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Abstract: Lymphocytes express potassium channels that regulate physiological cell 

functions, such as activation, proliferation and migration. Expression levels of K2P5.1 

(TASK2; KCNK5) channels belonging to the family of two-pore domain potassium channels 

have previously been correlated to the activity of autoreactive T lymphocytes in patients 

with multiple sclerosis and rheumatoid arthritis. In humans, K2P5.1 channels are upregulated 

upon T cell stimulation and influence T cell effector functions. However, a further clinical 

translation of targeting K2P5.1 is currently hampered by a lack of highly selective inhibitors, 

making it necessary to evaluate the impact of KCNK5 in established preclinical animal 

disease models. We here demonstrate that K2P5.1 knockout (K2P5.1−/−) mice display no 
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significant alterations concerning T cell cytokine production, proliferation rates, surface 

marker molecules or signaling pathways. In an experimental model of autoimmune 

neuroinflammation, K2P5.1−/− mice show a comparable disease course to wild-type animals 

and no major changes in the peripheral immune system or CNS compartment. A compensatory 

upregulation of the potassium channels K2P3.1 and KV1.3 seems to counterbalance the 

deletion of K2P5.1. As an alternative model mimicking autoimmune neuroinflammation, 

experimental autoimmune encephalomyelitis in the common marmoset has been proposed, 

especially for testing the efficacy of new potential drugs. Initial experiments show that 

K2P5.1 is functionally expressed on marmoset T lymphocytes, opening up the possibility for 

assessing future K2P5.1-targeting drugs. 

Keywords: ion channels; potassium channels; K2P channels; K2P5.1; TASK2; KCNK5; 

autoimmune neuroinflammation; multiple sclerosis; EAE 

 

1. Introduction 

Ion channels have long been established as important regulators of the physiological functions of  

T lymphocytes and other immune cells [1]. Potassium channels are required to maintain a hyperpolarized 

membrane potential necessary for sustaining the electrochemical driving force for Ca2+ ion entry upon 

T cell receptor stimulation [2,3]. Targeting of potassium channels as a potential therapeutic strategy for 

autoinflammatory disorders can nowadays be viewed as an established concept, and the first attempts 

for clinical trials are ongoing [3–5]. While the most intensively-studied potassium channels on lymphocytes 

are the voltage-gated KV1.3 and the Ca2+-activated KCa3.1, we and others recently added members of 

the family of two-pore domain (K2P) potassium channels to the picture [4]. K2P channels are mainly 

voltage-independent K+ channels that are modulated by changes in pH, lipid metabolites or hypoxia [6]. 

Human and murine T lymphocytes express the K2P channels K2P3.1 (TASK1; KCNK3), K2P5.1 (TASK2; 

KCNK5) and K2P9.1 (TASK3; KCNK9) [1,4,7]. K2P3.1−/− mice are less susceptible to the induction of 

experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), and 

specific pharmacological blockers have a beneficial effect on clinical disease symptoms [8,9]. Mice with 

a genetic deletion for K2P9.1, in direct comparison, showed a less pronounced protection against 

neuroinflammatory damage [8]. In humans, all three K2P channels are involved in T cell functions, such 

as proliferation or cytokine production [7,10]. Especially expression of K2P5.1 is increased following T 

cell activation and in pathogenic T lymphocytes from patients with MS [10] and rheumatoid arthritis 

(RA) [11]. An especially pronounced upregulation of K2P5.1 was found on T lymphocytes located in the 

cerebrospinal fluid of MS patients and in the synovial fluid of RA patients, respectively [10,11]. 

However, the further clinical translation of targeting K2P5.1 is at present not achievable due to a lack of 

highly selective K2P5.1-channel inhibitors demonstrating the need for mechanistical studies in 

established preclinical disease models. The impact of K2P5.1 on T lymphocyte function has been 

predominantly addressed in human cells, except basic physiological studies showing an involvement of 

K2P5.1 in human and murine T cell volume regulation [12,13]. An involvement of K2P5.1 in murine 

immune cell function has been shown for B lymphocytes [14,15]. K2P5.1 is expressed in WEHI-231 cells, 



Int. J. Mol. Sci. 2015, 16 16882 

 

 

a B lymphocyte cell line derived from murine lymphoma and primary murine B cells. K2P5.1 is upregulated 

upon B cell receptor stimulation and upon hypoxia-induced HIF-1α activation and regulates the influx of 

Ca2+ ions [14,15]. It will be interesting to learn about in-depth immunological studies in the future to 

assess the functional importance of K2P5.1 for murine B cell function. 

We here address the impact of K2P5.1 on murine T lymphocytes in vitro and in the MOG35–55  

peptide-induced EAE model using K2P5.1−/− mice. Furthermore, we perform pilot experiments to 

evaluate the possibility of performing pharmacological studies inhibiting K2P5.1 in the common 

marmoset, a non-human primate model for autoinflammatory disorders. 

2. Results 

2.1. K2P5.1−/− and Wild-Type Mice Show a Comparable Disease Course in the EAE Model 

WT and K2P5.1−/− mice were immunized with MOG35–55 peptide in order to induce EAE, an animal 

model mimicking aspects of MS. Both groups showed a comparable disease onset, disease maximum 

and overall disease course over 30 days (Figure 1A). We performed immunological and histological 

analysis of EAE mice in order to assess subtle changes not reflected by the clinical disease course. 

Splenocytes were isolated at disease maximum and restimulated with the same peptide stock used  

for immunization. No differences were observed for proliferation rates (Figure 1B,C, two independent 

methods) and for the production of the proinflammatory cytokines IFNγ, IL-2 and IL-17 (Figure 1D). 

Flow cytometric evaluation of CNS-invading immune cells revealed comparable numbers of CD4+ and 

CD8+ T lymphocytes and CD11b+ cells (Figure 1E). In agreement, histological evaluation displayed  

no significant changes for inflammatory infiltrates and demyelinated areas (Figure 1F). In summary, 

genetic deletion of K2P5.1 resulted in no obvious effect in the EAE model, which is in contrast to  

the previously-published phenotypes of K2P3.1−/− and K2P9.1−/− mice [8,9]. 

2.2. K2P5.1−/− Mice Show No Obvious Alterations of the Immune System 

It has been reported before that human T lymphocytes upregulate K2P5.1 upon T cell receptor  

(TCR) stimulation [10]. These results were corroborated, as human CD4+ T lymphocytes showed  

an approximately 60-fold upregulation of K2P5.1 (Figure 2A). In contrast, while murine lymphocytes 

also express K2P5.1, TCR stimulation only led to a non-significant trend towards an upregulation upon 

stimulation (Figure 2B). In the next step, we directly compared WT and K2P5.1−/− mice. K2P5.1 protein 

was only detected on splenocytes and in kidney tissue of WT, but not of K2P5.1−/− animals (Figure 2C). 

Naive splenocytes were stimulated, yielding no significant differences for cytokine levels of the 

proinflammatory TH1/TH17 cytokines IFNγ, IL-2, IL-17, the TH2 signature cytokine IL-4 and the 

regulatory cytokine IL-10 (Figure 2D). In accordance, proliferation rates and cell cycle stages of WT 

and K2P5.1−/− T lymphocytes were comparable (Figure 2E). Furthermore, we addressed a potential 

influence of K2P5.1 for immune cell development and the composition of splenocytes. Flow cytometric 

experiments revealed no obvious changes for spleen (Figure 2F) and thymus (Figure 2G). CD4+  

T lymphocytes from WT and K2P5.1−/− mice showed no significant alterations concerning T memory 

cell composition (Figure 2H) and cell surface markers indicative for cell activation (CD25, CD69) and 

migratory propensity (CD49d; Figure 2I). 
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Figure 1. K2P5.1−/− and WT mice showed a comparable clinical, immunological and 

histopathological phenotype in MOG35–55 EAE. (A) Upon MOG35-55 immunization,  

K2P5.1−/− mice showed a comparable clinical disease course (left panel) and cumulative EAE 

score (right panel) over 30 days compared to wild-type mice (three independent 

immunizations, each n = 7–8); (B–D) Splenocytes from immunized mice were isolated at 

disease maximum (d16) and restimulated with 10 µg/mL MOG35–55 peptide. No differences 

were observed for (B,C) proliferation assessed by two independent methods and for (D)  

the production of IFNγ, IL-2 and IL-17 (n = 4); (E) Flow-cytometric evaluation of  

CNS-infiltrating immune cells isolated at disease maximum revealed no significant changes 

for numbers of CD4+, CD8+ and CD11b+ cells (n = 4); (F) Histological evaluation of 

inflammatory infiltrates (HE staining, upper panel) and demyelinated area (Luxol fast blue 

(LFB) staining, lower panel) showed no significant differences (n = 4–5). Scale bar (100 µm) 

accounts for all images. ns = not significant. 
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Figure 2. T lymphocytes from K2P5.1−/− mice displayed no obvious differences in immune 

cell function (A,B). (A) Human, but not (B) mouse CD4+ T lymphocytes show an upregulation 

of K2P5.1 (left panel: mean ΔCt values; middle panel: all donors are displayed separately; 

right panel: relative expression); (C) K2P5.1 expression can be detected by Western blotting 

in splenocytes and kidney tissue from wild-type, but not from K2P5.1−/− (ko) mice 

(representative examples); (D) WT and K2P5.1−/− splenocytes show no differences in 

cytokine production (n = 6); (E) No significant differences were observed for proliferation 

rates from WT and K2P5.1−/− T lymphocytes (left panel: proliferation assay; right panel: 

flow cytometry-based assessment of cell cycle stages; n = 8); (F) Splenocytes from WT and 

K2P5.1−/− display a comparable immune cell composition (n = 6); (G) WT and K2P5.1−/− 

thymi are comparable concerning proportions of double-negative, double-positive and 

CD4+/CD8+ single-positive cells (n = 4, one representative example is shown); (H,I) CD4+ 

T lymphocytes from WT and K2P5.1−/− mice show no significant alterations concerning (H) 

memory cell composition (I) and activation and migration markers (n = 5). ns = not 

significant; ** p < 0.05. 
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2.3. Compensatory Upregulation of K2P3.1 and KV1.3 in K2P5.1−/− T Lymphocytes 

Several potassium channels have been shown to be expressed in murine T lymphocytes [1]. While 

these channels display unique properties, such as diverse expression patterns, biophysical properties or 

signaling pathways, they also share basic principles, as they regulate Ca2+ influx by setting the membrane 

potential, important for downstream pathways [16]. Therefore, we searched for a compensatory upregulation 

of other known potassium channels in K2P5.1−/− T lymphocytes. Indeed, K2P3.1 was upregulated on both 

CD4+ and CD8+ T lymphocytes, and KV1.3 was upregulated on CD4+ T lymphocytes (Figure 3A).  

We performed electrophysiological measurements to assess the functional contribution of K2P3.1 and 

KV1.3 upon K2P5.1 deletion. No significant differences were observed for the membrane potential, 

pointing towards a comparable contribution of the whole-cell potassium outward current (Figure 3B). 

Furthermore, we applied specific pharmacological blockers for K2P3.1 (A293) and KV1.3 (ShK) channels 

and compared the current reduction in stimulated WT versus K2P5.1−/− CD4+ T lymphocytes. Channel 

blockers had a significantly higher impact on K2P5.1−/− cells, indicating a functional upregulation of 

K2P3.1 and KV1.3 on K2P5.1−/− T lymphocytes (Figure 3C). 

 

Figure 3. Cont. 
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Figure 3. K2P5.1 deletion results in a compensatory upregulation of K2P3.1 and KV1.3.  

(A) Relative quantification of unstimulated and stimulated WT and K2P5.1−/− CD4+ and 

CD8+ T lymphocytes for the expression of K2P3.1, K2P9.1, KV1.3 and KCa3.1 (n = 5–6);  

(B) Electrophysiological assessment of the resting membrane potential of unstimulated 

CD4+ T lymphocytes (n = 10); (C) Voltage steps from −80 to +40 mV for 500 ms were used 

to record outward currents in stimulated WT and K2P5.1−/− CD4+ T lymphocytes. Current 

reduction after application of the K2P3.1 inhibitor A293 (10 µM) and the KV1.3 inhibitor Shk 

(10 nM) (n = 4) is shown; (D) Naive WT and Task2−/− CD4+ T lymphocytes were stimulated 

for 10 min either with CD3/CD28 antibodies or PMA followed by cell lysis and Western 

blot analysis with antibodies against phosphorylated Zap70 (p-Zap70, left panel) and 

ERK1/2 (right panel). Representative examples (upper panel) and quantitative evaluation 

(lower panel, n = 4) are shown; (E) Calcium imaging experiments using Fura-2 in WT and 

Task2−/− CD4+ T lymphocytes were performed under two conditions: T cell-receptor 

crosslink (CD3-X) in 2 mM Ca2+ (upper panel) or application of thapsigargin (TG) for 

intracellular Ca2+ store depletion in 0 mM Ca2+ prior to switching to 2 mM Ca2+ solution 

(lower panel). One out of five representative measurements are shown. ns = not significant; 

** p < 0.05. 

2.4. K2P5.1−/− T Lymphocytes Display No Alterations in TCR-Dependent Signaling Pathways 

Activation via the T cell receptor initiates the activation of multiple signaling pathways involving 

tyrosine phosphorylation cascades and Ca2+-dependent pathways [16]. We chose two key signaling 

enzymes involved in early (Zap70) and late events (ERK1/2) after TCR activation and assessed protein 

phosphorylation by specific antibodies. No significant differences were observed after TCR activation 

for Zap70 and ERK1/2 and after direct activation of downstream pathways by PMA for ERK1/2  

(Figure 3D). Furthermore, Ca2+ imaging measurements using the Ca2+-sensitive dye Fura-2 revealed no 

significant alterations (Figure 3E). These experiments underline that K2P3.1 and KV1.3 are able to fully 

compensate K2P5.1 on a functional level. 
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2.5. Common Marmoset T Lymphocytes Functionally Express K2P5.1 

Our current findings demonstrate that K2P5.1−/− mice show no obvious phenotype in autoimmune 

neuroinflammation due to a functional compensation by the potassium channels K2P3.1 and KV1.3.  

An alternative model for multiple sclerosis, EAE in the common marmoset (Callithrix jacchus), has been 

proposed especially for testing the efficacy of new potential drugs [17,18]. However, only very few 

commercial toolkits specifically designed for marmosets are currently available, making immunological 

or ion channel research difficult. Due to species homologies, both human and murine assays might 

potentially work with marmosets, which we could indeed confirm for a number of them (Table 1). 

Therefore, we were able to isolate marmoset CD4+ T lymphocytes and to stimulate them with 

phytohemagglutinin (PHA), leading to a significant upregulation of K2P5.1 channels (Figure 4A). 

Expression of K2P5.1 on protein level could also be confirmed by flow cytometric measurements for 

CD4+ and CD8+ T cells (Figure 4B). Application of the K2P5.1 inhibitor quinidine led to a reduced 

proliferation rate of marmoset T cells, hinting towards a functional relevance of K2P5.1 for marmoset  

T lymphocytes (Figure 4C). As the next step, we aimed to detect K2P5.1-expressing lymphocytes in EAE 

lesions in the common marmoset, which were characterized by HE, CD3 and Luxol fast blue (LFB) 

staining (Figure 4D). However, available anti-K2P5.1 antibodies provided no positive signals in  

paraffin-embedded tissue; hence, we have not been able to address this question due to technical 

limitations so far. Using cryo-fixed tissue of naive marmosets, we found positive signals for several K2P 

channels (K2P2.1, K2P5.1, K2P9.1, but not K2P3.1) underlining the fact that this channel group might also 

be of functional importance in the marmoset brain. In summary, these results provide the first hint that 

marmosets might be of use for K2P channel-related neuroimmunological research. 

Table 1. Evaluation of commercial kits for marmoset research. 

Commercial Kit Company Functional Not Functional

CD4 non-human primate MACS kit Miltenyi Biotec X  
CD8 non-human primate MACS kit Miltenyi Biotec  X 

Mouse anti-human CD4 antibody (RPA-T4) BioLegend X  
Mouse anti-human CD8 antibody (RPA-T8) BioLegend X  

Human CD3/CD28 microbeads Life Technologies  X 
Mouse CD3/CD28 microbeads Life Technologies  X 

Phytohemagglutinin Sigma-Aldrich X  
ATP Assay PerkinElmer X  

Rabbit anti-human/mouse K2P5.1 Sigma-Aldrich X  
Cytokine flow cytomix BenderMed Systems  X 

Human ELISA IFNγ, IL-2 eBioscience, RD Systems  X 
Mouse ELISA IFNγ, IL-2 eBioscience, RD Systems  X 
Human RT-PCR primers Applied Biosystems X  

Quinidine Sigma-Aldrich X  

Different commercial kits were evaluated with marmoset cells and are marked either as functional or as  

non-functional (“X” are set when applicable). See the Experimental Section for further details. 
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Figure 4. Expression of K2P5.1 channels in immune cells and CNS neurons in the common 

marmoset. (A) RT-PCR experiments show that CD4+ T lymphocytes from the common 

marmoset express K2P5.1 in RT-PCR experiments, which is upregulated upon stimulation 

with PHA (n = 3); (B) CD4+ and CD8+ T lymphocytes express K2P5.1 protein as assessed by 

flow cytometry (one representative example out of three is shown); (C) The K2P5.1 inhibitor 

quinidine (20 µM) reduces the proliferation of stimulated marmoset CD4+ T lymphocytes  

(n = 3); (D) EAE lesions in the common marmoset characterized by HE, CD3 and LFB staining; 

(E) Brain samples from naive common marmosets were assessed by immunohistochemical 

staining for K2P2.1, K2P5.1 and K2P9.1. NeuN was used as a neuronal marker. The region of 

interest is displayed by HE staining on the right side. * = p < 0.05. 

3. Discussion 

Previously, K2P5.1 channels were shown to play an important role for T cell activation, both under 

physiological circumstances and under autoinflammatory conditions. In contrast to human T lymphocytes, 

we here demonstrate that K2P5.1, despite its expression under basal conditions, is not upregulated upon 
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stimulation in murine T cells. Obviously, K2P5.1 seems to play a more pronounced role in human than 

murine T lymphocytes. Species-dependent differences have been reported especially for voltage-dependent 

potassium channels before [3]. Furthermore, genetic deletion of K2P5.1 does not result in immune cell 

alterations in vitro or in the EAE model, most likely due to a compensatory upregulation of K2P3.1 and 

KV1.3 channels. These results were unexpected in light of previous results obtained from K2P3.1−/− and 

K2P9.1−/− mice that showed no compensatory upregulations of other channels, resulting in differences in 

immune cell functions. K2P5.1 was firstly discovered nearly 20 years ago [19]. It was initially named 

TWIK-related acid-sensitive K+ channel 2, due to the similar sensitivity to extracellular pH values 

compared to K2P3.1 [20]. However, it is now clear that K2P5.1 does not belong to the TASK, but rather 

to the phylogenetically- and structurally-different TALK subfamily of K2P channels [21,22]. Despite 

obvious functional analogies of K2P3.1, K2P9.1 and K2P5.1, these molecular biological details should be kept 

in mind in order to avoid jumping to conclusions based on observations from one K2P channel to another. 

Different research groups have previously obtained experimental data from K2P5.1−/− mice, which 

are often regarded to be more reliable than pharmacological studies due to a limited specificity of 

available K2P5.1 blockers. Besides its expression in immune cells, K2P5.1 function has been implicated 

in a variety of different cells and tissues, such as specific neuronal populations in the CNS, kidney 

epithelial cells or chondrocytes [21,23]. Early reports using newly generated K2P5.1−/− mice described  

a contribution of K2P5.1 to cell volume regulation in mouse renal proximal tubule cells [24,25].  

An involvement of K2P5.1 channels in regulatory volume decrease has subsequently been demonstrated 

for additional cell types using pharmacological approaches [24,26], while direct proof comparing WT 

and K2P5.1−/− mice was only provided for K2P5.1−/− lymphocytes [13]. K2P5.1 is involved in proximal 

tubule bicarbonate reabsorption, and K2P5.1−/− mice show a secondary metabolic acidosis and 

hypotension [27]. In the CNS, K2P5.1 channel expression is normally restricted to respiratory center 

nuclei in the brainstem, and K2P5.1−/− mice show disturbed respiratory responses to hypoxia and 

hypercapnia [28–30]. However, under pathophysiological acute ischemic conditions in an experimental 

model of cerebral ischemia, K2P5.1 is strongly upregulated on neurons where it supposedly contributes 

to the induction of neuronal apoptosis. Accordingly, K2P5.1−/− mice had significantly reduced infarct 

volumes [31]. Interestingly, the functional contribution of K2P5.1 expression on T lymphocytes was 

evaluated for post-ischemic inflammatory reactions that deteriorate the experimental outcome in the 

used mouse model of transient middle cerebral artery occlusion. Adoptive transfer experiments of  

wild-type and K2P5.1−/− T lymphocytes into Rag1−/− mice prior to stroke induction showed no impact 

of K2P5.1 expression on T lymphocytes on stroke outcomes. These previous findings are in agreement with 

our current study showing that genetic deletion of K2P5.1 is compensated by other potassium channels. 

Our current findings show that the value of the classical murine MOG35–55-EAE model in C57BL/6 

mice might be limited for a further functional and pharmacological assessment of K2P5.1 channels.  

The common marmoset displays a higher genetic homology with humans than mice (85% versus 40%) 

and might therefore be better suited as a future animal model for immunological assessment of the K2P5.1 

channel-related pathology. Therefore, we conducted pilot experiments in the common marmoset providing 

first hints that marmosets might be worth further investigations in this context. 
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4. Experimental Section 

4.1. Experimental Autoimmune Encephalomyelitis Induction and Evaluation 

All animal experiments were approved by the local authorities (Landesamt für Natur, Umwelt und 

Verbraucherschutz NRW, Kirchhundem, Germany) and conducted according to the German law of 

animal protection. EAE was induced by immunization of 10–12-week-old female C57BL/6 (Charles 

River, Sulzfeld, Germany) or K2P5.1−/− mice [24] with 200 µg MOG35–55 peptide (Biotrend, Cologne, 

Germany). MOG peptide was added to complete Freund’s adjuvants to obtain a 1– mg/mL emulsion, 

which was injected subcutaneously at the flank of deeply anesthetized mice. Pertussis toxin was injected 

on the day of immunization and 2 days later at a dose of 400 ng (Alexis, San Diego, CA, USA). Scoring 

was done by a blinded observer using the following score system: 0, no abnormality; 1, limp tail tip; 2, 

limp tail; 3, moderate hind-limb weakness; 4, complete paralysis of one hind-limb; 5, mild paraparesis;  

6, paraparesis; 7, paraplegia; 8, tetraparesis; 9, quadriplegia or pre-moribund state; and 10, death. 

Animals with a score higher than 7 were euthanized, and the last score observed was included in the 

analysis until the end of the experiment. The cumulative EAE score was calculated by summing up each 

individual daily scores divided by the number of days. 

4.2. Murine Cell Isolation and Culture 

Spleens were isolated from age- and sex-matched mice (aged 8–12 weeks) or from immunized EAE 

mice at disease maximum (d15). Tissue was homogenized and strained through a 40 µm nylon filter. 

The homogenates were rinsed with washing medium (DMEM containing 1% FCS, 1% glutamine,  

1% antibiotics) and shortly resuspended in erythrocyte lysis buffer (150 mM NH4Cl, 10 mM KHCO3, 

0.1 mM EDTA; pH 7.3). For some experiments, thymic cells were isolated from 4–6 week old mice in 

a comparable fashion. Immune cell subsets were isolated using appropriate magnetic bead-based 

separation kits (CD4+ or CD8+ T cell isolation kit II, Miltenyi Biotec, Bergisch Gladbach, Germany). 

Cells were cultured in DMEM containing 10 mM HEPES, 25 μg/mL gentamicin, 50 μM β-mercaptoethanol, 

5% FCS, 2 mM glutamine and 1% non-essential amino acids (Cambrex, Verviers, Belgium). 

4.3. Immunological Analysis 

Splenocytes were isolated either from naïve mice or from EAE mice at disease maximum. Cells were 

either stimulated with anti-CD3 (2 µg/mL) and anti-CD28 (1 µg/mL) antibodies or restimulated with  

10 µg/mL MOG35–55 peptide. IFNγ, IL-17A, IL-2, IL-4 and IL-10 levels were assessed by enzyme-linked 

immunosorbent assay (ELISA, Ready-SET-Go! ELISA kit; eBioscience, Frankfurt, Germany). 

For evaluation of cell proliferation, the amount of ATP in the supernatant after cell lysis was assessed 

as an indicator of cell proliferation using an ATPlite luminescence ATP detection assay system 

(PerkinElmer, Waltham, MA, USA) according to the manufacturer’s instructions and as described 

previously [32]. Luminescence was measured on an Infinite 200 PRO multimode microplate reader 

(Tecan, Männedorf, Switzerland), and the splenocyte stimulation index was calculated as cell abundance 

with stimulation divided by cell abundance without stimulation. Alternatively, 1 µCi of [3H]thymidine 
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(Amersham, Piscataway, NJ, USA) was added for the final 24 h. Radioactivity was measured on  

a β-scintillation counter (TopCount NXT; PerkinElmer, Rodgau-Jügesheim, Hessen, Germany). 

For flow cytometric evaluation of CNS-invading cells, mice were perfused transcardially with PBS 

to diminish contamination by leukocytes located within blood vessels. CNS tissue was dissociated 

mechanically, and mononuclear cells from the interface of a 30%–50% Percoll (GE Healthcare,  

Little Chalfont, Buckinghamshire, UK) density centrifugation gradient were further analyzed by flow 

cytometry. Cells were evaluated on a Gallios Flow Cytometer (Beckman Coulter, Krefeld, Germany). 

For some experiments, peripheral blood mononuclear cells were obtained from the EUPRIM-NET 

program and used as described in Table 1. 

4.4. Immunohistochemical Analysis 

For histological evaluation of EAE, mice were transcardially perfused with PBS. Spinal cords were 

carefully excised and embedded in Tissue-Tek OCT optimal cutting temperature compound  

(Sakura Finetek, Torrance, CA, USA). To ensure that the same lumbar region was analyzed for all mice, 

transverse cryosections (10 mm thick) were cut and stained with HE or LFB according to standard 

protocols. Ten tissue sections separated by at least 40 mm were analyzed from five animals per group. 

Histological quantifications were assessed by an investigator blinded to treatment groups using an 

Axiophot 2 microscope (Carl Zeiss Microscopy, Jena, Germany) equipped with a charge-coupled device 

camera; images were analyzed with MetaVue research imaging software (Molecular Devices, 

Sunnyvale, CA, USA). 

For fluorescence staining of marmoset brain slices, cryosections were postfixed in 4% paraformaldehyde 

for 10 min and incubated in blocking solution (PBS containing 5% bovine serum albumin, 1% donkey 

serum and 0.2% Triton X-100 surfactant). Slices were then incubated with antibodies against rabbit  

anti-mouse K2P3.1, rabbit anti-mouse K2P5.1, rabbit anti-mouse K2P9.1, rabbit anti-mouse K2P2.1 or rat 

anti-mouse NeuN (Millipore, Schwalbach, Germany) overnight at 4 °C. The secondary antibodies were 

Cy3 donkey anti-rabbit and Cy2 goat anti-rat (Dianova, Hamburg, Germany). Tissue was mounted with 

Prolong Gold antifade reagent containing DAPI (Life Technologies, Carlsbad, CA, USA). Negative 

controls were obtained by omitting either the primary or secondary antibody and revealed no detectable 

signal on subsequent analysis (data not shown). 

4.5. Isolation of Human CD4+ T Lymphocytes 

PBMC were isolated from peripheral blood of healthy individuals by density centrifugation using 

lymphocyte separation medium (Axis-Shield) according to the manufacturer’s instructions. CD4+  

T lymphocytes were isolated using the CD4+ T cell isolation kit II (Miltenyi Biotec, Bergisch Gladbach, 

Germany) and stimulated by anti-human CD3 (OKT3, 2 µg/mL) and anti-human CD28 (28.2, 1 µg/mL, 

eBioscience, Frankfurt, Germany). 

4.6. Flow Cytometry 

Flow cytometric analysis was performed using the following anti-mouse antibodies (all from 

BioLegend, San Diego, CA, USA): anti-CD3 FITC (clone 17A2), anti-CD4 APC (RM4-5), anti-CD8a  
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AF700 (53-6.7), anti-CD11b PE (M1/70), anti-CD19 PE/Cy7 (6D5), CD44 PE/Cy7 (IM7), CD62L PE 

(MEL-14), CD49d (R1-2), CD25 PE/Cy7 (PC61) and CD69 PE (H1.2F3). Cells were analyzed with  

a Gallios flow cytometer (Beckman Coulter, Krefeld, Germany). 

4.7. Real-Time PCR 

RNA was purified using TRIzol reagent (Life Technologies, Carlsbad, CA, USA), and RT-PCR was 

performed following standard protocols using TaqMan Gene Expression Assays (Life Technologies, 

Carlsbad, CA, USA) with specific primers for human K2P5.1 (Hs00186652_m1), mouse K2P3.1 

(Mm04213388_s1), K2P5.1 (Mm00498900_m1), K2P9.1 (Mm02014295_s1), KV1.3 (Mm00434599_s1), 

KCa3.1 (Mm00464586_m1) and eukaryotic 18S RNA (Hs9999901_s1). Data were calculated using ΔCt, 

ΔΔCt and relative quantification (2−ΔΔCt). 

4.8. Electrophysiology 

Whole-cell electrophysiology was performed using isolated CD4+ T lymphocytes. All measurements 

were conducted in the whole-cell configuration of the patch-clamp technique 24 h after cell stimulation. 

Recording pipettes were filled with a solution containing (in mM): KCl, 140; HEPES, 5; MgCl2, 2; 

EGTA, 1; Na2-ATP, 1; GTP, 0.1; cAMP, 0.1. pH was set to 7.2 with KOH. Cells were continuously 

superfused with a bath solution containing (in mM): NaCl, 135; KCl, 5.4; HEPES, 5; MgCl2, 1; CaCl2, 1.8; 

and glucose, 10. pH was set to 7.4 with NaOH. Recordings were performed with an EPC-10 amplifier 

(HEKA Elektronik, Lambrecht, Germany). The resistance of the glass pipettes was 3–4 MΩ. The access 

resistance was in the range of 7–14 MΩ, and a series resistance compensation of more than 40% was 

used routinely. Measurements were either performed in the current or voltage clamp mode. The voltage 

protocol consisted of a depolarizing rectangular 500 ms pulse to +40 mV. A liquid junction potential of 

about 4 mV was measured and taken into account. Recordings were digitally analyzed using the 

Fitmaster software (HEKA Elektronik, Lambrecht, Germany). 

4.9. Western Blots 

For signaling analysis, cells were stimulated with anti-mouse CD3 (clone 145-2C11, 10 µg/mL) and 

anti-mouse CD28 (clone 37.51, 1 µg/mL, both eBioscience, Frankfurt,Germany) or 10 ng/mL PMA 

(Sigma-Aldrich, St. Louis, MO, USA) for 4 min. Cells were lysed for 30 min on ice in 30 µL lysis buffer  

(1% NP-40, 10% N-dodecyl-β-D-maltoside, 1 mM sodium monovanadate, 1 mM phenylmethanesulfonyl 

fluoride (PMSF), 50 µM TRIS, 10 mM NaF, 10 mM EDTA and 165 mM NaCl). Following 10 min of 

centrifugation (18,407× g, 4 °C), the supernatant was mixed with 7.5 µL sample buffer (20 mM TRIS, 

10% glycerol, 0.05% bromophenol blue and 1% SDS) and heated for 5 min at 99 °C. Proteins were 

separated using a 10% SDS-PAGE and transferred to a nitrocellulose membrane. Membranes were 

blocked with 5% dry milk and probed with rabbit anti-murine K2P5.1 (Sigma-Aldrich), rabbit  

anti-p-ERK1/2 (Cell Signaling) or rabbit anti-p-Zap70 (Cell Signaling) diluted in 5% BSA and incubated 

overnight at 4 °C. Secondary antibody against rabbit was horseradish-peroxidase conjugated (Santa Cruz 

Antibodies, Dallas, TX, USA). The antibody reaction was detected by enhanced chemiluminescence 

reaction (ECL, Amersham Biosciences, Amersham, UK), and quantification was done using ImageJ 
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software (V1.46r, originally developed by Wayne Rasband, now available as public domain).  

Anti-β-actin (Sigma-Aldrich, St. Louis, MO, USA) was used for loading controls. 

4.10. Calcium Imaging 

For calcium imaging experiments, T lymphocytes were isolated as described above. Analysis was 

performed in HEPES buffer containing 120 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 30 mM HEPES, 

2 mM MgSO4, 10 mM glucose, pH 7.25, and osmolality was set to 305 mOsm/kg. Cells were loaded 

with 5 μM Fura-2 AM (Invitrogen, Karlsruhe, Germany) for 30 min at 37 °C. Fluorescence was 

measured with a TECAN infinite M200Pro fluorimeter (Tecan Group Ltd., Männedorf, Switzerland). 

Excitation was alternated between 340 and 380 nm, and emission was measured at 509 nm every 3 s. 

Either hamster anti-mouse CD3 and goat anti-hamster IgG antibodies (eBioscience, Frankfurt, Germany) 

or thapsigargin (0.1 µM; Sigma-Aldrich, St. Louis, MO, USA) were used for stimulation. 

4.11. Statistical Analysis 

All results are presented as the mean ± SEM. Statistical analysis was performed using Student’s  

t-test in the case of normally-distributed data or a Mann–Whitney test for parametric data without 

normality and equality of variance, as well as for non-parametric datasets. A one-way ANOVA with  

a Bonferroni post hoc test was used in the case of multiple comparisons for parametric data, and  

a Kruskal–Wallis ANOVA was used for non-parametric data. p-values < 0.05 were considered 

statistically significant. 

5. Conclusions 

Human T lymphocytes express K2P5.1 channels regulating T cell functions under physiological and 

pathological conditions. In contrast, K2P5.1−/− mice display no significant alterations concerning T cell 

cytokine production, proliferation rates, surface marker molecules or signaling pathways resulting in an 

unaltered disease phenotype in an animal model of autoimmune inflammation. A compensatory 

upregulation of the potassium channels K2P3.1 and KV1.3 is responsible to counterbalance the deletion 

of K2P5.1. Preliminary experiments hint towards a potential use of the marmoset model for future 

research efforts as an alternative animal model. 
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