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Abstract

:

Single nucleotide polymorphisms (SNPs) are widely used in functional genomics and genetics research work. The high-quality sequence of rice genome has provided a genome-wide SNP and proteome resource. However, the impact of SNPs on protein phosphorylation status in rice is not fully understood. In this paper, we firstly updated rice SNP resource based on the new rice genome Ver. 7.0, then systematically analyzed the potential impact of Non-synonymous SNPs (nsSNPs) on the protein phosphorylation status. There were 3,897,312 SNPs in Ver. 7.0 rice genome, among which 9.9% was nsSNPs. Whilst, a total 2,508,261 phosphorylated sites were predicted in rice proteome. Interestingly, we observed that 150,197 (39.1%) nsSNPs could influence protein phosphorylation status, among which 52.2% might induce changes of protein kinase (PK) types for adjacent phosphorylation sites. We constructed a database, SNP_rice, to deposit the updated rice SNP resource and phosSNPs information. It was freely available to academic researchers at http://bioinformatics.fafu.edu.cn. As a case study, we detected five nsSNPs that potentially influenced heterotrimeric G proteins phosphorylation status in rice, indicating that genetic polymorphisms showed impact on the signal transduction by influencing the phosphorylation status of heterotrimeric G proteins. The results in this work could be a useful resource for future experimental identification and provide interesting information for better rice breeding.
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1. Introduction


Rice is one of the most important crops in the world. The draft sequences of two main cultivated rice genomes, indica (93–11) and Japonica (Nipponbare), were all reported in 2002 [1,2]. After that, the Rice Annotation Project Database (RAP-DB) (http://rapdb.dna.affrc.go.jp/) and the Michigan State University (MSU) Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/) both provided high-quality and timely annotation for the Nipponbare reference genome [3]. With the development of high-throughput sequencing methods, more and more rice genotypes have been resequenced in recent years [4,5]. This will provide abundant information on the genetic variations of different rice genotype individuals, including copy number variations (CNVs) and single nucleotide polymorphisms (SNPs).



SNPs are DNA sequence variations occurring when a single nucleotide in the genome differs between members of a biological species [6]. SNPs might occur in different regions related to transcription and translation, including gene coding region, introns, untranslated regions (UTRs), promoter regions and intergenic regions. Non-synonymous SNPs (nsSNPs) located in the gene coding regions change the coding amino acids of protein sequences. In human beings, the researchers found that 90% of genetic variations are caused by SNPs [7]. In rice (Oryza sativa L.), SNP mutations causing protein-coding changes or gene expression alterations both have the potential to account for rice agronomic traits [8,9]. In addition, a larger proportion of mutations involved in crop improvement are protein altering rather than regulatory changes [9,10].



Non-synonymous SNPs that cause coding amino acid change would have the potential to influence protein phosphorylation status [11,12]. Erxleben et al. first used the term “phosphorylopathy” to describe genetic variation that results in inaberrant regulation of protein phosphorylation [13]. In 2010, Ren et al. defined an nsSNP that affected the protein phosphorylation status as a phosphorylation-related SNP (phosSNP) [14]. Ryu et al. carried out a large scale survey of potential phosphovariants in humans, which were defined as amino acid variations that might influence protein phosphorylation status [12]. Ren et al. performed a genome-wide analysis of genetic polymorphisms that influence protein phosphorylation in humans [14]. However, to our best knowledge, the potential impact of SNPs on the protein phosphorylation status in rice is not clearly understood. In plants, phosphorylation is one of the most important post-translational modifications (PTMs) of proteins that have essential roles in the majority of biological pathways, regulating cellular processes like metabolism, proliferation, differentiation and apoptosis [15]. A large number of phosphorylation sites in rice had been identified by Nakagami et al. [16]. Moreover, a rice-specific phosphorylation site predictor, Rice_phospho 1.0, had been developed [15]. The resources of SNPs and phosphorylation sites in rice genome and proteome could contribute to the comprehensive studies of the impact of SNPs on protein phosphorylation status.



In this paper, we performed a genome-wide analysis of SNPs that potentially impacted the protein phosphorylation status in rice. Firstly, we updated the rice SNPs resource based on the new rice genome data (Ver. 7.0) and predicted protein phosphorylation sites in rice by using NetPhosK 1.0 and Rice_phospho 1.0. After that, these two data were integrated to analyze the relationship between SNPs and protein phosphorylation sites. Finally, using heterotrimeric G protein as a case study, we interpreted the impact of nsSNP on phosphorylation sites and the function of heterotrimeric G protein in rice.




2. Results


2.1. SNPs in Rice Genome Ver. 4.0 and 7.0


First, the data of 4,109,378 SNPs in rice genome Ver. 4.0 were downloaded from http://www.ncgr.ac.cn/RiceHap2. Then, they were mapped to rice genome Ver. 7.0 by BLASTn. Finally, a total 3,907,374 SNPs were detected in rice genome Ver. 7.0, which was lower than that in rice genome Ver. 4.0 (Figure 1). This result indicated that the redundancy of SNPs in rice genome had been removed.




2.2. nsSNPs in Rice Genome Ver. 7.0


The different SNPs in rice genome Ver. 7.0 were classified into different types based on SNP location, which were shown in Table 1. It could be found that most of the SNPs were located in the Inter-gene region, UTR region and Intron region. There were 314,228 synonymous SNPs and 384,565ns SNPs in rice genome. Whilst, nsSNPs accounted for 9.9% of total SNPs in rice genome Ver. 7.0, which could change the amino acids in 48,961 proteins. The nsSNPs that result in Premature Termination Codons (PTCs) were then removed from the nsSNPs dataset which was used for subsequent analysis.




2.3. Prediction of PhosSNPs in Rice Genome


NetPhosK 1.0, a kinase-specific phosphorylation site predictor, was used to predict potential kinase-specific phosphorylation sites in rice proteome and in the corresponding variant sequences induced by nsSNPs, respectively. The results were confirmed by using Rice_phospho1.0. The common phosphorylation sites predicted by NetPhosK 1.0 and Rice_phospho1.0 were employed in the following research work. A total of 2,508,261 potential phosphorylation sites were achieved in the rice proteome. According to the definition of phosSNPs and different types of phosSNPs [12,14], we wrote a PERL script to identify phosSNPs among the predicted phosphorylation sites in rice proteome. The results were shown in Table 2. We found that 39.06% nsSNPs in rice genome were phosSNPs, among which there were 25,511 Type I, 14,615 Type II, 78,365 Type III and 31,706 Type IV phosSNPs (Table 2). A nsSNP to create or remove a phosphorylation site was named Type I (+) or Type I (−) phosSNP. The Type I phosSNP took up 16.99% of total phosSNPs. There were only 11 Type I (+) phosSNPs in rice genome, while others were Type I (−) phosSNPs. A nsSNP to create or remove adjacent phosphorylation sites was termed Type II (+) or Type II (−) phosSNP. Type II phosSNPs just occupied 9.73% of total phosSNPs and all of them were Type II (−) phosSNPs. A nsSNPs to induce changes of PK types in adjacent phosphorylation sites was Type III phosSNP. The Type III phosSNPs were the most predominant phosSNPs type and accounted for 52.17% of total phosSNPs in rice genome. nsSNPs were shown to cause an amino acid substitution among Ser, Thr, or Tyr, thus Type IV phosSNP induced a change of PK types for the phosphorylation site. Type IV phosSNPs took up 21.11% of total phosSNPs.



Furthermore, the experimentally identified phosphorylation sites in rice, which were collected in our previous research work [15], were also used to detect the potential phosSNPs. Due to the limited information of PK specific for rice protein phosphorylation sites, we only predicted Type I and II phosSNPs in the identified rice phosphorylation sites. In total, 41 Type I and 85 Type II phosSNPs were predicted in 97 proteins. For example, phosSNP S197L, located in a conversed unknown protein LOC_Os05g11370, could be defined as both Type I (−) and Type II (−) phosSNP because it could remove the experimentally identified phosphorylation sites of S197 and S199 (Figure 2).




2.4. PhosSNPs in Heterotrimeric G Proteins


Heterotrimeric G proteins in rice were then selected as a case study. There were 1, 4 and 2nsSNPs in Gα subunit (LOC_Os05g26890), Gβ subunit (LOC_Os03g46650) and Gγ2 subunit (LOC_Os02g04520), respectively (Table 3). The relationship between the predicted phosphorylation sites and nsSNPs in heterotrimeric G proteins was analyzed to identify phosSNPs. As shown in Table 3, five nsSNPs in heterotrimeric G proteins were phosSNPs, including K272R in Gα, T244S and S348T in Gβ, Q45R and R137L in Gγ2. These phosSNPs were assigned to Type I (−), Type II (−), Type III and Type IV, which were shown in Figure 3, Figure 4, Figure 5 and Figure 6.



In Figure 3, we found that K272RnsSNP in Gα subunit (LOC_Os05g26890) of heterotrimeric G proteins in rice was a Type II (−) phosSNP. Because Gα subunit harbored the K272RnsSNP to cause its nearby phosphorylation site Y-274 to be dephosphorylated. Of course, we will carry out a further experimental identification to detect whether the Tyr-274 site is really not phosphorylated in the K272R allele. As shown in Figure 4, S348T in Gβ subunit (LOC_Os03g46650) of heterotrimeric G protein in rice was predicted as a Type I (−) phosSNP. Gβ subunit was potentially phosphorylated by protein kinase A (PKA) at Ser-348. However, the S348T nsSNP might remove the phosphorylation site (Figure 4). Meanwhile, the Gβ subunit was also predicted to be phosphorylated at Thr-244, whereas the T244SnsSNP might change the PK types at position 244. Therefore, T244S nsSNP of Gβ subunit was regarded as a Type IV phosSNP (Figure 5). Interestingly, the Gβ subunit was experimentally identified to be phosphorylated at serine-246 sites [17]. The above results showed that Type III phosSNPs were the most predominant phosSNPs type in rice genome. We found two Type III phosSNPs, Q45R and R137L, in Gγ2 subunit (LOC_Os02g04520) of heterotrimeric G proteins in rice. The Q45R nsSNP of Gγ2 subunit could alter the PK types for T50, while R137L might change the PK types for Ser-135, Ser-136 and Ser-138 (Figure 6). In summary, the prediction results were not only consistent with previous experimental studies but also provided a useful resource for further experimental identification.





3. Discussion


A genome-wide SNP resource was comprised of 4.11 million loci polymorphism between the two major cultivated rice subspecies, indica (9311) and japonica (Nipponbare) [6,18]. This SNP resource is freely accessible at RiceHap2 and the National Center for Biotechnology Information (NCBI) SNP database (NCBI dbSNP build 132) as “reference SNPs (rsSNPs)” with detailed annotations on the rice genome. However, efforts to improve the quality of rice SNP resources are limited, which is affecting large-scale genotyping applications of this important crop [19]. With the development of high-quality assemblies of rice genome [4], SNP resources for rice genome should be updated. By using the updated rice genome Ver. 7.0, we confirmed 3.90 million loci polymorphic between indica (9311) and japonica (Nipponbare). We found only 9.9% of SNPs were nsSNPs. Ren et al. indicated that a very small proportion of human SNPs were nsSNPs (<1%) [14]. Finally, we constructed a database, SNP_rice, to deposit the new version of the SNP resource between indica (9311) and japonica (Nipponbare), which could be accessed at http://bioinformatics.fafu.edu.cn/SNP-rice.



Protein phosphorylation plays essential roles in the majority of biological pathways. Genome-wide prediction of phosphorylopathies in rice might provide a highly valuable resource for further experimental identifications. In this research work, we predicted 2,508,261 phosphorylation sites in rice proteome by using the combination of NetPhosK1.0 and Rice_phospho 1.0. After conducting a systematic analysis, we observed that 150,197 (39.1%) nsSNPs could affect protein phosphorylation. In particular, 52.2% of phosSNPs were Type III phosSNPs, which induced changes of PK types for adjacent phosphorylation sites rather than creating or removing phosphorylation sites. This was consistent with the results in the research work of Ren et al. [14]. They found that 78.8% of phosSNPs in humans were Type III phosSNPs, which was more than the other types of phosSNPs. In this regard, most nsSNPs might regulate protein phosphorylation dynamics and play ubiquitous roles in rewiring the biological pathways. We also integrated the rice phosSNPs information into the above database, SNP_rice, which was freely available for academic researchers. The results in this work could be a useful resource for future experimental identification.



Heterotrimeric G protein signaling cascades is one of the primary sensing mechanisms between the cell and environment in metazoans. In our previous research work, we detected heterotrimeric G-protein subunits in rice were phosphorylated to transduct abscisic acid (ABA) and drought stress signal [17,20]. Our research results were consistent with Nakagami et al. (2010) and Aranda-Sicilia et al. (2015) [16,21]. They also found heterotrimeric G protein subunits were phosphorylated in vivo. Thus, the previous results indicated that phosphorylation of heterotrimeric G protein subunits in rice was likely to be important in the signal transduction. A new publication reported by Trusov and Botella proposed that, instead of the guanosine triphosphate/guanosine diphosphate (GTP/GDP) cycle used in animals, plant heterotrimeric G protein under phosphorylation status were activated to transduct the signals between the cell and the environment [22]. In this work, we found five nsSNPs that potentially influenced heterotrimeric G protein phosphorylation status. The experiments in the laboratory by Trusov and Botella seemed to indicate that substitution of several of the phosphorylated residues with non-phosphorylatable residues renders the subunits inactive and thus unable to restore a wild type phenotype in their respective Arabidopsis mutants [22]. Therefore, we could conclude here that genetic polymorphisms in heterotrimeric G protein had an impact on their phosphorylation status and thus influenced signal transduction.




4. Materials and Methods


4.1. SNPs in Rice Genome 4.0 and 7.0


SNPs data were downloaded from RiceHap2 database (http://www.ncgr.ac.cn/RiceHap2/index.html), while DNA sequences of rice genome Ver. 4.0 (IRGSP Build 4.0) and 7.0 (MSU Release 7.0) were downloaded from RAP-DB (http://rapdb.dna.affrc.go.jp/download/build4.html) and MSU-RAP (ftp://ftp.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/), respectively. SNPs data were first subjected to rice genome Ver. 4.0 to get the DNA sequences including SNPs and then mapped to rice genome Ver. 7.0 to create SNPs in the new version rice genome. Meanwhile, the rice genome Ver. 7.0 annotation files, including allseq, cds (coding sequences) and all gff3, were downloaded.



Based on the location, SNPs in rice genome 7.0 were classified into 5 groups, Inter-gene SNPs, UTR SNPs, Intron SNPs and Coding region SNPs (cSNP). The cSNPs were further grouped into non-synonymous SNPs (nsSNPs) or synonymous SNP (sSNPs), which was defined according to whether a cSNP could cause an amino acid substitution or not. Then, sSNPs that result in Premature Termination Codons (PTCs) were removed according to Ren et al. [14].




4.2. Prediction of Phosphorylation Sites in Rice Proteome


First, we took the protein sequence in rice genome Ver. 7.0 as benchmark sequence data. Then, we made changes to a protein sequence, one of its nsSNPs at a time, to prepare a variant sequence. NetPhosK 1.0 (http://www.cbs.dtu.dk/services/NetPhosK/) was used to scan the benchmark protein sequences and variant protein sequences for the phosphorylation sites and specific kinases with the high threshold, respectively. The predicting phosphorylation sites were confirmed by using Rice_phospho1.0 (http://bioinformatics.fafu.edu.cn), which was a rice-specific phosphorylation sites predictor.



The 15-mer sequences of phosphorylation sites, P (−7, +7), which was defined as a phospho-Ser, phospho-Thr, or phospho-Tyr flanked by 7 residues upstream and 7 residues downstream, were extracted from the protein sequences and constructed as a dataset. By comparing results of the two kinds of phosphorylation site datasets, the phosSNP that might influence protein phosphorylation status could be detected based on the definition.




4.3. Detection of Different Types of phosSNPs


According to the definitions given by Ren et al. and Ryu et al. [12,14], we detected different types of phosSNPs in the above results, including Type I (+)/(−), Type II (+)/(−), Type III and Type IV phosSNPs. An sSNP inducing mutation of an amino acid with Ser/Thr/Tyr residue to create a potential new phosphorylation site was named Type I (+) phosSNP, while the vice versa to remove an original phosphorylation site was named Type I (−) phosSNP. A nsSNP to create or remove adjacent phosphorylation sites was termed Type II (+) or Type II(−) phosSNP, and to induce changes of PK types in adjacent phosphorylation sites was Type III phosSNP. Also, the Type IV phosSNP was defined as an amino acid substitution among Ser, Thr, or Tyr that induces a change of PK types for the phosphorylation site; i.e. the target site might still be phosphorylated but by a different type of kinase.




4.4. PhosSNPs in Heterotrimeric G Proteins


We downloaded the heterotrimeric G protein sequences from NCBI and searched SNPs in the G protein sequences against the rice genome Ver. 7.0 SNP dataset. We also predicted phosphorylation sites in G protein sequences by using NetPhosK 1.0 and Rice_phospho1.0 tools, then identified different phosSNPs in the heterotrimeric G proteins according to the above protocol.




4.5. Database Construction


We used the JAVA to develop the database, SNP-rice 1.0, which was accessible at http://bioinformatics.fafu.edu.cn. The database will be continuously updated when new phosphorylation sites and other SNP data become available.





5. Conclusions


In this paper, we attained an updated rice SNP resource, among which 9.9% of SNPs were nsSNPs. Whilst, we observed that 150,197 (39.1%) nsSNPs could potentially influence protein phosphorylation status, among which 52.2% might induce changes of protein kinase (PK) types for adjacent phosphorylation sites. Finally, we constructed a database, SNP_rice, to deposit the updated rice SNP resource and phosSNPs information, which could be freely available for academic researchers at http://bioinformatics.fafu.edu.cn. As a case study, we detected five nsSNPs that potentially influenced heterotrimeric G protein phosphorylation status in rice, indicating that genetic polymorphisms had an impact on the signal transduction between the cell and the environment by influencing the phosphorylation status of heterotrimeric G proteins.
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Figure 1. Single nucleotide polymorphisms (SNPs) in different chromosomes in rice genome 4.0 and 7.0. Chr mean chromosome. The same as below. 
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Figure 2. Type I (−) and Type II (−) phosSNP S197L in LOC_Os05g11370 removed the experimentally identified protein phosphorylation sites S197 and S199. Blue circle: Amino acid; Purple circle: Amino acid before mutation; Orange circle: Amino acid after mutation caused by phosSNP; Red oval with “P”: Phosphate group; The same as below. 
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Figure 3. Type II (−) phosSNP, K272R, in heterotrimeric Gα subunit (LOC_Os05g26890) removed the adjacent protein phosphorylation site of Y274. Green oval: Specific kinase type of the phosphorylation site; The same as below. INSR: Insulin receptor tyrosine kinase. 
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Figure 4. Type I (−) phosSNP, S348T, in heterotrimeric Gβ subunit (LOC_Os03g46650) removed the protein phosphorylation site S348. PKA: Protein kinase A. 
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Figure 5. Type IV phosSNP, T244S, in heterotrimeric Gβ subunit (LOC_Os03g46650) induced the substitution between Thr and Ser in the protein phosphorylation site T244 and changed kinase types of the target site. The red marks represented the different kinase types caused by phosSNPs; The same as below. PKA: Protein kinase A; unsp: non-specific prediction kinase. 






Figure 5. Type IV phosSNP, T244S, in heterotrimeric Gβ subunit (LOC_Os03g46650) induced the substitution between Thr and Ser in the protein phosphorylation site T244 and changed kinase types of the target site. The red marks represented the different kinase types caused by phosSNPs; The same as below. PKA: Protein kinase A; unsp: non-specific prediction kinase.
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Figure 6. Two Type III phosSNPs, Q45R and R137L, in heterotrimericGγ2 subunit (LOC_Os02g04520) changed the kinase types in the adjacent protein phosphorylation sites of T50, S135, S136 and S138. PKA: Protein kinase A; PKB: Protein kinase B; PKC: Protein kinase C; PKG: Protein kinase G; Cdc2: Cell division cycle 2 kinase; DNKPK: DNA-Dependent Protein Kinase; unsp: non-specific prediction kinase. 
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Table 1. Different SNPs on different chromosomes in rice genome 7.0.
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Chromosome

	
Inter-Gene

	
Intron

	
UTR

	
sSNP

	
nsSNP

	
Number of Proteins Holding SNPs






	
Chr1

	
260,587

	
80,970

	
18,498

	
32,343

	
35,815

	
5709




	
Chr2

	
212,543

	
65,908

	
14,728

	
24,573

	
32,379

	
4693




	
Chr3

	
213,338

	
66,415

	
15,408

	
36,203

	
28,847

	
4771




	
Chr4

	
207,656

	
61,928

	
11,237

	
31,795

	
34,520

	
4531




	
Chr5

	
181,707

	
51,407

	
10,337

	
21,797

	
32,094

	
4034




	
Chr6

	
202,075

	
58,375

	
10,506

	
22,845

	
33,679

	
4190




	
Chr7

	
190,062

	
54,368

	
10,492

	
25,042

	
30,964

	
3884




	
Chr8

	
194,303

	
56,258

	
10,264

	
22,845

	
33,969

	
3779




	
Chr9

	
151,668

	
43,941

	
7336

	
18,703

	
26,741

	
3031




	
Chr10

	
161,059

	
43,460

	
7593

	
22,062

	
25,383

	
3024




	
Chr11

	
210,082

	
60,511

	
9046

	
31,228

	
34,399

	
3716




	
Chr12

	
193,270

	
52,636

	
8547

	
24,792

	
35,775

	
3599




	
Total

	
2,378,350

	
696,177

	
133,992

	
314,228

	
384,565

	
48,961
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Table 2. Different phosSNPs on different chromosomes in rice genome 7.0.
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Chromosome

	
Type I (−)

	
Type I (+)

	
Type II (−)

	
Type III

	
Type IV






	
Chr1

	
2803

	
0

	
1411

	
7996

	
3215




	
Chr2

	
2608

	
1

	
1374

	
6778

	
2693




	
Chr3

	
2065

	
3

	
1034

	
6004

	
2491




	
Chr4

	
2473

	
0

	
1284

	
6296

	
2513




	
Chr5

	
2900

	
1

	
1466

	
6844

	
2878




	
Chr6

	
3015

	
0

	
1348

	
7528

	
2852




	
Chr7

	
2351

	
0

	
1028

	
6155

	
2455




	
Chr8

	
3054

	
2

	
1491

	
7174

	
2949




	
Chr9

	
2170

	
1

	
921

	
5299

	
2123




	
Chr10

	
1805

	
2

	
910

	
4842

	
1916




	
Chr11

	
2423

	
0

	
1021

	
6347

	
2630




	
Chr12

	
3238

	
1

	
1327

	
7102

	
2991




	
Total

	
25,500

	
11

	
14,615

	
78,365

	
31,706
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Table 3. nsSNPs in heterotrimeric G proteins in rice.







Table 3. nsSNPs in heterotrimeric G proteins in rice.







	
Subunits

	
LOC ID

	
nsSNP ID

	
Nucleotide Mutation

	
Animo Acid Mutation






	
Gα

	
LOC_Os05g26890

	
SNP050177186

	
T/C

	
K272R




	
Gβ

	
LOC_Os03g46650

	
SNP030274451

	
A/G

	
S348T




	

	

	
SNP030274452

	
T/C

	
R279G




	

	

	
SNP030274453

	
T/A

	
T244S




	

	

	
SNP030274454

	
A/G

	
N217T




	
Gγ2

	
LOC_Os02g04520

	
SNP020015843

	
A/G

	
Q45R




	

	

	
SNP020015851

	
G/T

	
R137L
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