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Abstract: Antifreeze proteins (AFPs) play a pivotal role in the antifreeze effect of
overwintering organisms. They have a wide range of applications in numerous fields,
such as improving the production of crops and the quality of frozen foods. Accurate
identification of AFPs may provide important clues to decipher the underlying mechanisms
of AFPs in ice-binding and to facilitate the selection of the most appropriate AFPs for
several applications. Based on an ensemble learning technique, this study proposes an
AFP identification system called AFP-Ensemble. In this system, random forest classifiers
are trained by different training subsets and then aggregated into a consensus classifier by
majority voting. The resulting predictor yields a sensitivity of 0.892, a specificity of 0.940, an
accuracy of 0.938 and a balanced accuracy of 0.916 on an independent dataset, which are far
better than the results obtained by previous methods. These results reveal that AFP-Ensemble
is an effective and promising predictor for large-scale determination of AFPs. The detailed
feature analysis in this study may give useful insights into the molecular mechanisms of
AFP-ice interactions and provide guidance for the related experimental validation. A web

server has been designed to implement the proposed method.
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1. Introduction

The temperature in cold areas sometimes drops to below —40 °C [1]. To survive at subzero
temperatures, many overwintering organisms have developed a high level of freezing tolerance to
protect themselves from fatal ice crystal growth [2]. The antifreeze effect is largely due to a family
of antifreeze proteins (AFPs) that were first recognized in the Antarctic fishes by DeVries [3] and later
identified in a wide range of organisms, including bacteria [4], fungi [5], plants [6] and insects [7].
AFPs have the ability to adsorb onto the surface of ice crystals and inhibit their growth [8], which
if left uncontrolled would be fatal to cells. The interaction between AFPs and ice crystals lowers
the freezing temperature of ice without significantly affecting the melting temperature, a phenomenon
referred to as thermal hysteresis [9]. Excellent progress has been made in the study of antifreeze-ice
interactions. Kuiper et al. [10] presented a theoretical three-dimensional model of a plant antifreeze
protein from Lolium perenne, which can be conducive to deciphering the underlying mechanisms
of the properties of antifreeze proteins. Guz et al. [11] revealed the functional annotation of
a putative antifreeze protein gene. However, as the details of the antifreeze effect are difficult to test
experimentally, the ice-binding mechanisms of antifreeze proteins are not completely understood [12].
Some emphasized that hydrogen bonding to ice water molecules was the major driving force of
the AFP-ice association [13,14]. Some suggested that hydrophobic interactions could be the main
contributor to the AFP-ice association [2,15]. Thus, accurate identification of AFPs may provide
important clues to decipher the underlying mechanisms of AFPs in ice-binding. Ultimately, knowledge
about the ice-binding mechanisms of antifreeze proteins may allow the design of an improved or more
efficient macromolecular antifreeze.

AFPs have a wide range of applications in numerous fields due to the role of their antifreeze property
in the protection of tissue or cell damage by freezing [16]. The presence of AFPs may improve the quality
of frozen foods by inhibiting recrystallization and maintaining a smooth texture [16,17]. There is rising
evidence that AFPs have potential applications in agriculture for improving the production of crops and
fishes in cooler climates [18]. AFPs are also used to preserve cells, tissues and organs for transplant or
transfusion in medicine at a low temperature [19]. The other proposed applications of AFPs are found in
cryosurgery of tumors and therapy for hypothermia [20]. However, as indicated in [21], the quantity of
AFPs that may produce superior performance at the molecular level is insufficient for practical use. The
identification of AFPs may facilitate the selection of the most appropriate AFPs for several industrial
and biomedical applications.

The AFPs show great diversity in their primary sequences and structures [8]. Distinguishing
an antifreeze protein from a non-antifreeze protein has challenged the antifreeze field for some
considerable time [22]. With the avalanche of genome sequences generated in the postgenomic age,
various computational methods based on sequence information have been developed for identification
of AFPs. Kandaswamy er al. [23] proposed the first computational program called AFP-Pred
for the prediction of antifreeze proteins from protein sequences. Zhao et al. [24] developed a
different predictor named AFP-PSSM utilizing support vector machine (SVM) and position-specific
scoring matrix (PSSM) profiles. Recently, according to Chou’s pseudo amino acid composition-based
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protein features, Mondal and Pai [25] proposed a predictor called AFP-Pse AAC (pseudo amino acid
composition) to identify AFPs.

Though these methods have facilitated the identification of AFPs to some extent, some limitations
should be noted. First, earlier work did not give a real solution to the class imbalance problem. The
existing methods for predicting AFPs [23-25] have tried to change the distribution of positive and
negative samples by randomly selecting AFPs and non-AFPs with the same size as the training set.
However, they failed to make full use of the negative sample information in the original dataset. Second,
the existing methods did not take the protein sequence features directly related to the binding properties
of AFPs into consideration, such as the disorder score, solvent accessible surface and functional domains.
Third, the methods of feature extraction in most of the papers were based on a single technique. Multiple
feature types have not been investigated simultaneously to get a more robust and discerning feature
set. It is inevitable that some useful information would be missed. Therefore, further development for
identifying AFPs is definitely needed for the above-mentioned limitations.

In this paper, we propose a novel AFP classification system (AFP-Ensemble) that performs
ensemble classification of samples based on discriminatory capabilities of hybrid feature spaces. The
proposed method is implemented in the following steps. (i) Protein sequences are mapped into
feature vectors. The feature space is constructed from different types of sequence-derived features,
i.e., sequence composition, physicochemical properties, disorder, functional domain and evolutionary
information; (ii) Negative samples in the training set are randomly sampled to make sure that the
sampled negative samples are G times the number of the positive samples in the training set, where
G = {3,5,7,9,11,13,15}; (iii) The training set is divided into G training subsets through the
undersampling approach; (iv) The G training subsets respectively train random forest classifiers to form
ensemble classifiers; (v) Based on the ensemble classifiers, the predicted class labels of the test set are
determined through the majority voting method. The parameter G is determined based on the prediction
performance of the full feature space; (vi) With the optimal parameter (7, the analysis of variance with
incremental feature selection (ANOVA-IFS) procedure is employed to select high discriminative features
from the hybrid feature space. To be easy to access and utilize by the public, the presented approach is
realized on a user-friendly web-server called AFP-Ensemble. The system architecture of the proposed
method is illustrated in Figure 1.
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Figure 1. The system architecture of the proposed method. ANOVA-IFS: Analysis of

variance with incremental feature selection.

2. Results and Discussions

2.1. The Impact of the G Value on the Prediction Performance

In order to reduce computational complexity, random sampling is adopted in this study to sample
negative samples. As mentioned in Section 2.4, parameter G (G = {3,5,7,9,11,13,15}) is defined as
the ratio of the number of negative samples to positive ones after random sampling, which may have
a significant impact on the prediction performance.

For different values of (G, ensemble classifier models based on the full feature space are built and
10-fold cross-validations are carried out. Figure 2 displays the performance of each model with different
values of (G. The results show that G has a certain impact on prediction performance. As shown in
Figure 2, the overall performance first increases continuously to a maximum value and then drops slightly
with the increase of G. This phenomenon may be due to the fact that much redundant information is
contained with large G, while with small G, much useful information is lost. The sensitivity, accuracy
and balanced accuracy reach maximums with G = 9. Thus, nine is selected as the best ratio of the
number of negative samples to positive ones after random sampling in the following implementation.
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Figure 2. The 10-fold cross-validation performance trained with different values of G.
Parameter G is defined as the ratio of the number of negative samples to positive ones after
random sampling.

2.2. Feature Selection Results

By running the ANOVA algorithm as given in Section 2.5, the ranked feature list (see Table S1) is
obtained on the basis of each feature’s relevance to the classes of samples. Within the list, a feature with
a smaller index indicates that it is a more important feature for AFP prediction. Such a list of ranked
features will be used for searching the optimal feature set in the following IFS procedure.

By adding features one by one from the top of the feature list to the bottom, 329 different feature
subsets are obtained. The individual predictor is then accordingly built for each feature subset and
evaluated by 10-fold cross-validation. The IFS curve is plotted in Figure 3, which reveals the relation
between the balanced accuracy and each feature subset.

In the initial phase, the features are too few to contain enough information for antifreeze protein
prediction. As shown in Figure 3, the feature selection curve almost monotonically increases in the initial
phase. Afterwards, this curve is basically stable with the increase of the number of features. In addition,
several oscillations occur in the whole curve. This phenomenon is due to the fact that not all features
contribute to good prediction performance. Redundant information may be introduced with a new feature
added. The rank of features based on the analysis of variance and the correlation between features has
a direct effect on the selection of the maximum. The features containing more useful information, but
less redundant information corresponding to maximum balanced accuracy are regarded as the optimal
features. The peak of the IFS curve appears with balanced accuracy of 0.874 when the first 156 features

are selected. These 156 features are deemed to form the optimal feature set to identify AFPs.
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Figure 3. The IFS curve: the values of balanced accuracy against feature subsets. The
maximum value of balanced accuracy is 0.874 when the top 156 features are selected. These
156 features are considered as the optimal feature set of our method.

To evaluate our feature selection method, the prediction performance on the original feature set has
been measured and then compared to that on the optimal feature set. As can be seen from Table 1, the
performance using the optimal feature set is superior to that of the original feature set, with the results of
sensitivity, specificity, accuracy and balanced accuracy increasing from 0.790, 0.942, 0.935 and 0.866 to
0.801, 0.946, 0.939 and 0.874, respectively. The specificity of the optimal feature set is also comparable
to that of the original feature set. These results demonstrate that the original feature set really contains
redundant information or noise. The ANOVA-IFS method makes a certain contribution to picking out

informative features.

Table 1. Prediction results of the original feature set and the optimal feature set.

Feature Set No. of Features Sensitivity Specificity Accuracy Balanced Accuracy
Original feature set 329 0.790 0.942 0.935 0.866
Optimal feature set 156 0.801 0.946 0.939 0.874

2.3. Analysis of the Feature Contribution

As described in Section 2.2, there are five types of features derived from sequence composition,
physicochemical properties, disorder, functional domain and evolutionary information. To discover the
different contributions of various types of features, the distribution of each type of feature in the optimal

feature set is investigated and depicted in Figure 4.
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Figure 4. Distribution of each type of feature in the optimal feature set. The five types
of features are derived from sequence composition, physicochemical properties, disorder,

functional domain and evolutionary information, respectively.

The majority (62/156 = 0.397) of the selected features are extracted from evolution information,
which provides further evidence that evolution information plays important roles in AFP-ice interactions.
Actually, evolutionary conservation usually reflects important biological function [26]. Furthermore, the
sequence composition-based features account for a second higher proportion of the optimal feature set.
This may imply that sequence composition plays an irreplaceable role for the prediction of AFPs. Few
features extracted from the functional domain and disorder are within the optimal feature set. This
phenomenon may be due to the fact that there are fewer features extracted from functional domain and
disorder in the original feature set.

Figure 5 gives the percentage of the selected features accounting for the corresponding feature types.
As depicted in Figure 5, the percentages of the five feature types that are chosen to form the optimal
feature set are all more than 25%. In addition, it is interesting to note that features from the functional
domain are all in the optimal feature set. Most of these functional domains are unconcerned with the
antifreeze domain. This result indicates that except antifreeze domains, the other functional domains
(Table 2) may have an effect on the antifreeze effect. Features extracted from functional domains in this
study are consist with the result of previous work [8] that some underlying, shared structural elements
or properties are responsible for the antifreeze effect. These features may give useful insights into
the molecular mechanisms of AFP-ice interactions and provide guidance for the related experimental
validation. These results indicate that all five types of features contribute to the prediction of AFPs.
Different feature extraction strategies dig out diverse types of information from the protein sequences.
No single type of feature could undertake the task of AFP prediction accurately. The prediction model
integrates multiple sources of descriptors for protein sequences in an attempt to enhance prediction

performance. These features may provide important information for identifying the potential AFPs.
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Figure 5. The percentage of the selected features accounting for the corresponding feature

type. The five types of features are derived from sequence composition, physicochemical

properties, disorder, functional domain and evolutionary information, respectively.

2.4. Imbalanced Learning Effects

One challenge in training classifiers comes from the fact that the available dataset is highly

unbalanced. The number of AFPs is relatively small compared to that of non-AFPs. To analyze the

impact of the scale of negative dataset on prediction performance, negative datasets of N, 2/N,..., and

8N are randomly extracted from the training dataset, where N is the scale of the positive dataset. The

eight negative datasets plus the positive dataset from the training dataset then constitute eight new

training datasets with the ratios of the number of positive samples to negative ones from 1:1 to 1:8.

The performance of prediction systems trained with different ratios is shown in Figure 6 and listed in

Table 2.

Table 2. The performance with different ratios between positive and negative samples in

the training set without random sampling. The ratios of the number of positive samples to

negative ones are from 1:1 to 1:8, respectively.

Ratio Sensitivity Specificity

Accuracy Balanced Accuracy

1:1
1:2
1:3
1:4
1:5
1:6
1:7
1:8

0.787
0.733
0.693
0.666
0.625
0.631
0.604
0.612

0.919
0.991
0.996
0.995
0.998
0.999
0.999
1.000

0.853
0.905
0.920
0.929
0.936
0.946
0.950
0.957

0.853
0.862
0.845
0.831
0.812
0.815
0.802
0.806
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Figure 6. The performance with different ratios between positive and negative samples in
the training set without random sampling. The ratios of the number of positive samples to

negative ones are from 1:1 to 1:8, respectively.

As shown in Figure 6, the specificity is gradually improved with the increase of negative samples.
On the contrary, there is a declining trend for the sensitivity. At a ratio of 1:8, the specificity even
reaches one, while the sensitivity dramatically decreases to 0.612. This phenomenon demonstrates that
the imbalanced problem will lead to most of the samples being classified as the majority class. These
results also indicate that the prediction performance is significantly affected by the imbalanced training
dataset. In addition, the accuracy increases with the increase of the number of negative samples, from
0.853 to 0.957, which proves that the accuracy is not a good measure for the imbalanced problem.
However, balanced accuracy tends to drop accompanied by higher ratios that indicate more imbalanced
datasets. Therefore, for the imbalanced training dataset, it is reasonable that balanced accuracy is chosen

as the performance measure to select the optimal features.

2.5. Ensemble Learning Results

Based on the results of individual RF-modules, the ensemble learning method attempts to combine
different models into a consensus classifier by majority voting. To evaluate the effectiveness of our
ensemble method to overcome the imbalanced problem, Table 3 shows the prediction results with or
without the ensemble method. After directly performing the 10-fold cross-validation on the training
dataset without sampling, the accuracy and specificity achieved are as high as 0.979 and 0.999,
respectively. However, the sensitivity is as low as 0.569 due to the imbalanced data size. However,
with the ensemble method, the prediction performance achieves a more balanced sensitivity (0.801) and
specificity (0.946). The value of balanced accuracy reaches 0.874, far better than that of the unsampled
dataset. These results reveal that the ensemble method can effectively solve the imbalanced problem in

the antifreeze protein training dataset.
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Table 3. Prediction results with or without the ensemble method.

Method Sensitivity Specificity Accuracy Balanced Accuracy
Without ensemble 0.569 0.999 0.979 0.784
With ensemble 0.801 0.946 0.939 0.874

2.6. Performance Affected by Dataset Size

The core of statistical learning algorithms is learning prediction rules from training samples. To study
the prediction performance affected by the dataset scales, 10%, 20%, ..., 80% of the whole positive
dataset and 10%, 20%, ..., 80% of the whole negative dataset are randomly chosen to construct the
training dataset, respectively. The performance of prediction systems trained with the eight training
datasets is listed in Table 4. With the increase of the training dataset size, the specificity and accuracy
have no obvious changes, while the sensitivity and balanced accuracy are improved significantly. These
results reveal that it is important to collect as many training samples as possible to make the learning
rules more accurate. This is particularly important when studying the small sample problems where
experimentally-derived knowledge is very limited. However, previous methods [23-25] only randomly
take 300 non-AFPs from 9493 non-AFPs as the training dataset, which may adversely affect the
prediction performance. The training dataset in this study is composed of 80% of the whole positive
dataset and 80% of the whole negative dataset in an attempt to enhance the prediction performance.

Table 4. Prediction performance with different training dataset sizes. The training dataset is
composed of 10%, 20%, ..., 80% of the whole positive dataset and 10%, 20%, ..., 80% of the

whole negative dataset, respectively.

Training Dataset Size Sensitivity Specificity Accuracy Balanced Accuracy

10% 0.326 0.971 0.940 0.649
20% 0.360 0.966 0.937 0.663
30% 0.422 0.962 0.936 0.692
40% 0.508 0.954 0.932 0.731
50% 0.560 0.957 0.938 0.759
60% 0.640 0.953 0.938 0.800
70% 0.719 0.949 0.937 0.834
80% 0.801 0.946 0.939 0.874

2.7. Comparison with the Existing Methods on the Independent Testing Dataset

To evaluate the prediction performance of the current method objectively, comparisons are carried out
for AFP-Ensemble and previously-published methods on the independent testing dataset. Table 5 reports
the detailed prediction results obtained by AFP-Pred [23], AFP-PSSM [24], AFP-PseAAC [25] and
AFP-Ensemble. AFP-Pred combines the predicted secondary structure information and physicochemical
properties. AFP-PSSM is mainly based on the information extracted from evolutionary profiles.
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AFP-Pse AAC explores the effect of sequence order information in the prediction of AFPs by using
Chou’s pseudo amino acid composition-based features.

Table 5. The prediction results compared to those of other methods on the independent
testing dataset. Pred, prediction; PSSM, position-specific scoring matrix; PseAAC, pseudo

amino acid composition.

Reference Method Sensitivity Specificity Accuracy Balanced Accuracy
[23] AFP-Pred 0.847 0.840 0.843 0.844
[24] AFP-PSSM 0.759 0.933 0.930 0.846
[25] AFP-PseAAC 0.862 0.847 0.848 0.855

This study AFP-Ensemble 0.892 0.940 0.938 0.916

As shown in Table 5, AFP-Ensemble achieves the highest sensitivity of 0.892, specificity of 0.940,
accuracy of 0.938 and balanced accuracy of 0.916. Specifically, the balanced accuracy of AFP-Ensemble
is 0.072, 0.070 and 0.061 higher than that obtained by AFP-Pred, AFP-PSSM and AFP-PseAAC,
respectively. The specificity and accuracy of AFP-Ensemble are far better than those of AFP-Pred and
AFP-PseAAC. Although the specificity and accuracy of AFP-PSSM are comparable to our method,
the sensitivity is much lower (0.759) compared to AFP-Ensemble. By comparing to the other three
competing methods, it is worth pointing out that AFP-Ensemble has a fairly good capability to
predict AFPs.

In addition, we randomly select a subset from the original training dataset as an independent dataset.
The select procedure is iterated 10 times. Then, the proposed method is evaluated on the 10 independent
datasets. Prediction results show that the performance on the 10 independent datasets is similar, which
indicates that the proposed method is reliable and robust.

The outstanding performance of the current method may be attributed to three aspects. (1) The training
dataset makes full use of the negative sample information in the original training dataset; (ii) The hybrid
features, extracted from some inherent properties related to AFP-ice interactions, take full advantage of
the supplementary information from different feature types to improve classification performance and
prediction robustness; (iii) The imbalanced problem is effectively addressed by a random forest-based
ensemble method.

2.8. AFP-Ensemble Web Server

In order to facilitate easy use of our AFP prediction model by the public, an AFP-Ensemble web
server is established to identify AFPs. The AFP-Ensemble web server provides a user-friendly interface
and predictive results. Neither registration nor license acquisition is required for academic usage of
this server. Users can paste protein sequences with a FASTA format in the text box area or input the
UniProtKB ID of the query protein for prediction. After protein sequences are submitted to our server,
the user will be redirected to the result page that includes input information and predicted result. If

an email address is given to the server during the task submission, a hyperlink to the result page will be
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sent to the user’s E-mail once the task is accomplished. The dataset used in our study is also provided at
the website. The web server is available at [27].

3. Experimental Section

3.1. Datasets

The dataset composed of 481 AFPs and 9193 non-AFPs, downloaded from [28], is employed to
construct the training dataset and independent testing dataset. Two hundred twenty one AFPs are taken
from seed proteins of the Pfamdatabase. To enrich the dataset, a PSI-BLAST (position-specific iterated
basic local alignment search tool) search for each sequence against the non-redundant sequence database
is performed. None of the proteins has 25% sequence identity to any other in the dataset. The final
positive dataset contained 481 non-redundant antifreeze proteins. The negative dataset was constructed
from 9193 seed proteins (representative members) of Pfam protein families, which are unrelated to
antifreeze proteins. These positive and negative samples are employed to construct the training dataset
and independent testing dataset.

To obtain high quality data, protein sequences with less than 50 amino acids are screened out, because
their information is redundant and not integral. Protein sequences deleted from UniProt or containing
nonstandard amino acids, such as “B”,“J”, “O”, “U”, “X” and “Z”, are also removed because their
meanings are ambiguous. Thus, the final dataset consists of 464 AFPs and 9083 non-AFPs.

The dataset used in this paper for performance analysis and comparison is divided into two parts:
the training dataset and independent testing dataset. In order to not change the distribution of protein
samples in the dataset, 20% of the positive dataset and 20% of the negative dataset are randomly chosen
to construct the independent testing dataset. The remaining protein sequences are utilized as the training
dataset. The number of samples in each dataset is given in Table 6. The final training and independent
testing datasets are available in Table S1.

Table 6. The number of samples in the training dataset and independent testing dataset.

Dataset AFPs Non-AFPs Total
Training dataset 371 7266 7637
Independent testing dataset 93 1817 1910

3.2. Feature Extraction

To develop a powerful predictor, it is significant to formulate protein samples with a comprehensive
and proper feature vector that could really reflect the intrinsic correlation with the desired target [29]. To
realize this, some sequence-derived encoding schemes that have been observed to be closely related to
the AFPs are employed to represent each protein sequence.

Previous research work indicated that an individual feature extraction strategy can only represent a
partial target’s knowledge. Feature extraction methods from different sources can complement each
other in capturing the valuable information of protein samples [30,31]. Hybrid features extracted from
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sequence composition, physicochemical properties, disorder, the functional domain and evolutionary
information are employed in this study for the numerical description of protein samples. In the following

subsections, these feature extraction strategies will be explained in detail.
3.2.1. Sequence Composition

It has been reported that functional groups positioned to match the ice lattice on a particular plane
may lead to ice binding and antifreeze activity [32]. We categorize amino acids into 10 functional
groups based on the presence of side chain chemical groups, such as phenyl (F/W/Y), carboxyl (D/E),
imidazole (H), primary amine (K), guanidino (R), thiol (C), sulfur (M), amido (Q/N), hydroxyl (S/T)
and non-polar (A/G/I/L/V/P) [33]. Based on 10 functional groups, amino acid composition (AAC) and
dipeptide composition (DPC) are computed for every sequence.

The amino acid composition (AAC) is calculated using the following formula:

f(.%) = Négi)a (Z =12, 710) (D

where N(g;) denotes the number of functional group g; in a given protein sequence and L is the sequence
length of the given protein sample.
The dipeptide composition (DPC) is defined as:

N (g:95)

Fl9ig) = ——

a(l7.]:]-727710) (2)
where N (g;g;) denotes the number of the dipeptides encoded as “g;g;” in a given protein sequence.
3.2.2. Physicochemical Properties

A physicochemical property is the most intuitive feature for protein biochemical reactions [34].
The specificity and diversity of a protein’s structure and function are largely attributed to various
physicochemical properties of amino acids. Incorporating features extracted from physicochemical
properties might contribute to a prospective improvement for protein attribute predictions. A previous
study has shown that the feature groups used to reveal global and local discriminatory information can
both effectively enhance the prediction performance [35]. The global and local features extracted from
physicochemical properties will be explained in detail.

Previous studies have chosen several antifreeze proteins to investigate their physicochemical
properties [13,17,18]. The results suggest that the physicochemical parameters, including theoretical
isoelectric point (pl), total number of negatively-charged residues of Asp and Glu, total number of
positively-charged residues of Arg and Lys, the instability index, the aliphatic index and the grand
average of hydropathicity (GRAVY), may provide important clues to decipher the mechanism of AFP
binding. In this study, these 6 physicochemical parameters are computed using Expasy’s ProtParam [36]

and selected as global features extracted from physicochemical properties.
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The pseudo amino acid composition (PseAAC) [37] was proposed to avoid losing local sequence
order information hidden in protein sequences and, hence, has rapidly penetrated into almost all of the
fields of protein attribute predictions [38—41]. For a detailed description about its recent development and
applications, refer to the comprehensive review [29]. Various modes of PseAAC by extracting different
features from protein sequences were proposed in [42—44]. In this work, we adopt the auto covariance
(AC) model to capture local discriminatory information from physicochemical properties.

Seven physicochemical properties, including hydrophobicity, hydrophilicity, net charge, van der
Waals, free energy of solution in water, side chain interaction parameter and average accessible surface
area, are taken into account to calculate the AC model on the basis of the following reasons. (i) The
hydrophobicity and hydrophilicity of the native amino acids play an important role in protein folding,
interior packing, catalytic mechanism, as well as the interaction with other molecules [45]; (i1) Charged
amino acids tend to form an internal salt bridge, which is considered to maintain a long helix for stable
structure; (iii) As an alternative to the H-bond model, van der Waals and hydrophobic interactions were
also suggested to play important roles in AFP binding [2]; (iv) AFPs should obviously be water-soluble
and interact with ice [2], which may be attributed to the free energy of the solution in water and the side
chain interaction parameter; (v) The ice-binding sites of AFPs are relatively flat and engage a substantial
proportion of the protein’s surface area in ice binding [8]. To facilitate contacting ice, the binding
residues are always well exposed to solvents. The values of these properties can be obtained from the
Amino Acid Index database [46].

To encode a protein sequence, AC variables describe the average interactions between two residues
with a certain distance throughout the whole sequence. The AC variables are calculated through the

following equation.

1 L—A 1 L 1 L
ACGN == 2 (Rj I J%-j) (P(Hh)j I Pz-]) 3)
i=1

i=1 i=1 i
where j represents one physicochemical property, L is the length of the protein sequence, Pj; is the
j-th physicochemical property value of the amino acid at the i-th position in the sequence and A is the
distance between one residue and its neighbor at a certain number of residues away. Thus, AC encodes
a protein sequence with the seven physicochemical properties into a vector of size 7 X A,,q., Where A4,
is the maximum of A (A = 1,2, --- , A,,42) and chosen as 10.

3.2.3. Disorder

A protein region is defined as “disorder” if it fails to form well-defined three-dimensional structures
in its native state [47]. The disorder regions are always rich in binding sites and carry out important
roles in regulating protein functions, including enzyme catalysis, cell signaling pathways and ligand
binding [48]. One can think of AFPs binding to ice as a receptor-ligand interaction (in which the AFP is
the receptor and ice is the ligand) [22], which suggests that there may exist a certain relationship between
AFP-ice binding and disorder regions.

The disorder predictor “VSL2” [49] is employed in this study to calculate the disorder score of each
residue in a given protein sequence. The disorder score ranges from O to 1, where the higher the score is,
the more likely the residue lacks a fixed structure. The following 28 features are designed to encode each
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protein sequence: (i) mean/standard deviation of all residues’ disorder scores (2 features); (i1) number
of disorder/non-disorder segments (2 features); (iii) minimum/maximum length of disorder/non-disorder
segments (4 features); and (iv) the average disorder score of each native amino acid (20 features).

3.2.4. Functional Domain

It is widely accepted that the protein structure could directly reveal its function mechanics, and
thus, the availability of structure information about a given protein should be conducive to improving
the performance of protein attribute predictions [50]. Protein domains are distinct functional and/or
structural units in transcriptional activities and other intermolecular interactions [51]. Many protein
domains often have similar or identical folding patterns, even if they show great variations in
their sequences.

As indicated in [52], multiple ice-binding domains may be responsible for the ability of the diverse
AFPs to bind to ice crystals. Therefore, we perform the feature extraction work from the functional
domain information through the following steps. First, the functional domain composition of each
antifreeze protein in the training dataset is obtained from the Intepro database [53]. Then, functional
domains present in more than or equal to 10 antifreeze proteins are chosen to extract features. The result
covers a total of 15 Intepro entries, as listed in Table 7, which may contribute to the AFP-ice interactions.
Finally, the information of each of the 15 functional domains is represented by a binary score: 1 if present
and 0 otherwise.

Table 7. The 15 Intepro entries that are present in more than or equal to 10 antifreeze proteins

in the training dataset.

Rank Intepro Entries Rank Intepro Entries Rank Intepro Entries

1 IPR0O01304 6 IPRO00742 11 IPR000152
2 IPRO16186 7 IPR0O00436 12 IPRO01881
3 IPRO16187 8 IPR0O00538 13 IPR003599
4 IPRO18378 9 IPRO07110 14 IPRO18097
5 IPR0O13032 10 IPR0O13783 15 IPR0O13106

3.2.5. Evolutionary Information

Evolutionary conservation is one of the most important aspects in biological sequence analysis.
A more conserved residue prefers to locating at a functionally important region [54]. Protein evolution
involves changes of single residues, insertions and deletions of several residues, gene doubling and
gene fusion. With these changes accumulated for a long period of time, many similarities between
initial and resultant protein sequences are gradually eliminated, but the corresponding proteins may still
share many common features [26]. Protein sequences’ evolutionary conservation serves as evidence for
structural and functional conservation [55]. To incorporate the evolutionary information of proteins, the
position-specific scoring matrix (PSSM) [56] profiles are adopted here.

The PSSM is a matrix of score values generated from PSI-BLAST with 3 iterations and a cutoff
E-value of 0.001. The rows and columns of the generated PSSM matrix are indexed by the protein
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residues and the 20 native amino acids, respectively. PSSM can be expressed for a protein sequence P
with L residues as follows:

[ Elel E1~>2 o Elaj o ElaZO |
Ey o1 FEoyy --- E2—>j SRR WG
P _ : : CEY : DR : 4
PMT By Eiw o By o B @
| ELal EL%Q e ELaj o EL—)QO ]

where F;_,; represents the score of the amino acid in the i-th position of the query sequence mutating
to amino acid type j during the evolution process. Positive scores indicate that this change F;_,; occurs
more frequently than expected occasionally, while negative scores indicate the opposite.

The elements of PSSM are scaled to the range from O to 1 using the following sigmoid function:

f(x)= 5)

where z is the original PSSM value.

We sum all of the rows and columns in the PSSM corresponding to the same functional group as
given in Section 3.2.1 and then divide each element by the length of the sequence. In the prediction of
AFPs, we use PSSM profiles to generate 100-dimensional (10 x 10 functional group pairs) input vectors
as parameters.

3.3. Random Forest Classifier

The random forest (RF) algorithm, proposed by Breiman [57], has been successfully used in protein
attribute prediction problems [58,59]. The RF is an ensemble classifier consisting of several decision
trees. According to L. Breiman’s description [57], each tree is constructed through the following
procedures. (i) Suppose the number of training cases is N; take N samples at random, but with
replacement, from the original data. These samples are to form the training set for growing the tree;
(i1) At every node of the tree, a feature subset with m features is randomly selected from all n features
without replacement; (iii) Based on the randomly-selected samples and features, each tree is grown to
the largest extent possible without pruning. To classify a new query sample, each decision tree yields
a predicted class. The final classification of RF is obtained by combining the prediction results of all
trees via voting.

WEKA (Waikato Environment for Knowledge Analysis), developed by the research team from
University of Waikato in New Zealand, is free software integrating several state-of-the-art machine
learning algorithms and data analysis tools [60]. In this study, the random forest classifier in WEKA

software is employed to implement the classification and operated with the default parameters.

3.4. Ensemble Method

In classification problems, the composition of the training data has a significant effect on the

classification accuracy. It is a remarkable fact that the data used to identify AFPs has an imbalanced
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class distribution, i.e., the fraction of AFPs is relatively small compared to that of non-AFPs. The
imbalanced data classification problem would result in high prediction accuracy for the majority class,
but poor prediction accuracy for the minority class [61].

The existing methods for predicting AFPs [23—-25] have tried to change the distribution of positive
and negative samples by randomly selecting AFPs and non-AFPs with the same size as the training
set. However, since only 300 non-AFPs were randomly selected from 9439 non-AFPs to form the
negative samples of the training dataset, they failed to make full use of the negative sample information
in the original dataset. This may lead to a biased estimate of the accuracy. Hence, it is urgent to adopt
an effective method to get an unbiased prediction based on the imbalanced dataset.

Ensemble classification is a method to combine various basic classifiers that have independent
decision-making abilities. Previous experimental results show that the ensemble method is often superior
to the individual classifier, which enhances not only the performance of the classification, but also the
confidence of the results [62,63]. In this paper, a random forest-based ensemble method is applied to
address the imbalanced problem.

The prediction performance of the training dataset is evaluated by 10-fold cross-validation. During
10-fold cross-validation, samples in each class are partitioned into 10 none-overlapped subsets. Then,
9 subsets of each class are chosen as the training set, and the remaining one of each class as the testing
set. The processes mentioned above are repeated 10 times. For each run, the whole procedures of the
random sampling followed by the ensemble method are given in following steps.

In order to deal with this imbalanced data problem, the negative sample set is divided into multiple
subsets to make sure that the number of samples of each subset is approximately equal to that of the
positive samples. In addition, to reduce computational complexity, negative samples in the training
set are randomly sampled to make sure that the sampled negative samples are GG times the number of
the positive samples in the training set. As the ratio of negative to sampled positive samples is G, the
negative dataset in the training set is undersampled and split into GG groups. Each group is then combined
with the positive samples in the training set as a training subset. After the procedure, G training subsets
are obtained. G random forest classifiers are trained by the G training subsets, respectively, and the
performance of the model is evaluated by the testing set. The final predicted class is determined by
majority voting among the outputs of the G classifiers. In the majority voting scheme, a test instance is
labeled the predicted class that obtains the highest number of votes.

3.5. Feature Selection

After carrying out the above-mentioned feature extraction methods, all protein sequences are
converted into numerical feature vectors with the same dimension. As we know, not all of the extracted
features could contribute to the classification. Generally, the high dimensional vector in a feature set
would cause 3 problems: over-fitting, information redundancy and dimension disaster [64]. Therefore, it
is necessary to select high discriminative features, to reduce noise and, consequently, enhance the speed
and performance with feature selection techniques. In this study, the analysis of variance followed by
incremental feature selection (ANOVA-IFS) method is performed to pick out informative features from

the original feature set.
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The analysis of variance (ANOVA), proposed by Fisher [65], is a statistical technique to investigate
the relationship between a response variable and one or more independent variables. The ANOVA is
able to identify factors that statistically contribute to the dataset’s variability. Based on the ANOVA,
a statistical test called the F test is usually used to measure the relevance of a feature with respect to
groups. The F' value of the T-th feature in the feature set is defined as:

MSg (7)
F (1) = M (1) (6)
where M Sp (T) is the T-th feature variance between groups and M Sy (T) is the T-th feature variance
within groups. They are expressed as:

MSB (T) = SSB (T)/de7
where dfp = k — 1 and dfyy = N — k are the degrees of freedom for M Sp and M Sy, respectively. k

and N represent the number of groups and the total number of observations, respectively. SSg(T) and

(7)

SSw (T) are the sums of squares of the T-th feature between groups and within groups, respectively, and

are calculated by:

5o ®)

where g; (T) denotes the mean value of the T-th feature in the i-th group, ¢ (T) denotes the mean value
of all of the observations of the T-th feature, y;; (T) is the j-th observation of the T-th feature in the i-th
group, and n; denotes the number of observations in the i-th group.

The F value will become large as the M Sp becomes increasingly larger than the M Sy, . The feature
with a larger F' value indicates that it is a more highly relevant one for the target to be predicted. In other
words, predicted groups have a stronger correlation with the t-th feature than with the t,-th feature if
F(11) > F(T2). The features used in this study then can be ranked by the F value.

Based on the ranked feature list evaluated by the ANOVA approach, the IFS method is adopted to
determine the optimal feature set. The IFS procedure [66] starts with an empty feature set and adds
features one by one from higher to lower rank. A new feature set is constructed when another feature
has been added. Suppose the total number of the features is IV, then we can obtain /N new feature sets.

The -th feature set is denoted as:

Si={fu. fa,- i} <i < N) 9

For each of the NV feature sets, an AFP-Ensemble-based predictor is constructed and examined using
the 10-fold cross-validation on the training dataset. Thus, the optimal feature set can be obtained when

the corresponding predictor yields the best performance.
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3.6. Performance Measures

In statistical prediction, the following 3 cross-validation methods are often used to examine a predictor
for its anticipated accuracy: independent dataset test, subsampling (K-fold cross-validation) test and
jackknife test [67]. Among the 3 test methods, the jackknife test is deemed as the least arbitrary one
that can always yield a unique result for a given benchmark dataset [29]. However, taking the size of
the benchmark dataset into consideration, the 10-fold cross-validation test instead of the jackknife test
is used in this study to reduce the computational time. Meanwhile, the independent dataset test is also
adopted in our study.

Sensitivity (Sn), specificity (Sp), accuracy (Acc) and balanced accuracy (BAcc) are employed to
evaluate the performance of the prediction system. These measurements are defined as follows.

TP

= TP FN 10
TN
= TNt PP (o
TP+TN
Acc = 12
“TTP+FP{TN+FN (12)
1
BAcc = 5 (Sn +Sp) (13)

where T'P, 'P, TN and F'N represent true positive (correctly-predicted AFPs), false positive
(non-AFPs incorrectly predicted as AFPs), true negative (correctly predicted non-AFPs) and false
negative (AFPs incorrectly predicted as non-AFPs), respectively.

Sensitivity (Sn) measures the proportion of the known AFPs that are correctly predicted as AFPs,
and specificity (Sp) measures the proportion of the known non-AFPs that are correctly predicted as
non-AFPs. Accuracy (Acc) is the proportion of all samples that are correctly predicted. AC'C' is known
to be inappropriate for an imbalanced dataset, since it may be high even if sensitivity or precision is
low [68]. However, a good prediction system is usually expected to provide both high sensitivity and
specificity. Therefore, the balanced accuracy (B Acc) is used throughout this study as the main evaluator
for prediction performance.

4. Conclusions

The available evidence indicates that the antifreeze effect of overwintering organisms is largely
due to a family of antifreeze proteins. The knowledge of antifreeze proteins is instructive for several
industrial and biomedical applications. In this study, we develop a promising ensemble method called
AFP-Ensemble to discriminate AFPs from non-AFPs by integrating a comprehensive set of feature
descriptors. To obtain the optimal features, the ANOVA-IFS method is used for improving the prediction
capability of the model. In view of the serious imbalance in the benchmark dataset, a random sampling
approach followed by undersampling is adopted to rebuild multiple training subsets. Random forest
classifiers are trained by different training subsets and then aggregated into a consensus classifier
by majority voting. Experimental results show that AFP-Ensemble obtains satisfactory results. The

sensitivity, specificity, accuracy and balanced accuracy are 0.892, 0.940, 0.938 and 0.916, respectively,
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for the independent testing dataset. Comparison results indicate that AFP-Ensemble performs far
better than the previous studies, which suggests that AFP-Ensemble can serve as a useful tool to
find the potential AFPs. The detailed feature analysis indicates that all feature types applied in this
method contribute to the improved prediction performance. The findings derived from this paper may
provide useful clues for further in-depth investigation into AFP-ice interactions and guide the related

experimental validation.
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