
 International Journal of 

Molecular Sciences

Review

Transactivation of Epidermal Growth Factor Receptor
by G Protein-Coupled Receptors: Recent Progress,
Challenges and Future Research

Zhixiang Wang

Received: 7 December 2015; Accepted: 7 January 2016; Published: 12 January 2016
Academic Editor: Kathleen Van Craenenbroeck

The Department of Medical Genetics and Signal Transduction Research Group,
Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
zhixiang.wang@ualberta.ca; Tel.: +1-780-492-0710

Abstract: Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate
large signaling networks, control multiple cell functions and are implicated in many diseases
including various cancers. Both of them are also the top therapeutic targets for disease treatment.
The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks
and complicates the already complicated signaling networks that regulate cell signaling and function.
In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily
of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has
been made including the elucidation of the mechanisms underlying the transactivation. Here, we
first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss
the progress made in the last five years and finally provided our view of the future challenge and
future researches needed to overcome these challenges.
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1. Introduction

G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) are the two largest
groups of membrane receptors. They transduce various extracellular stimulus into intracellular signals
to regulate almost all kinds of cellular functions. While it was traditionally believed that the main
function of GPCR is to catalyze the production of second messages to regulate cell metabolism and the
main function of RTKs is to regulate cell growth and differentiation, recent evidence indicates that
both of them activate a large intracellular signaling network that controls multiple cell functions [1–4].
The discovery of the cross-talk between GPCR and RTKs now integrates these two signaling networks
together [5,6]. Many RTKs including epidermal growth factor (EGF) receptor (EGFR), platelet-derived
growth factor receptor (PDGFR), and Trks are transactivated by GPCR, however, EGFR transactivation
by GPCR is mostly studied. In this review, we will focus on EGFR transactivation. A few reviews have
been published recently to discuss the various aspects of RTK transactivation by GPCR [6–8]. Here we
will focus on the progress during last five years and discuss the challenges and future research of this
interesting and important research field.

2. G Protein-Coupled Receptors

G protein coupled receptors (GPCRs) constitute a large family of plasma membrane receptors,
which is involved in diverse intracellular signaling pathways and regulate multiple functions
including vasorelaxation, heart rate, sight, olfaction and biorhythms [9]. The human genome encodes
approximately 800 GPCRs, which are grouped into three main classes (A–C) based on sequence
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homology [2,10]. Recently, GPCRs are also classified into six classes, Rhodopsin-like, Secretin receptor family,
Metabotropic glutamate/pheromone, Fungal mating pheromone receptors, Cyclic AMP receptors, and
Frizzled/Smoothened [2,11]. The class A/Rhodopsin family comprises the largest number of GPCRs
with hundreds of receptors. The class A receptors are further divided into several subtypes including
serotonin 5HT1B and 5-HT2B receptors, muscarinic acetylcoline M2 and M3 receptors, and four subtype
of opioid receptors [2]. The class B/Secretin family GPCR comprise fifteen receptors in human that are
activated by peptide endocrine hormones, peptide paracrine factors and neuropeptides [12]. The class
C/Glutamate family GPCR comprise fifteen receptors activated by amino acids and ions [11].

GPCRs are integral membrane proteins with seven transmembrane helices. The extracellular
loops of the receptor possess two highly conserved cysteine residues. These two cysteine residues
form disulfide bonds, which stabilizes the structure of the receptor. GPCRs lack intrinsic enzymatic
activity and function through the coupled heterotrimeric G proteins. The heterotrimeric G protein
contains three subunits: Gα, Gβ, and Gγ. Ligand binding to the GPCRs stimulates the dissociation
of G proteins into GTP-bound Gα, and Gβγ subunits. The disassociated G protein subunits control
the activity of many enzymes including kinases, phospholipase C, and adenylate cyclase to generate
second messengers. These intracellular second messengers regulate various cell functions. In addition,
the G protein-dependent signaling is further complicated by the existence of many G protein subunits,
which can stimulate diverse signaling cascades. Thus far, there are 20 Gα, 6 Gβ, and 11 Gγ subunits
reported [6].

There are currently only two protein families shown to regulate GPCR activities: GPCR kinases
(GRKs) and β-arrestins [1,6]. GRKs controls GPCR activity by phosphorylating their intracellular
domains following the release of the coupled G proteins, which allows the binding of β-arrestins to
GPCRs to prevent their re-association with the G proteins. It has been shown recently that β-arrestins
also function as scaffolds and activator for many signaling proteins. The interaction between GPCR
and β-arrestins allows GPCR to activate downstream signaling cascades, independent of G proteins.

3. Epidermal Growth Factor Receptor (EGFR)

There are more than 90 known protein tyrosine kinase genes in the human genome; 58 encode
transmembrane RTKs distributed into 20 subfamilies including EGFR family [13]. EGFR family receptors
consist of four members including EGFR/ErbB1/Her1, ErbB2/Her2, ErbB3/Her3, and ErbB4/Her4.
Among EGFR family, ErbB3 has impaired kinase activity and ErbB2 is an orphan receptor. Therefore,
ligand-induced heterodimerization is an important mechanism to activate all ErbB receptors [4,14,15].
EGFR is a 170 kD transmembrane protein of a single polypeptide chain. The extracellular domain
of EGFR contains 622-amino acids and is heavily glycosylated. It also comprises two cysteine rich
regions for ligand binding. The transmembrane domain is a short α-helical peptide with 23 amino
acids. The intracellular domain with 542 amino acids comprise a conserved protein tyrosine kinase
domain and a C-terminal domain containing the regulatory tyrosine residues [16].

EGFR plays important roles in the regulation of cell growth and development [4,14]. Binding of
EGF to EGFR stimulates the dimerization of EGFR and the activation of its kinase, which leads to
the trans-autophosphorylation of EGFR [3]. Activated EGFR stimulates various signaling cascades
that regulate multiple cell functions including cell proliferation, survival, cytoskeleton reorganization,
and motility [4,14]. EGFR is also rapidly internalized following its binding to EGF [17]. The signaling
proteins forming complexes with EGFR include Shc, Grb2, Src, PLC-γ1, Cbl, and the p85α subunit
of phosphoinositide 3-kinase (PI3K) [18–20]. Many signaling pathways are activated by EGFR.
For example, activated EGFR binds to Shc/Grb2, which recruits Sos to the plasma membrane to
activate Ras. Ras activation leads to the activation of Raf and mitogen-activated protein kinase (MEK).
Extracellular signal-regulated kinases (ERKs), activated by MEK, activate transcription factors such
as Elk-1 directly or activate c-fos and SRF through RSK [20–23]. The activation of PLC-γ1 by EGFR
regulates cell mitogenesis and migration [24–27]. The activated EGFR also stimulates the activation of
PI3K-AKT pathway, which protects the cell from undergoing apoptosis [28–30].
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4. Transactivation of EGFR by GPCRs

Ullrich’s group provide the first evidence supporting the transactivation of GPCRs by RTK. They showed
that EGFR and ErbB2 were rapidly phosphorylated following the addition of various GPCR agonists
including lysophosphatidic acid, thrombin, and endothelin-1 in Rat-1 cells [31]. The activation of EGFR
and ErbB2 was blocked when EGFR kinase was inhibited either by the inhibitor AG1478 or by the
expression of dominant-negative EGFR [31]. They further showed that EGFR transactivation occurred
in diverse cell types and different types of G proteins [32]. Afterwards, transactivation of EGFR by
GPCR has been reported for various receptor tyrosine kinases, including PDGFR [33,34], Trk [35,36],
insulin-like growth factor receptor [37,38], vascular endothelial growth factor receptors [39,40], and
fibroblast growth factor receptors [41]. Here, we focus on EGFR as it is mostly studied.

Accumulated evidence suggests that there are several mechanisms for the transactivation of the
EGFR by GPCR (Figure 1) [6,8,42]. These mechanisms could be classified into two major ones. The first
mechanism is the “triple membrane passing signal” (TMPS) pathway (Figure 1A). According to this
model, EGFR transactivation by GPCR is controlled by the activation of membrane-bound matrix
metalloproteases (MMPs). The most implicated group of MMPs is the ADAM (a disintegrin and
metalloprotease) family. MMPs are able to cleave EGFR ligands such as heparin-binding EGF-like
factor (HB-EGF), neuregulin, transforming growth factor-α, and amphiregulin. The cleaved ligands
are then released into the extracellular space and bind to EGFR, which stimulates the dimerization and
activation of EGFR. The activated EGFR is then able to simulate various signaling pathways such as
the Ras-Erk pathway and the PI3K-AKT pathway, and regulates various cell functions (Figure 1A).
In this model, the signal generated by a GPCR agonist will cross the plasma membrane three times.
EGFR transactivation through TMPS pathway has been reported in many cell types following
activation by various agonists such as bombesin, 5-hydroxytryptamine, carbachole, angiotensin II,
bradykinin, lysophosphatidic acid, endothelin 1, gonadotropin-releasing hormone, phenylephrine,
leptin, thrombin, deoxycholic acid, and prostaglandin E2 [6,8,42–44]. EGFR transactivation through
this mechanism has been implicated in the regulation of many normal cell functions and the growth,
development and progression of many diseases such as cancers, kidney disease, and cardiovascular disease.

Under other situations, EGFR is transactivated by GPCR without detectable EGF-like ligands,
which suggests that EGFR transactivation by GPCR can also be through intracellular signaling
pathways that are ligand-independent (Figure 1B). All of the ligand-independent mechanisms involves
the activation of intracellular protein tyrosine kinases (PTKs) such as Src family proteins. The increased
PTK activity mediates the phosphorylation of EGFR in its cytosolic domain. The phosphorylated EGFR,
in turn, associates with various signaling proteins and initiates the activation of multiple signaling
pathways (Figure 1B,C). Several mechanisms have been suggested regarding the pathways leading to
the enhanced activity of PTKs [6,8,42,43,45].

A major mechanism requires the ROS production. In this model, activation of GPCRs by agonist
stimulates the phosphorylation of p47phox and the activation of NADPH oxidase, which produces
reactive oxygen species (ROS) through O2 by using NADPH as electron donor. ROS may unbalance
the equilibrium of the intracellular phosphorylation and enhance the activity of intracellular PTKs
through two mechanisms: (1) inactivation of protein tyrosine phosphatases (PTPs) by oxidation of its
cysteine residue in its catalytic site. This leads to the enhanced activation of PTKs; and (2) stimulation
of the proteolysis of regulatory proteins that block PTK activity, which also leads to the higher activity
of PTKs [6,8,42]. The increased PKT activity stimulates EGFR transactivation.

The ligand-independent intracellular mechanisms without ROS production have also been suggested.
Src family kinases have been shown to be associated with GPCRs. The association may be through
the direct interaction between Src SH3 domain and the GPCR cytoplasmic domain that contains
consensus proline-rich motifs in its C-terminal tail or third intracellular loop. The interaction could also
be through the binding to GPCR-associated proteins including the G protein subunits and β-arrestins.
This interaction activates Src family kinases, which phosphorylates EGFR at its intracellular domain [6,8,42].
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Figure 1. Schematic illustration of EGFR transactivation by GPCR. Two mechanisms have been 
proposed and supported by the available data: TMPS and ligand-independent intracellular pathways. 
(A) TMPS: In this model, GPCR-induced EGFR transactivation depends on the activation of MMPs 
that are able to cleave EGFR ligands such as HB-EGF and stimulate ligand shedding. The ligands 
released into the extracellular space then bind to EGFR and stimulate the dimerization and activation 
of the receptors, which leads to the activation of signaling cascades; (B) Ligand-independent pathway: 
This pathway involves the activation of intracellular protein tyrosine kinases (PTKs) such as Src 
family proteins. Src phosphorylates the tyrosines residues in the cytosolic domain of EGFR. The 
phosphorylated EGFR is able to interact with downstream signaling proteins, leading to the activation 
of various signaling pathways. Src could be activated by GPCR through different mechanisms;  
(C) Future research: Future research should focus on the EGFR transactivation through ligand-
independent Src pathway. It is important to determine how Src activates EGFR, the activation status 
of Src-activated EGFR, and the effects of Src-activated EGFR on the downstream signaling cascades 
and cell functions. For example, does Src stimulates the dimerization of EGFR? Does Src 
phosphorylate all the major phosphor tyrosine (Y) residues of EGFR? What are the downstream 
signaling pathways activated and what is the physiological consequence of this activation? 

5. Progress in the Last Five Years 

The research in the field of EGFR transactivation by GPCR is continuously flourish with more 
than 100 papers published in the last five years. However, most of these papers were reporting the 
identification of EGFR transactivation by a GPCR, which was not reported before, identification of 
additional downstream signaling pathways activated by EGFR transactivation, or additional 
physiological role of EGFR transactivation by GPCR. For example, the GPCRs newly identified to 
transactivate EGFR or other RTKs include formyl peptide receptor-like (FPRL1) [46], BK B2 receptor 
(B2R) [47,48], bombesin receptor subtype-3 (BRS-3) [49], the orphan GPCR 101 (GPR101) [50], 
GPR30/GPER-1 [51–54], GPR109A [55], GPR48 [56,57], GPR87 [58], urotensin-II receptor [59,60], and 
all subtypes of α1-adrenoceptors (α1-AR), including α1A-AR, α1B-AR, and α1D-AR [61]. 

There are also significant publications that support the role of EGFR transactivation in various 
diseases including lung cancer [46,49,62–64], breast cancer [51,65,66], oral cancer [67], gastrointestinal 
carcinoma [68,69], Osteoblasts [70], ovarian cancer [52,71,72], hepatocarcinoma [73], head and neck 
cancer [74], glioblastoma [75], heart disease [55,59], and renal fibrosis [76]. 

However, there are some developments worth discussion here. 

Figure 1. Schematic illustration of EGFR transactivation by GPCR. Two mechanisms have been
proposed and supported by the available data: TMPS and ligand-independent intracellular pathways.
(A) TMPS: In this model, GPCR-induced EGFR transactivation depends on the activation of MMPs
that are able to cleave EGFR ligands such as HB-EGF and stimulate ligand shedding. The ligands
released into the extracellular space then bind to EGFR and stimulate the dimerization and activation
of the receptors, which leads to the activation of signaling cascades; (B) Ligand-independent
pathway: This pathway involves the activation of intracellular protein tyrosine kinases (PTKs)
such as Src family proteins. Src phosphorylates the tyrosines residues in the cytosolic domain of
EGFR. The phosphorylated EGFR is able to interact with downstream signaling proteins, leading
to the activation of various signaling pathways. Src could be activated by GPCR through different
mechanisms; (C) Future research: Future research should focus on the EGFR transactivation through
ligand-independent Src pathway. It is important to determine how Src activates EGFR, the activation
status of Src-activated EGFR, and the effects of Src-activated EGFR on the downstream signaling
cascades and cell functions. For example, does Src stimulates the dimerization of EGFR? Does Src
phosphorylate all the major phosphor tyrosine (Y) residues of EGFR? What are the downstream
signaling pathways activated and what is the physiological consequence of this activation?

5. Progress in the Last Five Years

The research in the field of EGFR transactivation by GPCR is continuously flourish with more
than 100 papers published in the last five years. However, most of these papers were reporting the
identification of EGFR transactivation by a GPCR, which was not reported before, identification of
additional downstream signaling pathways activated by EGFR transactivation, or additional physiological
role of EGFR transactivation by GPCR. For example, the GPCRs newly identified to transactivate EGFR
or other RTKs include formyl peptide receptor-like (FPRL1) [46], BK B2 receptor (B2R) [47,48], bombesin
receptor subtype-3 (BRS-3) [49], the orphan GPCR 101 (GPR101) [50], GPR30/GPER-1 [51–54], GPR109A [55],
GPR48 [56,57], GPR87 [58], urotensin-II receptor [59,60], and all subtypes of α1-adrenoceptors (α1-AR),
including α1A-AR, α1B-AR, and α1D-AR [61].

There are also significant publications that support the role of EGFR transactivation in various
diseases including lung cancer [46,49,62–64], breast cancer [51,65,66], oral cancer [67], gastrointestinal
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carcinoma [68,69], Osteoblasts [70], ovarian cancer [52,71,72], hepatocarcinoma [73], head and neck
cancer [74], glioblastoma [75], heart disease [55,59], and renal fibrosis [76].

However, there are some developments worth discussion here.
It was reported that angiotensin-(1–7) inhibits EGFR transactivation via a Mas receptor/Src-dependent

pathway [77]. In cultured vascular smooth muscle cells, Ang II and glucose induce the transactivation
of EGFR, however, this transactivation is attenuated by angitensin-(1–7) via the activation of Mas
receptor [77]. They later showed that Ang-(1–7) acts as a pan-ErbB inhibitor via its Mas receptor [78].
It is well established that GPCR transactivates EGFR through Src, this is the first report that GPCR/Src
pathway is involved in the inhibition of EGFR transactivation by other GPCRs.

It was reported that GPRC5A directly binds to EGFR, which negatively regulates EGFR activity [79].
Knockout of GPRC5A enhances EGFR-STAT3 signaling in mouse tracheal epithelial cells and GPRC5A
expression inhibits EGF-induced EGFR-STAT3 signaling. Furthermore, GPRC5A associates with
EGFR via its 7-transmembrane domains, which is required for the inhibition of EGFR. It was further
shown that although the 7-transmembrane domain was found to be required for physical interaction
and inhibition of EGFR, none of the individual transmembrane domains was critical for inhibition
of EGFR signaling. The authors propose that the interaction between GPRC5A and EGFR impedes
the dimerization process of EGFR and restrain EGFR from overactivation following ligand binding;
however, in the absence of GPRC5A, the negative regulatory loop on EGFR signaling was disrupted,
which leads to the persistent activation of EGFR-STAT3 signaling [79]. It was also shown by FRET
that kisspeptin-10 directly associated with EGFR, which leads to the transactivation of EGFR [65].
Previously, very little is known regarding the direct association between GPCR and EGFR. It was
reported that somatostatin receptors SSTR1 and SSTR5 associate with EGFR in the absence of agonist,
however, SSTR1 and SSTR5 disassociate from EGFR following agonist stimulation. This disassociation
modulates EGFR activation and the downstream signaling pathways [80].

GPCR may regulate EGFR activity through the regulation of EGFR degradation pathway. It has
been shown that E2/S1P stimulates Cdc42 and blocks EGFR degradation. However, Cdc42 knockdown
restores rapid EGFR degradation following E2/S1P activation. Moreover, activation of Cdc42 by E2
is prevented by inhibiting S1P3 receptors, which suggests that S1P receptor plays important role in
E2 signaling. This finding provides a novel mechanism to further define the role of E2/S1P on the
transactivation of EGFR in breast cancer cells [66]. It was also reported that disruption of lipid raft
blocked TGR5 and EGFR interaction. TGR5 signals from plasma membrane rafts that facilitate EGFR
interaction and transactivation [81].

It was reported that activation of P2Y2R in human salivary gland cells stimulates the release
of neuregulin through metalloprotease, which results the activation of both EGFR and ErbB3 by
promoting the heterodimerization of EGFR and ErbB3 [82]. A recent study also support the role
of focal adhesion kinase (FAK) in the transactivation of EGFR by GPCR. It was found that FAK
coordinates the dynamic assembly and disassembly of a protein complex including both GABA
receptor and its effectors, which is essential for the transactivation of EGFR [83]. Moreover, a functional
siRNA screen identifies a suite of genes encoding several proteins involved in EGFR transactivation by
the angiotensin type 1 receptor (AT1R). These proteins include TRIO, BMjX and CHKA [84].

Some new technologies have also been used to study the transactivation of EGFR and other
RTKs by GPCR. Besides the abovementioned FRET technology [65] and siRNA [84], spatial intensity
distribution analysis (SpIDA) was also used [85]. SpIDA is based on image analysis, which is able
to directly examine the trafficking and oligomerization of endogenous proteins within a single cell.
Using this method, it was observed that transactivation of EGFR and TrkB occurred on the same
timescale and was directly limited by GPCR activation but the transactivation is independent of the
type of the GPCR [85].
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6. Challenges and Future Research

As discussed above, while the transactivation of EGFR or other RTK by GPCR continues to attract
significant interest from the research community, few significant progress has been made during
the last five years. In order to move this research field further, future research has to identify and
overcome the various challenges in this field. We believe that the biggest challenge is to understand
the molecular mechanism underlying the transactivation of EGFR through ligand-independent
pathways, demonstrate the role of transactivation in various disease and develop therapies to target
GPCR-mediated EGFR transactivation.

EGFR transactivation by HB-EGF through TMPS mechanism is well defined. EGFR activation
by released HB-EGF through TMPS should be quite similar to that by direct HB-EGF stimulation.
The mechanism of EGFR activation by ligand is well defined. The activation status and the effects of
activated EGFR on downstream signaling cascades and cellular functions are well established. Indeed,
the available data regarding EGFR transactivation by cleaved HB-EGF induced by GPCR activation
support that the cleaved HB-EGF stimulates the dimerization and phosphorylation of EGFR, which
activates various intracellular signaling pathways in the same way as EGFR activated directly by
HB-EGF. For example, transactivation of EGFR by released HB-EGF through LPA receptor activation
by LPA in Cos-7 cells induces the activation of major EGFR signaling pathways including ERK, PLC-γ1
and PI3K-Akt pathways, which is similar to the direct activation of EGFR by HB-EGF [42].

The weak area that needs specific attention and further research is the transactivation of EGFR by
GPCR through ligand-independent pathways (Figure 1C). Regardless how Src is activated by GPCR, it
is important to determine how Src activates EGFR, the activation status of Src-activated EGFR, and the
effects of Src-activated EGFR on the downstream signaling cascades and cell functions. For example,
does Src stimulates the dimerization of EGFR? If yes, how? If not, does Src phosphorylate all the major
phosphor tyrosine (Y) residues including Y992, Y1045, Y1068, Y1086, Y1148, and Y1173? If Src only
selectively phosphorylates some tyrosine residues of EGFR, what downstream signaling pathways will
be active by this partially activated EGFR? What is the physiological consequence of this activation?
It was pointed out in a previous review that ligand-independent EGFR transactivation may cause the
incomplete activation of EGFR and the downstream signaling cascades [42]. However, no progress has
been made.

The only well-established Src-phosphorylated tyrosine residue in EGFR is Y845 [86,87]. However,
the effects of Y845 phosphorylation on EGFR activation, the activation of downstream signaling
cascade, and the induced-cellular responses are not well defined [86]. For example, Y845 phosphorylation
have been shown to regulate cell apoptosis, but some researches indicate an anti-apoptotic role for Y845
phosphorylation [88–91] and others indicates a pro-apoptotic role of Y845 phosphorylation [92–94].
A previous study indicates that EGFR Y845 phosphorylation by Src has no effect on the autophosphorylation
of EGFR [87]. However, different from this report, another study shows that EGFR-Y845F mutant
augments ligand-stimulated EGFR phosphorylation on its C-terminal tyrosine residues and enhances
ligand-induced DNA synthesis [95]. It was further shown that EGFR transphosphorylation at Y845
positively regulates its autophosphorylation, kinase activity and effects on cell proliferation [96].

If only Y845 is phosphorylated in transactivated EGFR through Src by GPCR and all of the major
phosphor tyrosine residues are phosphorylated in EGFR transactivated through HB-EGF by GPCR,
the overall effects on cellular response will greatly different. Thus, it is essential to understand the
mechanisms underlying the transactivation when studying GPCR-induced transactivation of EGFR.

Another research focus should be the clinical relevance of EGFR transactivation by GPCR.
While many studies have suggest the relevance of EGFR transactivation by GPCR to various diseases,
there is very few clinical data to support the relevance. Most data supporting the cancer-relevance
demonstrate the existence of transactivation of EGFR in various cancer cell lines in the lab. Some data
are generated with xenograft in mice. Data obtained under these experimental setting show that both
EGFR and certain GPCR are co-overexpressed and simultaneous inhibition of both EGFR and GPCR
leads to additive or synergistic growth inhibition in cancers [5,62,74,75]. However, as GPCRs have
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also been shown to stimulate cancer cell proliferation in an-EGFR independent pathway [5,97–99], the
observed synergism cannot be convincingly attribute to the role of EGFR transactivation by GPCR.

Very few data were obtained with patient samples. It was recently reported that glioblastoma
specimens from patients have a 4–17-fold increase in dopamine receptor D2 (DRD2) mRNA or
2–4-fold enhancement in protein expression [75]. They also show that the anti-glioblastoma activity of
dopamine antagonists is synergistic when combined with EGFR inhibition in cultured cancer cells and
in xenograft-bearing mice [75].

To demonstrate the disease-relevance of EGFR transactivation, the most important future research
is to obtain data from patients. While it is a difficult task distinguish the effects of EGFR and GPCR
activation from the effects of EGFR transactivation by GPCR in a clinical setting, it is very feasible to at
least collect significant data to determine whether there is the co-overexpression of EGFR and GPCR in
patients and whether this co-overexpression correlates with poor prognosis. It is also important to show
whether the combined inhibition of EGFR and GPCR confers synergism in patients by using clinically
approved agents. If EGFR transactivation by GPCR plays important role beyond the activation of
EGFR and GPCR in diseases, specific disruption of the cross-talk between EGFR and GPCR without
inhibition of EGFR and GPCR should have significant inhibitory effects on disease progress. Thus,
identification the agents that specifically and efficiently disrupt the transactivation of EGFR by GPCR
is an important task in the future research. A likely target of these agents is the ADAM family of matrix
metalloproteases if the transactivation of EGFR is through TMPS pathway. If the transactivation of
EGFR is through a ligand-independent pathway, the likely target is Src family protein tyrosine kinases.
While Src plays important role in cancer independent its role in EGFR transactivation and has been
targeted for cancer therapy [100,101], the identification of its role in EGFR transactivation may provide
an additional reason to target Src for cancer therapy.

7. Conclusions

Since the first report of EGFR transactivation of GPCR, this topic has attracted enormous attention
from the research community. Significant progress has been made, including the elucidation of the
mechanisms underlying the transactivation. More and more GPCRs have been identified to be able to
transactivate EGFR. Physiological and disease relevance of EGFR transactivation by GPCR have been
supported by more data. However, despite continued interest in the research community, no significant
progress has been made during the last five years. To significantly advance this research field, future
research should be focused on both the molecular mechanisms regarding the transactivation of EGFR
through ligand-independent and Src-dependent pathways. The most important task in the future
research is to demonstrate the disease relevance of EGFR transactivation by GPCR in clinical settings,
and identify potential therapeutic agents to specifically target EGFR transactivation by GPCR.
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