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Abstract: Dexmedetomidine, a highly selective α-2 adrenoceptor agonist, produces vasoconstriction,
which leads to transiently increased blood pressure. The goal of this study was to investigate
specific protein kinases and the associated cellular signal pathways responsible for the increased
calcium sensitization induced by dexmedetomidine in isolated rat aortas, with a particular focus
on phosphorylation-dependent inhibitory protein of myosin phosphatase (CPI-17). The effect of
Y-27632 and chelerythrine on the dexmedetomidine-induced intracellular calcium concentration
([Ca2+]i) and tension were assessed using fura-2-loaded aortic strips. The effects of rauwolscine,
Y-27632, chelerythrine, and ML-7 hydrochloride on the dexmedetomidine-induced phosphorylation
of CPI-17 or of the 20-kDa regulatory light chain of myosin (MLC20) were investigated in rat
aortic vascular smooth muscle cells. The effects of rauwolscine, Y-27632, and chelerythrine on
the membrane translocation of Rho-kinase and protein kinase C (PKC) phosphorylation induced
by dexmedetomidine were assessed. Y-27632 and chelerythrine each reduced the slopes of the
[Ca2+]i-tension curves of dexmedetomidine-induced contraction, and Y-27632 more strongly reduced
these slopes than did chelerythrine. Rauwolscine, Y-27632, chelerythrine, and ML-7 hydrochloride
attenuated the dexmedetomidine-induced phosphorylation of CPI-17 and MLC20. Taken together,
these results suggest that dexmedetomidine-induced contraction involves calcium sensitization,
which appears to be mediated by CPI-17 phosphorylation via Rho-kinase or PKC.

Keywords: dexmedetomidine; Rho-kinase; protein kinase C; calcium sensitization;
phosphorylation-dependent inhibitory protein of myosin phosphatase; aorta

1. Introduction

As a highly selective α-2 adrenoceptor agonist, dexmedetomidine induces sedation, reduces
the opioid analgesic requirement, and attenuates the hemodynamic response to anesthesia and
surgery [1,2]. Because of these characteristics, dexmedetomidine is widely used during the
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perioperative period [1,2]. Intravenous administration of dexmedetomidine produces a biphasic blood
pressure response, which consists of transient hypertension followed by decreased blood pressure [3].
This initial transient hypertension is due to α-2 adrenoceptor stimulation of vascular smooth
muscle, whereas the observed decrease in blood pressure is associated with a central sympatholytic
effect evoked by dexmedetomidine [4–8]. In particular, a high dose or high concentration of
dexmedetomidine produces severe hypertension, which appears to be associated with α-2 adrenoceptor
stimulation of vascular smooth muscle [9–12].

Contraction of vascular smooth muscle is regulated by both calcium-dependent and
calcium-sensitization mechanisms [13]. In the calcium-sensitization mechanism, the slope of the
intracellular calcium concentration ([Ca2+]i)-tension curve induced by an agonist or drug is higher
than that induced by the depolarization evoked by high KCl concentrations [13,14]. The underlying
mechanism responsible for calcium sensitization is associated with the inhibition of myosin light chain
phosphatase (MLCP), leading to increased phosphorylation of the 20-kDa regulatory light chain of
myosin (MLC20) and subsequently enhanced contraction [13,14]. The inhibition of MLCP in vascular
smooth muscle is mediated by phosphorylation of either the phosphorylation-dependent inhibitory
protein of myosin phosphatase (CPI-17) or the myosin phosphatase target subunit of MLCP via either
Rho-kinase or protein kinase C (PKC), which leads to attenuated dephosphorylation of MLC20 [13,14].
We previously reported that the slopes of [Ca2+]i-tension curves induced by dexmedetomidine are
higher than those induced by high KCl in isolated rat aortas, suggesting that dexmedetomidine-induced
contraction produces a relatively greater increase in calcium sensitization [15]. However, the
specific protein kinases and associated cellular pathways primarily responsible for increased calcium
sensitization in response to dexmedetomidine remain unknown. Therefore, the goal of this in vitro
study was to investigate the specific protein kinase and associated cellular signaling pathways that
contribute to the increased calcium sensitization induced by dexmedetomidine, with a particular focus
on CPI-17 phosphorylation.

2. Results

Dexmedetomidine (3 × 10−8 to 10−6 M) induced vasoconstriction (p < 0.001 versus control;
Figures 1A and 2A) and increased [Ca2+]i (p < 0.01 versus control; Figures 1A and 2B). Y-27632
(3 × 10−7 and 10−6 M) attenuated the dexmedetomidine-induced contraction in a concentration-dependent
manner (p < 0.001 versus control at 10−7 to 10−6 M; Figures 1A,B and 2A) without changing
[Ca2+]i (Figures 1A,B and 2B). Thus, Y-27632 (3 × 10−7 and 10−6 M) shifted the slope of the
[Ca2+]i-tension curves to the lower-right compared with that of the control, suggesting that Y-27632
decreases Ca2+ sensitization (p < 0.05; Figure 2C). Chelerythrine (10−5 and 3 × 10−5 M) attenuated
dexmedetomidine-induced contraction in a concentration-dependent manner (p < 0.001 versus control
at 10−7 to 10−6 M; Figure 3A) and inhibited dexmedetomidine-induced [Ca2+]i increases (p < 0.001
versus control at 10−7 to 10−6 M; Figure 3B). Only a high concentration of chelerythrine (3 × 10−5 M)
reduced the slopes of the [Ca2+]i-tension curves induced by dexmedetomidine compared with those of
the control (p < 0.01; Figure 3C).
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Figure 1. Effects of 60 mM KCl and dexmedetomidine (DMT) on the intracellular calcium 
concentration ([Ca2+]i) (upper trace) and muscle tension (lower trace) in the absence (A) and presence 
(B) of 10−6 M Y-27632 in endothelium-denuded rat aortas. The [Ca2+]i of fura-2-loaded aortic strips 
was detected using a fluorometer and expressed as the F340/F380 ratio. After the effects of 60 mM 
KCl were determined, DMT (10−9 to 10−6 M) was cumulatively added. A value of 100% represents  
the 60 mM KCl-induced contraction or [Ca2+]i increase measured before washout (WO) with  
Krebs solution. 

 
Figure 2. Effects of the cumulative addition of dexmedetomidine (DMT, 10−9 to 10−6 M) on muscle 
tension (A) and intracellular calcium concentrations ([Ca2+]i) (B) in the absence or presence of 3 × 10−7 M 
or 10−6 M Y-27632 in endothelium-denuded rat aortas. A value of 100% represents the 60 mM 
KCl-induced [Ca2+]i increase and muscle tension measured before washout with Krebs solution;  
(C) The [Ca2+]i-tension relationship was constructed by measurements of the cumulative addition of 
DMT (10−9 to 10−6 M) in the absence or presence of Y-27632. Each point represents the mean of five 
experiments, and the standard deviation (SD) is shown by both the vertical and horizontal bars. The 
effects of Y-27632 on the DMT concentration-response curves were analyzed using two-way repeated 
measures analysis of variance (ANOVA) followed by Bonferroni’s post hoc test. The slopes of the 
[Ca2+]i-tension curves induced by DMT were calculated using linear regression, and the effect of 
Y-27632 on the slope was analyzed using one-way ANOVA followed by Bonferroni’s post hoc test. 
(A,B): * p < 0.001 and † p < 0.01 versus control. # p < 0.001 versus 3 × 10−7 M Y-27632; (C): slope; * p < 0.05 
and † p < 0.001 versus control. 

Figure 1. Effects of 60 mM KCl and dexmedetomidine (DMT) on the intracellular calcium concentration
([Ca2+]i) (upper trace) and muscle tension (lower trace) in the absence (A) and presence (B) of 10−6 M
Y-27632 in endothelium-denuded rat aortas. The [Ca2+]i of fura-2-loaded aortic strips was detected
using a fluorometer and expressed as the F340/F380 ratio. After the effects of 60 mM KCl were
determined, DMT (10−9 to 10−6 M) was cumulatively added. A value of 100% represents the 60 mM
KCl-induced contraction or [Ca2+]i increase measured before washout (WO) with Krebs solution.
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Figure 2. Effects of the cumulative addition of dexmedetomidine (DMT, 10−9 to 10−6 M) on
muscle tension (A) and intracellular calcium concentrations ([Ca2+]i) (B) in the absence or presence
of 3 × 10−7 M or 10−6 M Y-27632 in endothelium-denuded rat aortas. A value of 100% represents
the 60 mM KCl-induced [Ca2+]i increase and muscle tension measured before washout with Krebs
solution; (C) The [Ca2+]i-tension relationship was constructed by measurements of the cumulative
addition of DMT (10−9 to 10−6 M) in the absence or presence of Y-27632. Each point represents the
mean of five experiments, and the standard deviation (SD) is shown by both the vertical and horizontal
bars. The effects of Y-27632 on the DMT concentration-response curves were analyzed using two-way
repeated measures analysis of variance (ANOVA) followed by Bonferroni’s post hoc test. The slopes
of the [Ca2+]i-tension curves induced by DMT were calculated using linear regression, and the effect
of Y-27632 on the slope was analyzed using one-way ANOVA followed by Bonferroni’s post hoc test.
(A,B): * p < 0.001 and † p < 0.01 versus control. # p < 0.001 versus 3 × 10−7 M Y-27632; (C): slope;
* p < 0.05 and † p < 0.001 versus control.
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contraction induced by dexmedetomidine (10−6 M) (Figure 4A,D; rauwolscine: p < 0.05 versus 
control; ML-7 hydrochloride: p < 0.01 versus control). The highest concentrations of rauwolscine  
(10−5 M) and ML-hydrochloride (3 × 10−5 M) nearly abolished the dexmedetomidine (10−6 M)-induced 
contraction (Figure 4A,D; p < 0.001 versus control at 20 to 60 min). Y-27632 (10−6 and 3 × 10−6 M) also 
attenuated the dexmedetomidine (10−6 M)-induced contraction (Figure 4B; p < 0.001 versus control). 
The highest concentration of Y-27632 (3 × 10−6 M) nearly abolished the dexmedetomidine  
(10−6 M)-induced contraction (Figure 4B; p < 0.001 versus control at 10 to 60 min), and chelerythrine 
(5 × 10−6 to 3 × 10−5 M) attenuated the dexmedetomidine (10−6 M)-induced contraction (Figure 4C;  
p < 0.01 versus control at 30 to 60 min). In addition, the highest concentration of chelerythrine  
(3 × 10−5 M) nearly abolished the dexmedetomidine (10−6 M)-induced contraction (Figure 4C; p < 0.001 
versus control at 10 to 60 min). 

Figure 3. Effects of the cumulative addition of dexmedetomidine (DMT, 10−9 to 10−6 M) on
muscle tension (A) and intracellular calcium concentrations ([Ca2+]i) (B) in the absence or presence
of 10−5 M or 3 × 10−5 M chelerythrine in endothelium-denuded rat aortas. A value of 100% represents
the 60 mM KCl-induced [Ca2+]i increase and muscle tension measured before washout with Krebs
solution; (C) The [Ca2+]i-tension relationship was constructed by the cumulative addition of DMT
(10−9 to 10−6 M) in the absence or presence of chelerythrine. Each point represents the mean of five
experiments, and the SD is shown by both the vertical and horizontal bars. The effects of chelerythrine
on the DMT concentration-response curves were analyzed using two-way repeated measures analysis
of variance (ANOVA) followed by Bonferroni’s post hoc test. The slopes of the [Ca2+]i-tension curves
induced by DMT were calculated using linear regression, and the effect of chelerythrine on the slope
was analyzed using one-way ANOVA followed by Bonferroni’s post hoc test. (A,B): * p < 0.001 and
† p < 0.05 versus control. # p < 0.001 versus 10−5 M chelerythrine; (C): slope; * p < 0.01 versus control.

Rauwolscine (10−6 and 10−5 M) and ML-7 hydrochloride (10−5 and 3 × 10−5 M) attenuated the
contraction induced by dexmedetomidine (10−6 M) (Figure 4A,D; rauwolscine: p < 0.05 versus control;
ML-7 hydrochloride: p < 0.01 versus control). The highest concentrations of rauwolscine (10−5 M) and
ML-hydrochloride (3 × 10−5 M) nearly abolished the dexmedetomidine (10−6 M)-induced contraction
(Figure 4A,D; p < 0.001 versus control at 20 to 60 min). Y-27632 (10−6 and 3 × 10−6 M) also attenuated
the dexmedetomidine (10−6 M)-induced contraction (Figure 4B; p < 0.001 versus control). The highest
concentration of Y-27632 (3 × 10−6 M) nearly abolished the dexmedetomidine (10−6 M)-induced
contraction (Figure 4B; p < 0.001 versus control at 10 to 60 min), and chelerythrine (5 × 10−6 to
3 × 10−5 M) attenuated the dexmedetomidine (10−6 M)-induced contraction (Figure 4C; p < 0.01
versus control at 30 to 60 min). In addition, the highest concentration of chelerythrine (3 × 10−5 M)
nearly abolished the dexmedetomidine (10−6 M)-induced contraction (Figure 4C; p < 0.001 versus
control at 10 to 60 min).
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Figure 4. Effect of rauwolscine ((A), n = 6), Y-27632 ((B), n = 6), chelerythrine ((C), n = 6),
and ML-7 hydrochloride ((D), n = 6) on the dexmedetomidine (DMT)-induced contraction in
endothelium-denuded aortas. All data are expressed as the mean ± SD and the percentage of the
maximal contraction induced by DMT (10−6 M). N indicates the number of rats from which descending
thoracic aortic rings were derived or the number of isolated rat aortic rings. The effects of each inhibitor
(rauwolscine, Y-27632, chelerythrine, and ML-7 hydrochloride) on the DMT concentration-response
curves were analyzed using two-way repeated measures analysis of variance followed by Bonferroni’s
post hoc test. (A,B): † p < 0.05, # p < 0.01, and * p < 0.001 versus control; (C,D): * p < 0.01 and † p < 0.001
versus control.

Dexmedetomidine (10−6 M) induced CPI-17 phosphorylation at Thr38 in rat aortic vascular
smooth muscle cells (VSMCs) (Figure 5A; p < 0.05), whereas pretreatment with chelerythrine
(10−5 M) or rauwolscine (10−5 M) attenuated this effect (Figure 5A; p < 0.001 versus 10−6 M
dexmedetomidine alone). In addition, Y-27632 (10−5 M) also attenuated the dexmedetomidine-induced
CPI-17 phosphorylation (Figure 5A; p < 0.001 versus 10−6 M dexmedetomidine alone). In addition,
90 mM KCl induced CPI-17 phosphorylation in rat aortic VSMCs (Figure 5B; p < 0.001 versus control),
whereas Y-27632 attenuated the 90 mM KCl-induced CPI-17 phosphorylation (Figure 5B; p < 0.001).
Dexmedetomidine (10−6 M) induced the phosphorylation of MLC20 at Ser19 in rat aortic VSMCs
(Figure 6; p < 0.001 versus control), whereas pretreatment with rauwolscine (10−5 M), Y-27632
(10−6 M), ML-7 hydrochloride (3 × 10−6 M) and chelerythrine (10−5 M) attenuated this effect (Figure 6;
p < 0.001 versus 10−6 M dexmedetomidine alone). Dexmedetomidine (10−6 M) also induced membrane
translocation of Rho-kinase (Figure 7A; p < 0.001 versus control), and this effect was inhibited by
Y-27632 (3 × 10−6 M) and rauwolscine (10−5 M) (Figure 7A; p < 0.001 versus 10−6 M dexmedetomidine
alone). Furthermore, dexmedetomidine (10−6 M) induced PKC phosphorylation (Figure 7B; p < 0.001),
which was inhibited by chelerythrine (10−5 M) and rauwolscine (10−5 M) (Figure 7B; p < 0.001 versus
10−6 M dexmedetomidine alone).
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by dexmedetomidine (DMT, 10−6 M) in rat aortic vascular smooth muscle cells (VSMCs). VSMCs
were treated with 10−6 M DMT alone for 6 min or 10−6 M DMT for 6 min after pretreatment with
10−5 M rauwolscine, 10−6 M Y-27632, 3 × 10−6 M ML-7 hydrochloride, or 10−5 M chelerythrine for
1 h. The data are presented as the mean ± SD. N indicates the number of independent experiments.
The effects of rauwolscine, Y-27632, ML-7 hydrochloride, and chelerythrine on the phosphorylation
of MLC20 at Ser19 induced by DMT were analyzed using one-way analysis of variance followed by
Bonferroni’s post hoc test. * p < 0.001 versus control. † p < 0.001 versus 10-6 M DMT alone. p-MLC20:
phosphorylated MLC20, t-MLC20: total MLC20.
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Rho-kinase (ROCK-2) induced by dexmedetomidine (DMT, 10−6 M) in rat aortic vascular smooth
muscle cells (VSMCs). VSMCs were treated with 10−6 M DMT alone for 10 min or with 10−6 M
DMT for 10 min after pretreatment with 3 × 10−6 M Y-27632 or 10−5 M rauwolscine for 1 h.
The translocation of ROCK-2 from the cytosol (C) to the membrane (M) was examined by western blot
as described in the methods. The data are presented as the mean ± SD. N indicates the number of
independent experiments. The effects of Y-27632 and rauwolscine on the membrane translocation of
ROCK-2 induced by DMT were analyzed using one-way analysis of variance followed by Bonferroni’s
post hoc test. * p < 0.001 versus control. † p < 0.001 versus 10−6 M DMT alone; (B) Effect of chelerythrine
(n = 4) and rauwolscine (n = 4) on the protein kinase C (PKC) pan-phosphorylation induced by DMT
(10−6 M) in rat aortic VSMCs. VSMCs were treated with 10−6 M DMT alone for 4 min or 10−6 M
DMT for 4 min after pretreatment with 10−5 M chelerythrine or 10−5 M rauwolscine for 1 h. The data
are presented as the mean ± SD. N indicates the number of independent experiments. The effects
of chelerythrine and rauwolscine on the PKC pan-phosphorylation induced by DMT were analyzed
using one-way analysis of variance followed by Bonferroni’s post hoc test. * p < 0.001 versus control.
† p < 0.001 versus 10−6 M DMT alone. p-PKC (pan): phosphorylated PKC (pan), t-PKC: total PKC.
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3. Discussion

This is first study to suggest that dexmedetomidine-induced contraction involves the calcium
sensitization mediated by CPI-17 phosphorylation. The major findings of this in vitro study are
as follows: (1) the magnitudes of the reduction of the slopes of [Ca2+]i-tension curves induced
by dexmedetomidine were greater in aortas pretreated with Y-27632 than in those pretreated with
chelerythrine; (2) rauwolscine, Y-27632 and chelerythrine attenuated the dexmedetomidine-induced
CPI-17 phosphorylation; and (3) rauwolscine, Y-27632, chelerythrine, and ML-7 hydrochloride
attenuated the dexmedetomidine-induced MLC20 phosphorylation.

A previous study demonstrated that the slope of the [Ca2+]i-tension curve induced by
dexmedetomidine is steeper than the slope of the [Ca2+]i-tension curve induced by high KCl,
suggesting that dexmedetomidine-induced α-2 adrenoceptor-mediated contraction would be
mediated by calcium sensitization [15]. However, the downstream cellular signal pathways
associated with specific protein kinases that contribute to calcium sensitization remain unknown.
KCl-induced contraction involves both the activation of myosin light chain kinase and the
calcium-calmodulin-stimulated enhancement of Rho-kinase translocation that contributes to calcium
sensitization via an increase in [Ca2+]i [16,17]. However, a contractile agonist produces contraction
due to greater calcium sensitization involving Rho-kinase and PKC [14,18]. In terms of downstream
effectors that contribute to the calcium sensitization induced by Rho-kinase and the PKC activation
by an agonist, PKC induces the phosphorylation of CPI-17, whereas Rho-kinase induces the
phosphorylation of both CPI-17 and the myosin phosphatase target subunit of MLCP [14,19].
Therefore, the Y-27632 induced greater reduction of the slopes of the [Ca2+]i-tension curves induced by
dexmedetomidine compared with those induced by chelerythrine (Figures 2C and 3C; slope: 10−6 M
Y-27632 = 1.27 ± 0.39 versus 3 × 10−5 M chelerythrine = 2.37 ± 0.53; p < 0.01); this may be ascribed to
an additional inhibitory effect of Y-27632 on the dexmedetomidine-induced phosphorylation of the
myosin phosphatase target subunit, leading to enhanced calcium sensitization. Thus, further studies
regarding the effect of dexmedetomidine on the phosphorylation of the myosin phosphatase target
subunit are needed to elucidate the detailed mechanism. Because cytoskeletal organization, including
stress fiber and focal adhesion formation, is controlled by Rho-kinase-induced myosin light chain
phosphorylation, the dexmedetomidine-induced increase in the slope of the [Ca2+]i-tension curves
may be associated with cytoskeletal rearrangement [19,20].

In agreement with previous reports, rauwolscine attenuated dexmedetomidine-induced
contraction, suggesting that dexmedetomidine-induced contraction involves activation of the
α-2 adrenoceptor [15,21–23]. Similar to previous reports, chelerythrine and Y-27632 attenuated
dexmedetomidine-induced contraction in a concentration-dependent manner, suggesting that
dexmedetomidine-induced contraction is mediated by PKC and Rho-kinase [15,21,23,24]. Consistent
with a previous report, ML-7 hydrochloride attenuated dexmedetomidine-induced contraction,
suggesting that dexmedetomidine-induced contraction involves activation of myosin light chain
kinase [24]. In the current study, dexmedetomidine-mediated contraction involved myosin light
chain kinase activation; thus, the observed increase in dexmedetomidine-induced [Ca2+]i suggests a
contribution to myosin light chain kinase activation through the calcium-calmodulin complex [13,23].
Taken together, these results suggest that dexmedetomidine-induced contraction is mediated by
pathways involving α-2 adrenoceptor, PKC, Rho-kinase, and myosin light chain kinase. However,
although the concentrations of these inhibitors were selected based on previous studies, non-specific
action of these inhibitors may affect dexmedetomidine-induced contraction [25–28].

The calcium sensitization contributing to smooth muscle contraction is mediated by the inhibition
of MLCP [13]. The binding of an agonist acting on G-protein-coupled receptors induces the
hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C and the hydrolysis of
phosphatidylcholine by phospholipase D, leading to the production of diacylglycerol which activates
PKC, which subsequently phosphorylates CPI-17 and causes enhanced contraction via inhibition
of MLCP [13,14,18]. In addition, agonist-receptor binding stimulates Rho-kinase via RhoA-GTP



Int. J. Mol. Sci. 2016, 17, 1663 9 of 14

and subsequently phosphorylates the myosin phosphatase target subunit of MLCP, leading to
enhanced contraction via the inhibition of MLCP [14]. In addition, agonist-induced Rho-kinase
activation causing smooth muscle contraction has been reported to phosphorylate CPI-17 as a
downstream effector, leading to enhanced contraction via the inhibition of MLCP [18,19,29,30].
Similar to previous reports, Y-27632 or chelerythrine attenuated the dexmedetomidine-induced
phosphorylation of CPI-17 at Thr38, suggesting that CPI-17 involved in dexmedetomidine-induced
contraction is a downstream effector activated by Rho-kinase or PKC [18,19,29,30]. Consistent with the
isometric tension measurements in the current study, rauwolscine, Y-27632, chelerythrine, and ML-7
hydrochloride attenuated the dexmedetomidine-induced phosphorylation of MLC20. The relative
attenuation of dexmedetomidine-induced CPI-17 phosphorylation by Y-27632 appears to be lower than
that induced by chelerythrine (Figure 5), whereas the relative inhibition of dexmedetomidine-induced
MLC20 phosphorylation by Y-27632 appears to be higher than that induced by chelerythrine (Figure 6).
Although we did not examine the effect of Y-27632 on the dexmedetomidine-induced phosphorylation
of the myosin phosphatase target subunit in the current study, Y-27632 induced a greater attenuation of
the slopes of the [Ca2+]i-tension curves than that induced by chelerythrine (Figures 2C and 3C); thus,
we suppose that the enhanced inhibitory effect of Y-27632 on dexmedetomidine-induced MLC20

phosphorylation may be due to the additional inhibition of the phosphorylation of the myosin
phosphatase target subunit induced by Rho-kinase activation by dexmedetomidine. Similar to
a previous report, Y-27632 attenuated the CPI-17 phosphorylation induced by high levels of KCl,
suggesting that the 90 mM KCl-induced contraction is mediated partially by Rho-kinase-induced
CPI-17 phosphorylation [17]. In addition, in the current study, Y-27632 and rauwolscine attenuated
the dexmedetomidine-induced membrane translocation of Rho-kinase, and both chelerythrine and
rauwolscine attenuated the dexmedetomidine-induced PKC phosphorylation. Taken together, these
results suggest that the dexmedetomidine-induced phosphorylation of MLC20 is mediated by pathways
involving α-2 adrenoceptor, Rho-kinase, PKC, and myosin light chain kinase. Further study
regarding the upstream signal pathways associated with Rho-kinase and PKC that contribute to
dexmedetomidine-induced CPI-17 phosphorylation is needed.

An initial loading dose or bolus administration of dexmedetomidine produces transient
hypertension and increased systemic vascular resistance [31,32]. In addition, high doses or
high concentrations of dexmedetomidine cause hypertension in humans [9–12]. Although our
results help to explain these observations, some limitations of our study should be considered.
First, dexmedetomidine-induced α-2 adrenoceptor-mediated endothelial nitric oxide release is
known to attenuate the corresponding dexmedetomidine-induced vasoconstriction, but we used
endothelium-denuded aortas in the current study [33,34]. Second, the total peripheral vascular
resistance is primarily determined by small arterioles, although we used rat aortas, which are regarded
as conduit vessels, in the current study [35]. Although we used cultured rat aortic VSMCs between
passages two and ten, because prolonged culture of vascular myocytes may grossly change their
phenotype and biochemical properties, the use of cultured rat aortic VSMCs instead of fresh tissue in
the current study may affect the Western blot results. Even with these limitations, the vasoconstriction
evoked by dexmedetomidine-induced CPI-17 phosphorylation-mediated calcium sensitization may
contribute to the increased blood pressure or systemic vascular resistance observed in previous studies
involving humans [9–12].

4. Materials and Methods

The Institutional Animal Care and Use Committee at Gyeongsang National University
and at Catholic Kwandong University approved all the experimental procedures and protocols
(GLA-130627-R0041, 17 June 2013), and all experimental procedures were performed in accordance
with the Guide for the Care and Use of Laboratory Animals prepared by the Institute for Laboratory
Animal Research.
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4.1. Fura-2 Loading and the Simultaneous Measurements of the Intracellular Calcium Concentration ([Ca2+]i)
and Tension

Fura-2 loading and simultaneous measurements of [Ca2+]i and tension were performed as
described earlier [36]. Male Sprague-Dawley rats weighing 250–300 g were sacrificed by intraperitoneal
administration of pentobarbital sodium (50 mg/mL) followed by exsanguination. The descending
thoracic aorta was isolated and dissected free from the surrounding connective tissue and fat, removed
under microscopic guidance, and placed in Krebs solution (118 mM NaCl, 4.7 mM KCl, 1.2 mM
MgSO4, 1.2 mM KH2PO4, 2.5 mM CaCl2, 25 mM NaHCO3, and 11 mM glucose). A total of 20 rats
were used in this experiment. [Ca2+]i was measured using the fluorescent Ca2+ indicator fura-2.
Vascular smooth muscle strips were preincubated with the acetoxymethyl ester of fura-2 (fura-2/AM,
10 µM) in the presence of 0.02% Cremophor EL for 5–6 h at room temperature. Fura-2-loaded tissues
were then transferred to a temperature-controlled 7 mL organ bath in a fluorimeter (CAF-100; Jasco,
Tokyo, Japan) and washed with Krebs solution at 37 ◦C for 20 min to remove uncleaved fura-2/AM.
Isometric contraction of the muscle was recorded using a force-displacement transducer (MLT050,
AD Instruments, Colorado Springs, CO, USA). The muscle strips were alternately illuminated (48 Hz)
at excitation wavelengths of 340 and 380 nm. The light emitted from the tissue (F340 and F380) was
measured by a fluorometer through a 500-nm filter, and the ratio of F340/F380 was used as a measure
of [Ca2+]i. The absolute [Ca2+]i was not calculated in this experiment because the dissociation constant
of the fluorescence indicator for Ca2+ in cytosol may differ from that measured in vitro [37]. Therefore,
the F340/F380 ratios obtained in resting and 60 mM KCl-stimulated muscle were expressed as 0%
and 100%, respectively. Additionally, the maximal tension induced by 60 mM KCl was taken as 100%.
Muscle tensions and F340/F380 ratios were recorded by PowerLab/400 using the chart program (AD
Instruments). Muscle strips were placed under an initial 3.0 g resting tension. All the strips obtained
from the same animal were used in different experimental protocols. The simultaneously measured
[Ca2+]i-tension relationships obtained by cumulative addition of dexmedetomidine (10−9–10−6 M)
were generated in the absence or presence of either a Rho-kinase inhibitor (Y-27632, 3 × 10−7 and
10−6 M) or a PKC inhibitor (chelerythrine, 10−5 and 3 × 10−5 M). Inhibitors were added to the organ
bath 15 min before the cumulative application of dexmedetomidine and remained until the end of
the measurement.

4.2. Preparation of Aortic Rings for Tension Measurement

Aortic rings were isolated for tension measurements as previously described [21,38].
Male Sprague-Dawley rats weighing 250–300 g were anesthetized by an intramuscular administration
of Zoletil 50 (125 mg tiletamine–HCl + 125 mg zolazepam base/5 mL, 15 mg/kg; Virbac Laboratories,
Carros, France). Zoletil 50 had no significant effect on the 60 mM KCl-induced contraction in
the preliminary experiment. The descending thoracic aorta was removed and dissected free
from its surrounding connective tissue and fat under microscopic guidance and placed in Krebs
solution. The aorta was then cut into 2.5 mm rings and suspended on Grass isometric transducers
(FT-03, Grass Instrument, Quincy, MA, USA) under a 3.0 g resting tension in a 10 mL Krebs bath
at 37 ◦C. The aorta was continuously aerated with 95% O2 and 5% CO2 to maintain the pH value
at 7.35–7.45. A 3.0 g resting tension was used to equilibrate the rings for 120 min, and the bath solution
was changed every 30 min. A 25-gauge needle was inserted into the aortic lumen and the aortic rings
were gently rubbed for a few seconds to remove the endothelium. After the stable maintenance of the
contraction induced by phenylephrine (10−8 M), endothelial denudation was confirmed when <10%
relaxation was observed in response to acetylcholine (10−5 M). After removing the Krebs solution
containing phenylephrine from the organ bath to relax the isometric tension to baseline, the following
experimental protocols were performed. A single ring was used to generate the concentration–response
curve stimulated by dexmedetomidine. Since nitric oxide released by endothelial α-2 adrenoceptor
inhibits dexmedetomidine-induced contraction, a nitric oxide synthase inhibitor (Nω-nitro-l-arginine
methyl ester, 10−4 M) and a cyclooxygenase inhibitor (indomethacin, 10−5 M) were added in the Krebs
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solution for subsequent experimental protocols to inhibit the production of endogenous nitric oxide
and endogenous prostacyclin, respectively, from any residual endothelium [22,33].

4.3. Experimental Protocol

The effects of the α-2 adrenoceptor inhibitor rauwolscine, the Rho-kinase inhibitor Y-27632,
the PKC inhibitor chelerythrine, and the myosin light chain kinase inhibitor ML-7 hydrochloride
on dexmedetomidine (10−6 M)-induced contraction were assessed by continuously measuring the
dexmedetomidine (10−6 M)-induced contraction for 60 min. After dexmedetomidine (10−6 M)
produced a sustained and stable contraction, rauwolscine (10−6 and 10−5 M), Y-27632 (10−6 and
3 × 10−6 M), chelerythrine (5 × 10−6, 10−5 and 3 × 10−5 M), and ML-7 hydrochloride (10−5 and
3 × 10−5 M) were added to an organ bath, and the isometric tension was continuously monitored for
60 min. The various concentrations of several inhibitors had no effect on the baseline resting tension in
a preliminary experiment. In addition, we selected the various concentrations of several inhibitors
(Y-27632, chelerythrine, rauwolscine, and ML-7 hydrochloride) based on the concentrations used in
the previous studies [25–28].

4.4. Cell Culture

VSMCs were isolated from rat thoracic aortas using enzymatic dissociation and cultured in
Dulbecco’s modified Eagle’s medium supplemented with 10% heat-inactivated fetal bovine serum,
2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin, as described earlier [36].
Cells were subcultured twice per week by harvesting with trypsin/ethylenediaminetetraacetic acid
(EDTA) and seeding into flasks at a density of 7.5 × 105/mm2. For current experiments, cells between
passages two and ten were seeded into dishes (107/100-mm dish), fed every other day, and used at
confluence (6–7 days). Cells were serum deprived overnight prior to treatment. As dexmedetomidine
(10−6 M) highly increased calcium sensitization and dexmedetomidine (10−6 M)-induced contraction
was approximately equivalent in magnitude to that of the 60 mM KCl-induced contraction,
we used 10−6 M dexmedetomidine to detect phosphorylation of various protein kinases induced
by dexmedetomidine in the current experiment.

4.5. Western Blot Analysis

Western blot analysis was performed according to the method described by Ok et al. [36].
Membrane and cytosolic fractions were isolated from cells using a Mem-PER™ eukaryotic membrane
protein extraction reagent kit (Thermo Scientific, Rockford, IL, USA) according to the manufacturer’s
specifications. Protein concentrations were determined using the Bradford method [39]. Samples for
gel loading were prepared by mixing equal volumes of 2× sodium dodecyl sulfate sample buffer
(0.1 M Tris-HCl, 20% glycerol, 4% sodium dodecyl sulfate, and 0.01% bromophenol blue) and
supernatant fractions from the lysates. Aliquots of 30 µg proteins were separated by 10% or 13.5%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis for 90 min at 110 V. The separated proteins
were electrophoretically transferred to polyvinylidene difluoride membranes for 1 h at 190 mA.
Then, the membranes were blocked in Tris-buffered saline (pH 7.0) containing 5% w/v nonfat dried milk
for 2 h at room temperature and incubated overnight at 4 ◦C with specific primary antibodies (anti-PKC,
anti-phospho-PKC [pan], anti-MLC20, anti-phospho-MLC20, anti-CPI-17, and anti-phospho-CPI-17)
diluted 1:1000 in 5% w/v skim milk in Tris-buffered saline containing Tween-20 (TBST). After washing
the membranes in TBST, bound antibodies were incubated with horseradish peroxidase-conjugated
anti-goat, anti-rabbit, or anti-mouse IgG diluted 1:5000 in TBST containing 5% w/v skim milk
for 1 h at room temperature. The membranes were washed in TBST, and the immunoreactive
bands were detected by chemiluminescence (SuperSignal® West Pico Chemiluminescent Substrate;
Thermo Scientific, Rockford, IL, USA) using an X-ray film (SuperRX-N Fuji Medical X-ray Film,
Tokyo, Japan).
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4.6. Materials

All drugs used in these experiments were the highest purity available commercially. L-NAME,
indomethacin, acetylcholine, chelerythrine, rauwolscine, and ML-7 hydrochloride were obtained from
Sigma-Aldrich (St. Louis, MO, USA). Y-27632 was obtained from Calbiochem (La Jolla, CA, USA).
Anti-PKC, anti-phospho-PKC (Pan), anti-MLC20, and anti-phospho-MLC20 at Ser19 were obtained
from Cell Signaling Technology (Beverly, MA, USA). Anti-CPI-17 and anti-phospho-CPI-17 at Thr38
were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Fura-2/AM was obtained
from Molecular Probes (Eugene, OR, USA). Dulbecco’s modified Eagle’s medium, fetal bovine serum,
penicillin, streptomycin, trypsin/EDTA, and glutamine were supplied by Gibco BRL (Rockville, MD,
USA). All concentrations are expressed as the final molar concentration in the organ bath. Indomethacin
and ML-7 hydrochloride were dissolved in dimethyl sulfoxide (final organ bath concentration, <0.1%).
Unless otherwise stated, all drugs were dissolved and diluted in distilled water.

4.7. Data Analysis

Values are expressed as the means ± SD. The vasodilation induced by rauwolscine,
chelerythrine, Y-27632, and ML-7 hydrochloride is expressed as a percentage of the dexmedetomidine
(10−6 M)-induced maximal contraction. The simultaneously measured values of dexmedetomidine-induced
tension and [Ca2+]i are expressed as the percentage of the 60 mM KCl-induced maximal contraction
and [Ca2+]i, respectively. The contraction or [Ca2+]i found in response to each concentration
of dexmedetomidine was analyzed using repeated measures analysis of variance followed
by Bonferroni’s post hoc test (Prism 5.0, GraphPad Software, San Diego, CA, USA). p Values
less than 0.05 were considered statistically significant.

5. Conclusions

Taken together, these results suggest that the contraction induced by the α-2 adrenoceptor
agonist dexmedetomidine involves calcium sensitization in isolated endothelium-denuded rat aortas,
and this effect appears to be mediated by CPI-17 phosphorylation via Rho-kinase or PKC.
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