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Abstract: Considering the increased speed at which the world population is aging, sarcopenia
could become an epidemic in this century. This condition currently has no means of prevention
or treatment. Melatonin is a highly effective and ubiquitously acting antioxidant and free radical
scavenger that is normally produced in all organisms. This molecule has been implicated in a huge
number of biological processes, from anticonvulsant properties in children to protective effects
on the lung in chronic obstructive pulmonary disease. In this review, we summarize the data
which suggest that melatonin may be beneficial in attenuating, reducing or preventing each of
the symptoms that characterize sarcopenia. The findings are not limited to sarcopenia, but also
apply to osteoporosis-related sarcopenia and to age-related neuromuscular junction dysfunction.
Since melatonin has a high safety profile and is drastically reduced in advanced age, its potential
utility in the treatment of sarcopenic patients and related dysfunctions should be considered.

Keywords: melatonin; sarcopenia; frailty; skeletal muscle; aging

1. Introduction

Worldwide estimates predict 2 billion people will be over 65 years old by 2050 [1]. Thus,
an increasingly significant percentage of the population demands remedies and treatments for the
deleterious processes that age induces. The scientific community is currently at a loss when it comes
to meeting these requirements. Aging is a multifactorial process that provokes slow and persistent
functional decline. This gradual physiological deterioration becomes disabling for a high percentage of
the elderly population, where it impairs quality of life and increases the demands on primary caregivers
and healthcare providers. Of all the degenerative processes, the development of limitations in mobility
is one of the most common, leading to a reduced capacity for daily living activities, disability and
loss of independence. Slow walking speed, together with unintentional weight loss, self-reported
exhaustion, weakness (grip strength) and low physical activity, are the criteria that characterize frailty
status. This aging phenotype has been described in detail by Fried et al. [2]. This state of frailty also is
characterized by a reduced capacity to respond to demands caused by diminishing functional reserve;
this puts the individual in a special risk category when facing minor stressors and is associated with
poor outcomes (disability, hospitalization and death) [34].

In older adults, mobility limitations have been defined as the self-reported inability to walk
a mile, climb stairs or perform heavy housework [5]. This impaired mobility is very often associated
with a well-established factor of age-related decline in muscle mass designated as sarcopenia [6].
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Sarcopenia, however, not only refers to muscle mass deterioration; numerous other factors are involved
in the reduction in muscle quality associated with aging. These include derangement of skeletal
myocytes, vascular dysfunction, reduced aerobic capacity, fat infiltration and a decline in bone mineral
density [6,7].

The high number of individuals affected by this syndrome or at least by some sarcopenia-related
features has caused sarcopenia to reach epidemic proportions. Moreover, there is no effective cure
currently available for this condition and likewise no known treatments, even palliative, are available.
The need to develop interventions to prevent or treat sarcopenia has been repeatedly claimed in the
literature [8-10]. In the current brief review, we summarize previous data suggesting that melatonin
mayto limit the development of several of the derangements associated with sarcopenia. Melatonin has
a variety of beneficial effects that may slow the development or reduce the severity of the deleterious
processes which inevitably lead to sarcopenia in aging population. To date, the evidence for melatonin’s
efficacy relative to reducing sarcopenia has not been systematically summarized.

2. Sarcopenia Syndrome

Sarcopenia is a term derived from the Greek words sarx (flesh) and penia (loss) that was introduced
by Rosenberg [11] and was used to classically describe the decline in muscle mass among older
people [7,12]. Currently, sarcopenia is a well-documented condition associated with the impaired
mobility that occurs with aging [13]. There is increasingly evidence, however, that not only the decline
in muscle mass is responsible for sarcopenia, but also a failure in muscle strength or power (referred
to as dynapenia) is commonly associated with sarcopenia [6,14,15]. Both sarcopenia and dynapenia
typically increase with advancing age, but there are individuals in whom there is a discrepancy
between changes in muscle mass and muscle strength, mainly related to occupational physical activity
in their midlife [6]. Such activity appears to delay sarcopenia development, while dynapenia is a more
constant factor that compromises wellbeing at old ages [15]. To take into account this discrepancy,
anew term (i.e., muscle quality) is being increasingly used, referring to the force generating capacity
per unit cross-sectional area [6,16,17]. Muscle quality is negatively affected by several processes.

Sarcopenia and energetic imbalance are characteristics of the physiological framework that explain
frailty and its consequences [18]. Walston and Fried suggest that there is some feedback between these
components, the so-called frailty cycle. This cycle stems from the physiological changes associated
with aging, which results in an imbalance between anabolism and catabolism. This state embraces
multiple systems and cellular pathways implicated in age-dependent muscle degeneration (reviewed
by [7,14]). Thus, sarcopenic muscle exhibits several cellular dysfunctions which result from oxidative
stress, mainly due to mitochondrial dysfunction and a reduction of radical scavenging capability.
Also included is a reduction in cellular turnover with a significant decrease in the number of satellite
cells, alterations in proteolytic activities including those of the proteasome, autophagic dysregulation
and even changes in apoptosis. These cellular derangements are associated or are even part of the
more general perturbations also involved in sarcopenia development. These include a decrease in
sex hormones [19] and an elevated pro-inflammatory state [20]. Eventually, sarcopenia is related to
adipocyte infiltration with increases in both intra- and inter-muscular adipose tissue which significantly
contributes to the decline in muscle quality [21]. Additional contributing factors include osteoporosis
due to close relationship between muscle and bone, which are a single functional unit [7] and a decline
in neurophysiological activity. This relates to the fact that age-related changes in the neuromuscular
junction (NM]) play a key role in musculoskeletal impairment, preceding or following the decline in
muscle mass [22].

Collectively, the described alterations are embodied in the term sarcopenia and all are
well-established risk factors for the major negative health-related conditions and events that
characterize aging, including frailty, disability, institutionalization and mortality [23]. The development
of preventive and therapeutic strategies against sarcopenia is considered an urgent need by health
professionals. Based on what is known about the actions of melatonin, we propose that this molecule
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may have the potential to counteract sarcopenic damage or, moreover, may prevent some of the
alterations associated with muscle quality loss. Additionally, we cited the published literature that
shows the efficacious and beneficial effects of melatonin against the features which constitute the
multi-pathology called sarcopenia.

3. Why Melatonin?

Melatonin, also known as N-acetyl-5-methoxytryptamine, is a derivative of tryptophan,
an essential amino acid [24]. It is produced by the pineal gland in a circadian manner with maximal
production during the night. It is involved in synchronization of circadian rhythms in physiological
functions including sleep timing, blood pressure, seasonal reproduction and many others [25-29].
There is also evidence that all other cells produce melatonin [30,31], continually throughout the day,
mainly as an antioxidant and free radical scavenger [32-35]. Melatonin is present in all biological
fluids including cerebrospinal fluid, saliva, bile, synovial fluid, amniotic fluid, and breast milk [36,37];
and perhaps in mitochondria and chloroplasts where it may have the capacity to synthesize and
metabolize melatonin itself [31,38]. This molecule has important protective capabilities, mainly based
on its high potency as a free radical scavenger, low toxicity and solubility in both aqueous and organic
media [30,39].

Pineal production and plasma melatonin levels progressively drop during aging [40-42] to the
extent that in advanced age its levels are almost null. The loss of melatonin during aging may have
great importance in the general deterioration that the elderly experience. Several investigations
have reported a general improvement in life quality due to melatonin supplementation in older
adults [43—45]. Moreover, numerous articles relate the age-associated decline in melatonin levels with
the development of several diseases [46—48].

Melatonin is undoubtedly more than a zeitgeber and an antioxidant molecule since it seems to be
essential at the cellular level as a physiological regulator of homeostasis. Its therapeutic applications
are numerous, from pediatric [49-51] to geriatric diseases [52-54]; this includes cancer [55,56], sleep
disturbances [57,58] and neurodegenerative diseases [59,60].

Several clinical trials with melatonin supplementation as a treatment have been successfully
performed [61]. These melatonin treatments have often had positive outcomes in different pathologies:
reducing cardiac morbidity [62], controlling adverse effects of chemotherapy [63] and alleviating
bipolar disorders [64] among others. Also, melatonin has been used as a treatment with significant
success in Duchenne muscular dystrophy [65] where it reduced the muscle degenerative process.
Based on previous knowledge about the role of melatonin and sarcopenia (as summarized below), it is
likely that melatonin may be effective in treating this condition.

4. Cellular Impact of Sarcopenia

Sarcopenia is a highly burdensome geriatric syndrome. The heterogeneity of its clinical correlates
and the complexity of its pathogenesis make the development of effective preventive and therapeutic
measures difficult. In this section we describe the numerous changes that occur at the cellular level in
sarcopenic muscle [66].

4.1. Increase in Oxidative Stress and Mitochondrial Alterations

Aging is characterized by an increase in oxidative stress which is exacerbated during sarcopenia
development. The relationship of oxidative stress to sarcopenia has been experimentally defined [67,68].
Considering this, theoretically at least, the addition of an antioxidant should produce beneficial effects
in this condition. However, not all reactive species are harmful. Certainly, it is well-established that
some reactive oxygen species (ROS), reactive nitrogen species (RNS), and a basal level of oxidative
stress are essential for cell survival [69]. Oxidant generation, within a hormetic range, is essential for
intracellular signaling [70] and optimal force production [71]. Thus, very highly efficient antioxidants
may paradoxically be harmful unless their effects on the redox balance are closely titrated [72].
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However, melatonin seems not to be a typical radical scavenger and many publications show that
melatonin also regulates cellular homeostasis [37] and could even promote the generation of free
radicals when necessary [34]. For example, we have shown that when high oxidative stress is necessary
for adequate organ development, daily melatonin injections initially induce a reduction of oxidative
stress but, subsequently, when the melatonin injections are continued, free radical generation is
restored [73]. The collective findings indicate that melatonin is able to reduce free radical concentrations
but maintain them inside homeostatic limits and, moreover, melatonin’s action as a free radical
scavenger and as antioxidant are context specific as described by Proietti and colleagues [74].

The rise in oxidative stress in sarcopenia is mainly a result of mitochondrial dysfunction.
Any derangements in skeletal myocyte mitochondrial function are recognized as major factors that
contribute to age-dependent muscle degeneration [67]. In this regard, it is noteworthy that slow
walking speed has been adopted as a criterion for defining sarcopenia [75]; this is likely due to
a mitochondrial bioenergetic decline during muscle aging [76]. Melatonin and its metabolites are
powerful antioxidants protecting the electron transport chain and mitochondrial DNA from oxidative
damage more efficiently than other conventional antioxidants [77]. This protection of the respiratory
chain allows melatonin to increase ATP production in mitochondria [78].

4.2. Cellular Vacuolization: Alterations in Autophagy

The process of vacuolization is currently poorly understood. According to Henics and
Wheatley [79], vacuolization is simply the state of being with vacuoles; this implies a continual
process of becoming progressively more vacuolated. This occurs in most cell types spontaneously
or via a wide range of inductive stimuli. Vacuoles can be formed from several organelle types
of the endosomal/lysosomal compartment and is generally considered a degenerative process.
The involvement of autophagosomes in vacuole formation is widely accepted [80]. Also, some
agents impair autophagy, inducing blockage, which results in vacuole accumulation [81]. Strongly
supporting this hypothesis, several articles show functional defects in autophagy as a characteristic
of sarcopenic muscle [7,82]; this has been occasionally accompanied by perinuclear accumulation of
autophagic vacuoles [83].

Melatonin, in its role as a homeostasis stabilizer, has been shown to induce [84] or reduce [85]
autophagy. In relation to muscle, melatonin is highly versatile molecule and either induces
autophagy [86] or inhibits it [87], depending on pathological processes involved, since oxidative
stress has a close relationship with autophagy. For example, melatonin induces autophagy in myoblast
cells collaborating in myogenic differentiation (MyoD) degradation [88] but it inhibits autophagy in
muscles from carbon tetrachloride-treated mice by reducing oxidative stress-induced damage [89].

4.3. Protein Degradation Deterioration

Sarcopenia is a syndrome where the cell’s catabolic machinery has collapsed or has become
misregulated [90]. The accumulation of lipofuscin granules in an increasing number of lysosomes
of sarcopenic muscles is an example of impaired lysosomal degradative capacity [91]. In this
process, only a small amount of lysosomal enzymes remains available for degradative pathways [67];
this significantly contributes to the reduction in the degenerative capacity of these organelles. On the
other hand, higher levels of myostatin, a transforming growth factor- (TGF-3) family member,
induce muscle wasting by activating proteasomal-mediated catabolism of intracellular proteins [92].
In addition, defects in protein synthesis has been detected in muscles of sarcopenic patients [93]

Melatonin reduces endoplasmic reticulum stress in skeletal muscle by increasing the expression
of several proteins as well as mRNA levels [89]; this improves protein synthesis. Likewise, melatonin
is an important regulator of proteasome [94] and lysosomal mechanisms [88], thereby enhancing
cell quality.
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4.4. Decrease in Satellite Cells and Increase in Apoptosis

Satellite cells in skeletal muscle are quiescent mono-nucleated myogenic cells, located between
the sarcolemma and basement membrane of terminally-differentiated muscle fibres [95]. The life-long
maintenance of muscle tissue involves satellite cells, since under homeostatic conditions satellite cells
are activated by stimuli such as physical trauma or growth signals [96]. Sarcopenia increases the
susceptibility to muscle injury [97] and the reduced muscle mass contributes to falls [98]; in these
situations satellite cell activation would be essential for improving regeneration of these old muscles.
However, satellite cells are drastically reduced in sarcopenia increasing the negative consequences
of sarcopenic muscle [99] and/or its funcionality [100]. Unfortunately, these changes are sarcopenic
characteristics [7].

Melatonin also increases satellite cells following muscle injury in rats [101] by reducing the
apoptotic processes via modulation of signaling pathways which causes significant muscle regeneration
in these animals. Antiapoptotic actions of melatonin have been described in many tissues and in
a variety of normal cell types [102,103]. However, melatonin’s role in apoptosis can differ among
normal and cancer cells, since several publications have shown melatonin’s capability to destroy
cancer cells by triggering apoptosis [104-106]. In contrast, in normal skeletal muscle, some authors
have described in detail how melatonin prevents apoptosis and limits the oxidative stress that causes
mitochondria permeability transition and subsequent death [107]. Melatonin, for example, attenuates
apoptotic processes during ischemia/reperfusion in skeletal muscle [108]. Considering these findings,
melatonin has been proven to significantly reduce or, even, counteract several pathophysiological
processes specifically associated with sarcopenia [7].

4.5. Chronic Low Inflammation

There are other processes, some of them being a result of the changes described above, which
are common to different pathologies and are part of the sarcopenic complex. Melatonin may
also counteract or reduce those pathologies. One example is the systemic subacute inflammation
which is a predominant characteristic of the aging process [109]. This low grade inflammation has
been implicated in the development of a number of chronic diseases [110] and is associated with
sarcopenia development as well [67,111]. The damaging agents in this process are notably interleukin 6
(IL-6), C-reactive protein (CRP) and tumor necrosis factor « (TNF-«) [112,113]. Recent evidence has
documented a role for melatonin in reducing inflammation in muscle cells, acting specifically against
these cytokines in rats [114] and also in humans [115]. The anti-inflammatory actions of melatonin are
well-documented in numerous organs [116].

4.6. Endocrine Signaling

Studies on the nature and magnitude of age-related perturbations in circulating hormones as well
as the responsiveness of target tissues are major features of sarcopenia research [82]. A number of
hormone levels change during sarcopenia, including myokines and adipokines, due to the crosstalk
between muscle and adipose tissue [117,118]. Also, alterations in the renin—angiotensin system
promote muscular inflammation, mitochondrial dysfunction, and apoptosis [119]; insulin resistance
leads to perturbed metabolism and misrouted signaling [120]. Also, reductions in testosterone and
dehydroepiandrosterone contribute to muscle loss or weakness [121], while growth hormone (GH) and
insulin-like growth factor 1 (IGF-1) decrease, which is deleterious to the physical function of skeletal
muscle with age [122].

Hormonal supplementation in the older adults has been used to restore endocrine signaling.
This procedure is controversial and disappointing results in sarcopenic individuals have been
obtained [67]. As a result, great disparities between recommendations from scientific societies
related to aging and elderly patients in general have been mentioned [121]. Consequently, hormonal
supplementation seems not to be a desirable option. As an example, special attention should be paid
regarding GH where long-time supplementation as an anti-aging strategy has caused a number of
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severe side effects associated with this treatment, and the Growth Hormone Research Society has
warned against the use of GH or its secretagogues [123].

With regard to supplementation with melatonin, firstly, no significant adverse effects have been
reported with its use at any concentration or at any treatment time. Also, melatonin, as an effective
testosterone substitute, has been shown to prevent muscular atrophy in rats induced by castration
through the IGF-1 axis [124]. Moreover, melatonin reduces adipogenesis in obese mice [85], collaborates
in insulin resistance attenuation in Caenorhabditis elegans [125] and has a regulatory role in autocrine
and paracrine responses in muscle and adipose tissue [126]. Additionally, melatonin has been shown to
be more effective than GH in recovering physiological functions in smooth muscle from old rats [127].

4.7. Vascular Aging

Aging of the vascular system significantly hinders the uptake of oxygen and nutrients by muscle
cells; this is closely related to sarcopenia development. Thus, aged skeletal muscle shows reduced
blood flow capacity [128] together with extensive damage to endothelium-dependent vasodilation.
Both processes promote mitochondrial destruction in muscle cells due to a reduction in microvascular
oxygenation [129]; this in turn, induces ATP failure, increases ROS generation that also affects blood
vessel integrity. Thus, a vicious cycle involving oxidant production and vascular and muscular damage
ensues [67].

In contrast, a long-term treatment with melatonin has vasculoprotective properties [130]; for
example, it restores vascular dysfunction in a model of accelerated aging (i.e., the senescence
accelerated mouse-prone 8 (SAMPS)). Moreover, melatonin improves endothelial damage and
causes important improvements in vessel cytoarchitecture in aged animals [131]. Finally, benefits in
delaying age-related cellular damage in the cardiovascular system have been observed in aged rats
supplemented with caffeic acid phenethyl ester and melatonin [132].

Age-related damage of skeletal muscle cannot be studied as an isolated entity because to its close
relation with bone and the involvement of neuromuscular junctions. Unrepaired damage to one of
these two systems renders treatments for improving sarcopenia useless. It is essential that melatonin’s
capability of restoring the integrity of the musculoskeletal system and neuromuscular junctions also
be considered in any attempts to reduce sarcopenia.

5. Sarcopenia and Osteoporosis

As mentioned above, bone and muscle are closely interrelated. Thus, when aging affects one of
these two tissues, the functionality of the other is likewise compromised [66]. Thus, as muscle quality
deteriorates during aging, also bone becomes weakened when it develops osteoporosis.

Osteoporosis literally means “porous bone”. It is a consequence of a reduction in bone
mineral density which significantly increases fracture risk, which is the most serious complication
of osteoporosis [133]. Muscle force has an important influence on essential bone properties such as
mass, size, shape, and, even, architecture [134]. Thus, in elderly sarcopenic patients when the muscle
strain falls below a given threshold, bone remodeling activates a so-called disuse mode, which results
in less bone formation and greater bone resorption [66]. The reliance of muscle health on bone and
vice versa is so interrelated that several researchers consider it one syndrome, with terms including
sarco-osteopenia, sarco-osteoporosis, or dysmobility syndrome to distinguish disorders which are
prone to a high risk of fractures [66,135,136].

Oxidative stress and autophagic alterations have been implicated in the development of
osteoporosis [137], which could account for the beneficial effects of melatonin in this disease [138].
A recent published clinical trial has provided evidence related to the ability of melatonin to improve
bone mineral density in humans [139], thereby protecting them against fractures. The ability of
melatonin to protect against osteroporosis would also provide benefits in terms of limiting sarcopenia,
since elevated bone strength is usually associated with greater muscular tone.
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6. Neuromuscular Junction

The NMJ is the site at which efferent neurons communicate with muscle fibers. They function
in the transmission of signals from the motor neuron to the skeletal muscle fibers to ensure precise
control of skeletal muscle contraction and therefore voluntary movement. When the function of the
motor neuron terminal is lost, the muscular fiber innervated by this neuron loses its contact to the
nervous system and becomes incapable of generating volitional muscle contractions [22]. Although
aging is usually associated with a reduction in NM]J function, the mechanisms involved are not well
understood. Some lines of evidence point to the changes being causally related to the decline in muscle
mass and function as observed in sarcopenia; however, which occurs first, sarcopenia or a reduction in
the function of the NMJ, remains unknown [22].

Once again, oxidative stress seems to be implicated in NMJ impairment together with
mitochondrial dysfunction and inflammation being prominent features [140]. Thus, melatonin,
due to its potent antioxidant activities could be a key player in resolving or preventing this
deregulation. In fact, published reports using different animals show that melatonin reverses age-related
neuromuscular transmission dysfunction [141] and improves, at the same time, muscle physiology [142].

While still limited, the scientific evidence is consistent in terms of suggesting that melatonin
significantly improves aged muscle as well as other cellular alterations characteristic of sarcopenia.
Melatonin’s action also applies to the pathophysiological processes associated to sarcopenia including
muscle dysfunction that is closely interlinked to sarcopenia. Finally, it is necessary to remember that
melatonin levels are gradually lost throughout life [41], being almost undetectable in the elderly;
this could easily facilitate sarcopenia development. In light of these findings, it is reasonable to
assume that maintaining normal endogenous levels of melatonin or administering it as an exogenous
supplement may alleviate age-related muscular decline and the development of sarcopenia.
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Figure 1. Schematic overview of the potential beneficial effects of melatonin in osteoporosis, sarcopenia

and disruption of the neuromuscular junction.

7. Conclusions

Sarcopenia is a highly burdensome geriatric syndrome. It is commonly associated with
osteroporosis and neuromuscular dysfunction. Currently, no effective treatment for this degenerative
process has been identified. Melatonin has a high safety profile and no serious toxicity related to
melatonin usage has been reported. Here, we summarized the scientific evidence that melatonin
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prevents and counteracts mitochondrial impairments, reduces oxidative stress and autophagic
alterations in muscle cells, increases the number of satellite cells and limits sarcopenic changes in
skeletal muscle. Likewise, melatonin lowers chronic low inflammation levels and reduces vascular
aging, all of which are usually present in sarcopenic muscle. Similarly, melatonin improves the
endocrine signaling which deteriorates in aged individuals. As a consequence, melatonin may be
useful to prevent or treat sarcopenia-associated diseases including osteoporosis and neuromuscular
dysfunction (Figure 1). Collectively, the published data suggest that melatonin may be a useful aid in
slowing age-related muscle deterioration (i.e., sarcopenia as well as its associated conditions). If so,
stronger muscles could translate into fewer falls and bone fractures in the older population, which are
factors that normally seriously compromise aged individuals’ health.
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