H1) the role of the oxygen site of the additional
H2O at the left side of Equation (16) to receive the proton and to form the hydronium ion. What we
would like to emphasize here is that the signs of the virtual perturbation should be appropriately
determined when we interpret calculated LRF-BO values in the context of chemical reactions.
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In the remaining part, the virtual perturbation will be assumed to be repulsive for electrons unless
stated otherwise.

3.2. Various Types of Chemical Bonds

We first calculated the LRF-BO values of H2 and H-X (X = F, Cl, Br, I) to check dependency of
LRF-BO values on polarity of covalent bonds. For H2, the calculated LRF-BO value becomes zero.
This fact is straightforwardly derived from Equation (1): the leading term of the linear response
function of density matrix is given by,

δρ(r1, r2)

δv(r)
∼= ∑

α,β
σ

ψσ
LUMO(r)ψ

σ
HOMO(r)

εσ
HOMO − εσ

LUMO
(ψσ

LUMO(r1)ψ
σ
HOMO(r2) + ψσ

HOMO(r1)ψ
σ
LUMO(r2))

∝ ∑
α,β
σ

ψσ
LUMO(r)ψ

σ
HOMO(r)

εσ
HOMO − εσ

LUMO
(χ1(r1)χ1(r2)− χ2(r1)χ2(r2))

. (17)

Here, χ1 and χ2 are atomic orbitals of hydrogens of H2. As can be seen from Equation (17),
the cross terms, χ1(r1)χ2(r2) and χ2(r1)χ1(r2), disappear, which makes δPµν/δv(r) (µ ∈ 1, ν ∈ 2),
and so δBIJ/δv(r), zero. In contrast, the LRF-BO values of the halogen halides are non-zero: when the
case that the perturbation is applied to the hydrogen atom the values, δBHX/δv(H), of H-X (X= F, Cl,
Br, I) are−2.132, −1.358, −0.58724, and−0.300, respectively. In Figure 3, we show the relation between
the calculated Mulliken charges on the hydrogen atom and the δBHX/δv(H) values. From this figure,
we can see that a linear relationship holds. Note that this relation holds only for simple two-center
two-electrons polar covalent systems (for details of the analysis of the results, see Appendix A).
We would like to point out that the negative δBHX/δv(H) values indicate that repulsive potentials to
electrons on hydrogen atoms induced the dissociation of the bonds, being consistent with a reasonable
picture of chemical reactions.
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Next, we investigated coordination bonding systems. It is known that a ligand that lies trans to
the leaving group increases the rate of the substitution if the ligand is a strong donor or a strong π

acceptor. This is called the trans-effect, which is described in most standard text books of inorganic
chemistry [27,28]. A typical example is the reaction step to yield cisplatin, which is illustrated in
Figure 4a. In this case, it is known that the substitution reaction occurs next to the ammonium ligand
(NH3), not trans to NH3, because the trans effect of Cl− is larger than that of NH3 [27]. In order to
check whether the LRF-BO values could be an indicator to the trans-effect, we calculated the LRF-BO
values, {δBPtX/δv(X)}X=Cl(1),Cl(2),Cl(3),NH3

for [Pt(NH3)Cl3]−, the geometry of which is optimized
with the B3LYP method. We employed the LANL2TZ(f) basis set for Pt atom, and 6-311G** basis
sets for other atoms. As shown in Figure 4b, the obtained δBPtX/δv(X) values are 6.064, 5.890,
5.952, and 2.091, for X = Cl(1), Cl(2), Cl(3), and NH3, respectively. On the basis of these results,
the substitution reaction is predicted to occur at the Cl(1) site, not the Cl(2) site, being consistent
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with the substitution reaction to yield cisplatin. We have to comment that that non-negligible
difference between δBPtCl(1)/δv(Cl(1)) and δBPtCl(3)/δv(Cl(3)) is due to the position of protons of
NH3: one of the protons lies within the planar consisting of Pt, N, and three Cl atoms, nearby Cl(1),
enhancing δBPtCl(1)/δv(Cl(1)). We further examined the LRF-BO values of [PtXCl3]2− for, X = Cl, Br, I,
the results of which are presented in Figure 4c–e. The point is that the calculated LRF-BO values are
in order, δBPtCl/δv(Cl) < δBPtBr/δv(Br) < δBPtI/δv(I), being consistent with the trans-effect series
of halogen ions, Cl− < Br− < I− [28]. In addition, it is noteworthy that all the values δBPtX/δv(X)
are positive, implying that an electrophilic attack induces the elimination of the leaving ions or the
leaving group (see Table 1): in short, the LRF-BO values provide a reasonable qualitative picture of the
chemical reactions as well.
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3.3. Inductive and Resonance Effects of Organic Molecules

Next, we calculated the LRF-BOs of the saturated and unsaturated (conjugated) molecules,
which has been one of the standard systems for testing of the applicability of the linear response
function of density (LRF-D) to inductive and resonance effects of organic molecules [9,14]. For this
purpose, we picked out hexan-1-ol and hexa-1,3,5-trien-1-ol, the molecular structures of which are
illustrated in Figure 5a,b. Before testing the LRF-BO values, we computed atom-condensed LRF-D
values, which are defined by,

δρ(K)

δv(L)
∼=

w L
dr

w K
dr′

δρ(r′)
δv(r)

. (18)

Here K-th and L-th atom’s center integrals are similar to that defined in Equation (13). The atom
numbering is given in Figure 5a,b. In this case, the virtual perturbation is placed on the oxygen of the
hydroxyl group, which is denoted as δv(1).
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The responses on all carbons (δρ(2)~δρ(7)) for hexan-1-ol and hexa-1,3,5-trien-1-ol are plotted in
Figure 6a (to be complete, we present all the LRF-D values in Tables S1–S3 in supplementary materials
for hexan-1-ol, hexa-1,3,5-trien-1-ol, and π contributions of hexa-1,3,5-trien-1-ol, respectively). We can
see from this figure that the response of hexan-1-ol decreases monotonically and rapidly from the
nearest site to the farthest site, being consistent with the picture of the inductive effect of the saturated
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system. This contrasts with the response on the conjugated chain of hexa-1,3,5-trien-1-ol, which
also decays from δρ(2) to δρ(7) but with the oscillating behavior. To analyze the behavior of the
LRF-D values further, we divided the LRF-D values into σ and π contributions according to the
method Fias et al. used [13]. The results are shown in Figure 6b. This figure shows that the σ

contribution of the LRF-D of hexa-1,3,5-trien-1-ol is similar to that of hexan-1-ol. In particular, we
found that the plus value of δρ(2)/δv(1) of hexa-1,3,5-trien-1-ol is a result of the inductive effect
mainly from the σ contribution. On the other hand, being maximum at {δρ(n)/δv(1)}n=3,5,7 of
the π contribution obviously corresponds to the resonance picture of the π conjugated network
(see Figure 6a below), implying that LRF-D becomes an indicator of density fluctuations that are
results from inductive and resonance effects of organic molecules. These results are similar to those of
reference [14], indicating that our numerical treatment is valid for our purposes.
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We then evaluated the LRF-BO values of all chemical bonds on the main chain for the perturbation,
δv(1). Figure 7a shows the LRF-BO values for the chemical bonds of the main chains of the hexan-1-ol
and hexa-1,3,5-trien-1-ol (all calculated LRF-BO values are presented in Tables S4–S6 in supplementary
materials for hexan-1-ol, hexa-1,3,5-trien-1-ol, and π contributions of hexa-1,3,5-trien-1-ol, respectively).
It is found from Figure 7a that the fluctuation of bond-orders of the hexan-1-ol molecule is nearly
localized in the bond between O(1) and C(2). In contrast, the profile of the LRF-BO values of
hexa-1,3,5-trien-1-ol, in which points are indicated as squares, exhibits a oscillating behavior. As in the
case of LRF-D values, we divide the LRF-BO values of the hexa-1,3,5-trien-1-ol into σ and π

contributions, which are shown in Figure 7b. We can see from this figure that the σ contribution
indicated by the X points shows the behavior similar to that of the hexan-1-ol molecule shown in
Figure 7a, while the π contribution indicated by the triangular points is obviously a main cause of the
oscillating behavior of the total LRF-BO values.
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It should be noted that the resonance effect of the conjugate system shown in Figure 8a is
described not only with the density fluctuations on the atomic sites but also with the fluctuations
of chemical bonds on the main chain. From Figure 8a, the averages of density fluctuations and the
bond fluctuations are expected to be those shown in Figure 8b. Here + indicates the sites where the
density or the bond-order increases and—the sites where the density or the bond-order decreases.
We summarized the calculated LRF-D and LRF-BO values, together with those of the π contributions
in parentheses, in Figure 8c. The values in parentheses in Figure 8c are obviously consistent with the
resonance picture illustrated in Figure 8b and the inductive effect on the charge fluctuation mainly
on C(2), implying that the LRF-BO and the LRF-D complement each other, enabling us to estimate
inductive and resonance effects quantitatively.
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3.4. Acid Dissociation Reaction of Substituted Benzoic Acids

Finally, we would like to explore the applicability of LRF-BO to the acid dissociation reaction of
benzoic acids. We shall focus on the response of the bond-order between the oxygen and the hydrogen
atoms of the carboxylate for the virtual perturbation that is applied to each atom in the benzoic acid

molecule. In Figure 9, we listed the calculated results of the LRF-BO values,
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The response values are remarkably large for the case that the perturbation is placed on or nearby
the carboxylate, in particular on O(14) and H(15) atoms of which the target O-H bond is composed,
while the values become nearly zero for the perturbation that is applied to the other (phenyl) part.
Not surprisingly, the absolute value of LRF-BO,
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∣∣∣ is maximum for the case, L = H(4),

implying that the bond order, BO-H, is most sensitive for the perturbation to the proton to be eliminated.
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The substitution effect of benzoic acids is one of the most well-investigated topics among chemical
reactions of organic molecules [29–31]. Now we will consider dissociation reactions of non-substituted
and substituted benzoic acids,
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C6H5COOH
K0↔ C6H5COO− + H+, (19)

m-XC6H4COOH
Km

X↔ m-XC6H5COO− + H+, (20)

p-XC6H4COOH
Kp

X↔ p-XC6H5COO− + H+. (21)

Here K0, Km
X and Kp

X are equilibrium constants for non-substituted, meta-substituted,
and para-substituted benzoic acids, respectively. The logarithm of the ratio of the equilibrium constants
is called the Hammett constant, which are defined by,

σn
X ≡ log

Kn
X

K0
(n = m or p). (22)

Hammett pointed out that the Hammett constant is proportional to the logarithm of the ratio of
the rate constants for substituted benzoic acids [29]. In other words, the Hammett constant determines
substitution effects on both kinetics and thermodynamics for this class of systems. Note that we
use two simple sets of reaction-independent substituent constants, σn

X(n = m or p), rather than more
complicated constants (there are more than 20 sets! see ref. [31]), by which the researchers divided the
effects and classified the types of reactions to describe the reactions in more details. This is because
our intention is to lump many effects together to determine equilibrium constants of acid dissociation
reactions as far as possible and to test the applicability of the LRF-BO as a descriptor for them.

Thus, we inspected the correlation between the Hammett constants and the calculated LRF-BO
values of substituted benzoic acids in order to examine whether the LRF-BO could be a descriptor to
cover the substitution effects. For this purpose, we picked out meta- and para-substituted benzoic
acids, of which the errors of the experimentally determined Hammett constants are estimated to
be within 0.1, from ref. [30]. We exclude all the cases that a substituent group has a positive or
negative charge, because, for such cases, we have to estimate LRF-BO values of hydrated clusters,
of which the structures must highly fluctuate and so which are beyond the scope of our approach.
First, we examined the case in which the absolute value of the LRF-BO values takes maximum, i.e.,
the case, L = H(4). Figure 10a,b plot the correlations between Hammett constants and LRF-BO values
for meta- and para-substituted benzoic acids, respectively. In these figures, error bars are also presented
to indicate the estimated errors of the experimental data [30]. We can see from these figures that there
are linear relationships for both cases. The coefficients of determination (R2) are calculated to be
0.772 and 0.828 for meta- and para-substituted benzoicacids, respectively. These results imply that the
LRF-BO values could be useful to predict the change of the Hammett constant, i.e., pKa as well, for a
new substituent.
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When considering the reason why the linear relationships hold, it is noteworthy that
logKn

X/K0 (n = m or p) is proportional to the difference between the changes of the Gibb’s energies for
the acid dissociation reactions of the non-substituted and the substituted benzoic acids, i.e.,

σn
X = log

Kn
X

K0
∝ ∆G0 − ∆Gn

X (n = m or p), (23)

where ∆Gn
X is the change of Gibb’s energies for a substituted (X-) benzoic acid and ∆G0 is that for the

non-substituted benzoic acid. Thus, the linear relationship between the Hammett constants and the
LRF-BO values indicates that the LRF-BO is closely related to the difference of the Gibb’s free energies
between the reactant state and the product state.

For completeness, we also examined the correlation between the Hammett constants and the
LRF-BO values for the perturbation on each atom in benzoic acids and presented the resulting
coefficients of determination in Figure S2a,b for meta- and para-substituted benzoic acids respectively,
in the supplementary materials. Also, we listed all LRF-BO values of meta and para substituted
benzoic acids in Tables S7 and S8 respectively. Surprisingly, in some of the cases that the virtual
perturbation is applied to atoms in the phenyl part, we obtained large coefficients of determination
values. Nevertheless, from Tables S7 and S8, the magnitudes of the LRF-BO values are found to be
considerably small for such cases. This implies that although the bond-order between O and H in
the carboxylate is remarkably sensitive to the perturbation at O(14) and H(15) in the carboxylate part,
the description of substitution effects are affected by the perturbation not only of the O(14) and H(15)
part, but also of the phenyl part because the induced and resonance effects work through the phenyl
part. We also checked the basis set dependence of the results for 6-31G, 6-31G**, 6-31++G**, 6-311G,
and 6-311++G**. See Tables S9–S18, and Figures S3–S6. A noteworthy point is that the use of diffuse
functions (Figrues S5 and S7) deteriorates the correlation between Hammett constants and LRF-BO
values. This is due to a well-known fact that the Mulliken type of population analyses often fails when
the diffuse function is used [32,33].

As shown above, we actually found that the LRF-BO values could be useful in predicting the
Hammett constants for new substitutions on the basis of the linear relationship if we use an appropriate
basis set. However, we have to note that the LRF-BO values provide only rough estimations of the
Hammett constants, i.e., rough estimations of the pKa values. In the field of computational chemistry,
the estimation of pKa values of molecular species in various situations such as in solutions and in
reaction centers of enzymes has been a hot topic. Many researchers have developed convenient and
accurate methods to estimate pKa values [34–38], and by using these methods, nowadays we would be
able to estimate pKa values much more accurately than R2 ~0.8 as we presented by using LRF-BO values.
Our results are meaningful in another aspect, however, because the results shown in Figure 9 and
Tables S7 and S8 are directly related to the mechanism of acid dissociation reactions: the large negative
values of δBO-H/δv(H(4)) indicate that a nucleophilic attack primarily induces the dissociation of
the O-H bond, i.e., the acid dissociation, and the negative values of δBO-H/δv(O(3)) indicate that
an electrophilic effect on O(3) secondarily supports it. Although, to our knowledge, the detailed
molecular mechanism of the acid dissociation of benzoic acids has not been investigated experimentally,
our results are obviously reasonable from the viewpoint of chemical intuition. In addition, we would
like to point out that a recent metadynamics calculation based on ab initio Car-Parinello molecular
dynamics showed that the attack of water to the proton leads to form a non-dissociating meta-stable
state along the reaction path (See Figure 1a, Figure S1, and the movie S1 [38]), which is consistent with
our results. This implies that the LRF-BO values of molecules encode essential information about the
reaction mechanism of the target molecules, which is one of the most important conditions for being a
good descriptor (See Introduction [39]).
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4. Conclusions and Future Directions

We presented the linear response function of bond-order (LRF-BO) based on a real space
integration scheme. In order to exemplify the way to interpret the LRF-BO values of molecules,
we first applied it to a water molecule. Next, we examined the LRF-BO values of various types
of chemical bonding systems. We presented the fundamental features of the LRF-BO values for
non-polar and polar covalent bonding systems. In addition, we see that LRF-BO could be an indicator
to trans-effects of coordination bond systems. Then, we computed conjugated and non-conjugated
organic systems, and substituted benzoic acids and showed that the LRF-BO value is a complementary
property to the linear response function of density (LRF-D), which has often been used to describe
inductive and resonance effects of organic molecules. We also investigated the LRF-BO values for the
acid dissociation mode of benzoic acids. Examining perturbations to all atoms of the basic structure
of benzoic acids, we found that the virtual perturbation to the proton to be eliminated leads to the
maximum response on the O-H bond. In addition, we presented that there are significant correlations
between the Hammett constants and some of LRF-BO values, δBO-H/δv(L) for substituted benzoic
acids. An important point is that the magnitudes and signs of the LRF-BO values, as well as the
coefficients of determination for the correlations, strongly depend on the site, L, to which the virtual
perturbation is applied. From our computations, it is supposed that the leading step of the acid
dissociations is to a nucleophilic attack to the proton to be eliminated, which is consistent with the
chemical intuition and a recent study of the reaction mechanism based on ab initio Car-Parinello MD
calculations. We would like to emphasize that the LRF-BO is able to include information combining
the fluctuations of specific chemical bonds in molecules and the specific virtual perturbations to induce
the fluctuations. We can expect that the LRF-BO will become a new standard molecular descriptor [39],
which is useful for molecular design in various fields.
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Appendix A

In this appendix, we show the reason why the linear relationship between charges and
δBHX/δv(H) holds for H-X (X = F, Cl, Br, I). First, we assume that the target system is a two-center two
electrons polar-covalent bonding system. For such systems, the HOMO and LUMO can be written by,

ψHOMO (r) = cosθφb (r) + sinθφa (r) , ψLUMO (r) = −sinθφb (r) + cosθφa (r) . (A1)

Here φb and φa are bonding and antibonding orbitals consisting of two atomic orbitals, χ1 and
χ2 as,

φb (r) =
1√
2
(χ1 (r) + χ2 (r)) , φa (r) =

1√
2
= (χ1 (r)− χ2 (r)) (A2)

We note that the spin indices and the overlap integral between atomic orbitals are omitted for
simplicity of formulation. In this case, we can straightforwardly obtained

ψLUMO(r1)ψHOMO(r2) + ψHOMO(r1)ψLUMO(r2)

=
1
2
[cos2θ (χ1(r1)χ1(r2)− χ2(r1)χ2(r2))− sin2θ (χ1(r1)χ2(r2) + χ2(r1)χ1(r2))]

(A3)

www.mdpi.com/1422-0067/17/10/1779/s1
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and w 1st atom
drψLUMO (r)ψHOMO (r) ∼=

1
2

cos2θ. (A4)

Thus, from Equations (1) to (3), the following relation holds for the linear response function of the
density matrix for the perturbation applied to the first atom (δv(1)):

δP12

δv(1)
∝

sin2θ

cos2θ
. (A5)

Here P12 denotes the element for the atomic orbital pair, χ1 and χ2. We can also have

P12 ∝ cos2θ (A6)

so that the linear response function of bond-order between the first and second atom can be
approximated as,

δB12/δv(1) ∼=
δP12

δv(1)
P12 + P12

δP12

δv(1)

∝ sin2θ

(A7)

Then, the atomic (polarization) charge at the 1 st atom is also given by, sin2θ, which can be derived
from the form of HOMO given by (A-1). Therefore, the LRF-BO value, δB12/δv(1), is proportional to
the atomic charge. In addition, the non-polar covalent bonding system (for instance, H2) satisfies this
relation because both δB12/δv(1) and atomic polarization charge become zero. However, we should
note that this relation holds only for simple two-center two-electrons covalent bond: for general
cases that the HOMO and LUMO and other active orbitals are delocalized over many sites, the above
equations are not satisfied.
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