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Abstract: Protein disordered regions are segments of a protein chain that do not adopt  

a stable structure. Thus far, a variety of protein disorder prediction methods have been 

developed and have been widely used, not only in traditional bioinformatics domains, 

including protein structure prediction, protein structure determination and function 

annotation, but also in many other biomedical fields. The relationship between 

intrinsically-disordered proteins and some human diseases has played a significant role in 

disorder prediction in disease identification and epidemiological investigations. Disordered 

proteins can also serve as potential targets for drug discovery with an emphasis on the 

disordered-to-ordered transition in the disordered binding regions, and this has led to 

substantial research in drug discovery or design based on protein disordered region 

prediction. Furthermore, protein disorder prediction has also been applied to healthcare by 

predicting the disease risk of mutations in patients and studying the mechanistic basis of 

diseases. As the applications of disorder prediction increase, so too does the need to  

make quick and accurate predictions. To fill this need, we also present a new approach to 

predict protein residue disorder using wide sequence windows that is applicable on the 

genomic scale. 
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1. Introduction 

Protein disordered regions (also termed intrinsically-disordered regions (IDR)) are segments of  

a protein chain that do not adopt a stable structure [1–4]. In some cases, the disordered region  

can encompass the entire protein, and any protein with an IDR can be referred to as an  

intrinsically-disordered protein (IDP). Thus far, a variety of protein disorder prediction methods have 

been developed and have been widely used, not only in traditional bioinformatics domains, including 

protein structure prediction, protein structure determination and function annotation, but also in  

many other biomedical fields. The relationship between intrinsically-disordered proteins and some 

human diseases has played a significant role in disorder prediction for disease identification and 

epidemiological investigations. Disordered proteins can also serve as potential targets for drug 

discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, 

and this has led to substantial research in drug discovery or design based on protein disordered region 

prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting 

the disease risk of mutations in patients and studying the mechanistic basis of diseases. In sum, protein 

disorder prediction plays an essential role in the bioinformatics field, as well as in other fields, such as 

biomedicine and healthcare. As a result, protein disorder prediction tools have been widely adopted in 

various applications, while researchers have been continuously making efforts in improving and 

developing protein disorder prediction methods. 

Given the time and cost associated with identifying protein disorder from experimental methods,  

a number of computational approaches have been developed to predict protein disorder from a 

protein’s primary sequence. Many of these computational approaches use machine learning to learn 

mappings from a protein’s sequence to the ordered/disordered state of a protein [1]. Some examples of 

this approach include DNdisorder [5], SPINE-D [6], ESpritz [7], RONN [8], DISOPRED [9,10] and 

PreDisorder [11]. DNdisorder, for example, is a sequence-based approach for predicting disorder 

developed using ensembles of deep networks. Training of the deep network was done using  

the DISORDER723 dataset, and the features used as input to the deep network included the  

position-specific scoring matrix (PSSM), predicted solvent accessibility and secondary structure and 

some statistical characterizations of amino acid residues. Another sequence-based approach developed 

using neural networks is SPINE-D, which was developed to predict short and long disordered regions 

of proteins. It was constructed using a three-layer neural network and one-layer filter for smoothing the 

predictions. In this method, they trained five independent predictors and averaged results from those 

predictors, and this was considered as the final prediction. Seven representative physical parameters,  

a 20-dimension PSSM, predicted secondary structure and predicted torsion-angle fluctuation were  

used to create the input features for the neural network. ESpritz was designed to predict protein 

disorder at a faster pace, and it is solely based on protein sequence information, which makes it ideal 

for annotating entire genomes. This predictor was based on bidirectional recursive neural networks and 
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is an ensemble of three neural networks. The first is for learning the N-terminal sequence context; the 

second is for learning the primary sequence space; and third is for learning the C-terminal sequence 

context. Similarly, RONN uses only protein sequence information to make disorder predictions. It is 

developed using a pattern recognition algorithm called the bio-basis function neural network. In this 

method, sequences are compared with the series of sequences whose states are known beforehand as 

ordered, disordered or a mixture of both to calculate an alignment score. Based on those scores, each 

sequence is classified as ordered or disordered using the neural network model. RONN is unsuitable 

for recognizing short regions of disorder or the first and last residues of disordered regions. Finally, 

DISOPRED is another ab initio protein disordered region predictor. It was originally trained on  

high-resolution X-ray crystal structures and uses PSI-BLAST to search over a filtered sequence 

database to generate sequence information for each protein target. Most of these approaches make use 

of additional evolutionary information that can be obtained by searching a sequence database. The 

extra information increases performance, but at the cost of time needed for the search. 

In this work, we review a number of applications of in silico protein order/disorder prediction.  

To the best of our knowledge, most previous overview work regarding protein disorder prediction 

focused on the methodology and performance comparisons of disorder predictors or described how  

intrinsically-disordered proteins function [1,4,12–15]. Our review, in contrast, provides a concise overview 

of specific and successful applications of in silico protein order/disorder prediction. There has been an 

increase in the use of disorder prediction in the past decade, and this is opening up new and exciting 

avenues for further study. To aid in this line of study, we have developed a new sequence-only 

prediction method, WiDNdisorder (wide deep network disorder predictor), which makes fast disorder 

predictions and is applicable to large-scale studies. Our approach differs from existing approaches in 

that it uses a wide sequence window to leverage more sequence information and makes predictions 

through a two-stage process. Furthermore, by using deep networks, maxout units and a dropout training 

procedure, our approach is capable of producing predictions that are on par with state-of-the-art 

methods in terms of balanced accuracy and Sw score (i.e., roughly the sum of the sensitivity and the 

specificity), but while making use of much less information (i.e., the input to WiDNdisorder consists 

solely of the protein’s primary sequence in contrast to DNdisorder and DISOPRED, which use 

sequence-derived information, such as the output of PSI-BLAST). When comparing our method to 

other approaches that only use the protein’s primary sequence as input (i.e., those methods designed 

for large-scale studies and quick genome-wide scanning), WiDNdisorder outpaces their performance in 

terms of recall for short disorder regions and overall balanced accuracy and AUC. 

2. Results and Discussion 

2.1. Review of Practical Applications of Protein Disorder Prediction 

2.1.1. Applications of Protein Disorder Prediction in Identifying Biological Evolution and Other 

Traditional Bioinformatics Domains 

Intrinsically-disordered regions (IDRs) fail to adopt a stable structure in their native state. This, 

however, does not mean that these proteins are necessarily dysfunctional, and indeed, their structural 

instability and conformational variability have been found to play an essential role in processes such as 
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transcription factor (TF) DNA binding. IDR prediction has aided in the study of these processes and 

has been useful for investigating many problem domains in traditional bioinformatics, such as 

biological evolution. 

In one study by Huang and Sarai, analysis was carried out on the effect of the mobile flexibility and 

thermodynamic characteristics of IDPs/IDRs on the evolutionary and functional aspects of proteins [16]. 

This was done by applying PreDisorder [11] as the protein disorder prediction tool. To supplement the 

nonsynonymous-to-synonymous substitution rate (dN/dS ratio) as a measure of evolutionary rate, the 

Shannon entropy of functional motifs in IDRs and ordered regions was calculated and used as an additional 

measure of variability. The thermodynamic information of experimentally-identified mutations was 

extracted from the ProTherm database [17]. The result of this work showed that IDRs have a higher 

evolutionary rate than ordered regions, and the functional motifs in IDPs/IDRs are more conserved 

than those in ordered regions. Thus, protein disorder prediction can be applied in identifying biological 

evolution and exploring new functions. A similar study by Chen et al. was performed on the impact of 

alternative splicing and protein structural disorder on mammalian exon evolution by analyzing the 

dN/dS ratio and the exon type/PIDR (proportion of intrinsically-disordered regions) [18]. DISOPRED [9] 

and PreDisorder [11] were adopted to predict protein disordered regions in this study, leading to the 

discovery that IDRs and alternative splicing have independent effects on protein evolution in mammals. 

Protein disorder prediction has also been applied to identify some functionally-conserved domains 

in enzyme and evolutionary domains in protein or DNA binding domains in transcription factors. For 

instance, protein disorder prediction was used to investigate the prevalence of IDRs in the flanking 

regions of DNA binding domains (DBDs) in human transcription factors (TFs) [19]. Three distinct 

disorder prediction tools, PONDR VSL2 [20], DISOPRED2 [9] and PreDisorder [11], were used in this 

work. It was found that the prevalence of disorder in the flanking regions of DBDs in human TFs is 

significant and may play an important functional role and potentially influence mutations or natural 

polymorphisms within exomes. 

In addition, protein disorder prediction has been used in some other traditional bioinformatics 

problems. In a work by Pryor and Wiener [21], the FOLDINDEX webserver [22], ESpritz 1.2 [7], 

DISOPRED2 [9], SPINE-D [6], PreDisorder [11], VSL2B [20] and seven other tools were used to 

detect intrinsic disorder in membrane proteins. This work also contains a comprehensive benchmark of 

disorder prediction methods for identifying disordered regions in membrane proteins. 

2.1.2. Applications of Protein Disorder Prediction in Drug Discovery or Design 

The flexibility of protein disorder regions makes it possible for a protein to bind to many partners 

and makes them attractive and novel targets for drug discovery or design. A variety of methods have 

been proposed for disorder-based rational drug design or discovery [23–27]. Thus, several protein 

disorder prediction methods have been applied to aid in new drug target discovery or design. One 

method, called MFSPSSMpred (masked, filtered and smoothed position-specific scoring matrix-based 

predictor) [28] was proposed to identify MoRFs (molecular recognition features), short disorder-to-order 

binding regions in disordered protein regions. Anchor [29] and MoRFpred [30] have been utilized in 

this work to help identifying MoRFs in IDPs, which is an important step in understanding functions of 

IDPs and designing novel drugs. In another work, it is emphasized that computational tools like 
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DISOPRED [31] can be involved in finding new drug candidates and at a lower cost [32]. Consequently, 

the application of protein disorder prediction tools promotes drug discovery, which has a profound impact 

on disease treatment. 

2.1.3. Applications of Protein Disorder Prediction in Disease Risk Identification and Other  

Healthcare Fields 

Some studies have shown an intriguing correlation between IDPs and diseases, such as cancer, 

cardiovascular disease, diabetes and neurodegenerative disease [12,33]. It was discovered that mutations 

that caused diseases were often located in disordered regions [34]. As a result, protein disorder 

prediction has been of a great assistance in predicting the disease risk of mutations and studying  

the mechanistic basis of diseases. In one application by Hu et al., the protein disorder predictor  

PONDR-VSL2 [20] was used to study the change in the tendency of a protein region to be structured 

or disordered [35]. The experimental results showed that a significant change in the structural tendency 

of a protein region may give rise to the malfunction of such a protein and disease risk. In another 

study, several protein disorder prediction tools, metaPrDOS [36], IUPred [37], DisCon [38], 

POODLE-S [39] and Anchor [29], were applied to predict the disordered regions of the wild-type and 

mutant proteins. The in silico analysis of disordered regions in the mutations suggested that the 

increase in intrinsic disorder leads to the protein’s loss of function, which is essential in disease  

risk identification. 

Furthermore, protein disorder prediction has been applied in some other healthcare domains,  

such as epidemiological investigation. Take one study on the novel coronavirus MERS-CoV as an 

example [40]. Protein disorder prediction was applied to cluster coronaviruses into three groups, 

correlated in terms of the levels of oral-fecal and respiratory transmission. MERS-CoV is classified as 

in disorder group C, in which coronaviruses have relatively hard inner and outer shells, giving rise to the 

virus’s highest oral-fecal components, but low respiratory transmission components. In this study, 

disorder prediction of two shell proteins of coronaviruses provides a view into the evolutionary nature 

of the virus. Hence, disorder prediction can be a powerful tool in further epidemiological investigations 

and other healthcare problems. 

2.2. Developing a Scalable Disorder Predictor 

Considering the numerous applications of disorder prediction, it would be advantageous if a 

disorder predictor could make predictions in a timely manner (i.e., a matter of seconds). Such an 

approach could then easily be applied to studies on the genomic scale. To ensure fast predictions,  

the input to the method would need to consist of the protein sequence (i.e., sequence only) and  

would not make use of sequence-derived information obtained, for example through a search of  

a sequence database using PSI-BLAST. Some sequence-only approaches have been derived and tested  

(e.g., ESpritz [7]) and are typically not as accurate as those methods that make use of additional 

sequence-derived information. Here, utilizing recent developments in the machine learning community 

that produce more robust and generalizable models, a new sequence-only protein disorder predictor is 

developed and evaluated. 
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2.2.1. WiDNdisorder: A Fast, Sequence-Based Disorder Predictor 

WiDNdisorder (wide deep network disorder predictor) is a sequence-based ordered/disordered 

predictor suitable for studies on the genomic scale. The method leverages recent advances in machine 

learning (e.g., deep networks, dropout and maxout) to predict a residue’s state (i.e., order/disorder) 

solely from the residues included in a very wide window centered on the residue under consideration.  

The approach is a stand-alone method and does not use information stemming from multiple sequence 

alignment or PSSM. As a result, the method is very fast and capable of making predictions in a matter 

of seconds. 

2.2.2. Evaluation of WiDNdisorder 

Tables 1 and 2 show an evaluation of WiDNdisorder with ESpritz [7], DISOPREDV3 [10], and 

DNdisorder [5]. Of these methods, DNdisorder and DISOPREDV3 make use of additional 

evolutionary information gathered through a sequence search (e.g., PSI-BLAST [41]). The added 

evolutionary information provides a modest increase in performance, but comes at the cost of 

executing the search for homologous proteins. The values are reported for ESpritz, which does not use 

evolutionary information. DNdisorder was also included in the evaluation, since it is also based on 

deep networks. The evaluation metrics used include balanced accuracy, F-measure, Sw and area under 

the ROC curve. These metrics have been used extensively in the literature [5,7,11,42] and used in the 

official CASP assessments [43,44], and a complete description of the evaluation metrics and associated 

formulas can be found in Section 3.3. In terms of balanced accuracy (BAC), WiDNdisorder performed 

quite well on two independent evaluation datasets. With respect to area under the ROC curve (AUC), 

WiDNdisorder also performed well, outpacing its principle competitor ESpritz and nearing the 

performance of DISOPREDV3 on the DO1111_TEST dataset. Figures 1 and 2 show the ROC curves 

for the methods on both evaluation datasets. 

Table 1. Performance of WiDNdisorder (wide deep network disorder predictor) on the  

DO1111_TEST dataset. 

Predictor 
Balanced Accuracy F-Measure Sw AUC 

Value ±SE Value ±SE Value ±SE Value ±SE 

WiDNdisorder 79.6 0.8 67.8 3.9 59.2 1.5 86.8 0.26 
ESpritz (v1.3) 73.8 0.4 60.8 1.8 47.5 0.79 81.9 0.30 

DISOPRED (v3) 76.8 0.4 68.7 4.7 53.7 0.81 91.5 0.22 
DNdisorder 77.6 0.9 67.3 0.7 55.2 1.7 85.4 0.27 

Table 2. Performance of WiDNdisorder on the CASP10 dataset. 

Predictor 
Balanced Accuracy F-Measure Sw AUC 

Value ±SE Value ±SE Value ±SE Value ±SE 

WiDNdisorder 71.7 0.8 33.8 1.2 43.3 1.5 80.9 0.63 
ESpritz (v1.3) 72.0 0.8 38.7 2.1 43.8 1.6 81.3 0.64 
PrDOS-CNF 69.4 0.8 51.2 1.4 38.7 1.7 88.3 0.53 

DISOPRED (v3) 69.0 0.9 52.0 1.8 38.0 2.0 87.2 0.55 
DNdisorder 73.1 1.0 34.4 0.9 46.2 1.9 82.3 0.62 
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WiDNdisorder makes order/disorder predictions through a two-stage process. In the first stage  

(i.e., Tier 1), order/disorder predictions are made for each residue from the protein’s primary sequence, 

and in the second stage (Tier 2), the initial prediction is refined using the predicted order/disorder state  

of neighboring residues as additional input to the prediction process. Table 3 shows the results of  

a comparison of WiDNdisorder (i.e., Tier 2/refined predictions) versus the unrefined predictions 

generated from one wide deep network (i.e., Tier 1 predictions) on both evaluation datasets. This indicates 

the value of the two-stage prediction approach used by WiDNdisorder. For full details on the distinction 

between Tier 2 and Tier 1 predictions, consult Section 3.1 and the accompanying figures. 

 

Figure 1. Performance of disorder prediction methods on the DO1111_TEST dataset. 

 

Figure 2. Performance of disordered prediction methods on the CASP10 dataset. 
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Table 3. Comparison of Tier 1 and Tier 2 predictions from WiDNdisorder on the 

DO1111_TEST and CASP10 datasets. 

Dataset 
Tier-1 Tier-2 

AUC ±SE AUC ±SE 

DO1111_TEST 84.1 0.28 86.8 0.26 
CASP10 78.8 0.65 80.9 0.63 

The performance of WiDNdisorder was also evaluated on disordered regions of various lengths.  

For this evaluation, only residues from contiguous sets of disordered residues of specified ranges  

were considered, and the percentage of residues correctly predicted to be disordered was determined 

(i.e., of the disordered residues in the range considered, what percent were correctly predicted to be 

disordered). As an example, consider the range 1–5. All order/disorder predictions for residues that 

pertained to a disorder region in a protein that measured 1–5 residues in length was retained and 

evaluated. Tables 4 and 5 contain the results of this evaluation for ranges 1–5, 6–15, 16–25 and >25  

on the DO1111_TEST and CASP10 datasets. As only disordered residues are considered in this 

evaluation, the percentage correctly predicted as disordered corresponds to recall.  

Table 4. Recall of disordered predictions by disorder region length on the DO1111_TEST dataset. 

Predictor 
Length of Disordered Region 

1–5 6–15 16–25 >25 

WiDNdisorder 76.2 57.9 67.2 74.3 
ESpritz (v1.3) 74.7 63.3 67.4 55.9 

DISOPRED (v3) 39.2 43.3 52.2 58.5 
DNdisorder 75.4 74.1 76.1 57.9 

Table 5. Recall of disordered predictions by disorder region length on the CASP10 dataset. 

Predictor 
Length of Disordered Region 

1–5 6–15 16–25 >25 

WiDNdisorder 57.5 60.0 57.8 50.8 
ESpritz (v1.3) 46.2 52.7 65.6 52.9 
PrDOS-CNF 28.7 39.8 46.9 46.1 

DISOPRED (v3) 25.1 33.6 49.8 47.5 
DNdisorder 48.8 64.6 66.0 53.4 

As an initial investigation into the benefit of wide input windows and combinations of dropout and 

maxout nodes for this particular protein prediction task, a number of disorder predictors were trained 

for input windows of size 31, 51, 71 and 91. The AUC for each combination of window size and 

network architecture (i.e., dropout only, maxout nodes only, dropout with maxout nodes) was 

calculated for the CASP10 and D01111_TEST datasets, and the results are shown in Tables 6 and 7. 

Larger input window sizes and the combination of dropout and maxout nodes consistently led to  

better performance. 
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Table 6. AUC for disorder predictions by input window size on the D01111_TEST dataset. 

Deep Network Configuration 
Input Window Size (in Residues) 

31 51 71 91 

dropout only 78.6 81.6 82.6 83.3 
maxout nodes only 78.0 79.2 80.8 80.9 

maxout nodes with dropout 81.7 83.3 83.7 84.1 

Table 7. AUC for disorder predictions by input window size on the CASP10 dataset. 

Deep Network Configuration 
Input Window Size (in Residues) 

31 51 71 91 

dropout only 71.0 70.0 73.0 74.9 
maxout nodes only 71.3 73.0 74.7 75.8 

maxout nodes with dropout 76.7 77.7 78.4 78.8 

Finally, to evaluate the speed at which WiDNdisorder is capable of executing, the time required to 

predict the ordered/disordered state of each residue in a protein was calculated using the time 

command (i.e., a built-in command available in a Linux command line environment that can determine the 

execution time of a program). A prediction script was created, which took as input a FASTA file for  

a protein, predicted the ordered/disordered score for each residue in the protein and then saved the 

results to a file. The time command was used in conjunction with the prediction script to calculate the 

entire time needed make predictions for each individual protein in the evaluation datasets. The average 

execution time needed to make ordered/disordered predictions for a protein was 7.86 and 7.19 seconds 

on the DO1111_TEST and CASP10 datasets, respectively. 

2.3. Discussion 

From Table 3, it is clear that there is benefit in the two-tiered prediction process employed by 

WiDNdisorder. The first tier makes predictions from the sequence alone and the second tier uses  

the predicted order/disorder values of the neighboring residues, as well as the original sequence 

information to make a refined prediction. This results in a relative improvement of ~2% in AUC. 

When comparing WiDNdisorder to other methods, it is important to bear in mind that 

WiDNdisorder was designed to make quick and robust predictions. As a result, it is comprised of 2 

DNs and does not use additional sequence-derived evolutionary information (e.g., position-specific 

scoring matrix, anchored multiple sequence alignment). Both DISOPRED3 and DNdisorder make use 

of this extra information, and both methods also make use of several predictors (i.e., DNdisorder is a 

boosted ensemble of 175 DNs and DISOPRED3 is comprised of three complementary methods). This 

leads to better performance, but the prediction times are much longer, and it would be difficult to apply 

these approaches at the genomic scale. Still, WiDNdisorder compares well with both DISOPRED3 and 

DNdisorder in terms of balanced accuracy and Sw on both the CASP10 and DO1111_TEST datasets. 

In terms of AUC, WiDNdisorder lagged behind DISOPRED3 and PrDOS-CNF (i.e., one of the best 

methods from CASP10). When considering other approaches, which are not consensus methods nor 

use evolutionary information, such as ESpritz, WiDNdisorder is quite competitive and outpaced 

ESpritz on the DO1111_TEST dataset. It is possible that this performance could be further enhanced 
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by combining it with additional deep networks or other fast approaches to create a small ensemble or  

consensus predictors. 

When comparing the methods, it is also important to consider the datasets used to create a particular 

method. To construct WiDNdisorder, two distinct sources of disordered definitions were used (i.e., 

DISORDER723 with disorder defined as missing residues from PDB structures and DisProt in which 

disorder was determined using a variety of experimental techniques). Proteins with longer IDRs may 

have trouble forming crystalline structures and be difficult to determine experimentally using X-ray 

crystallography. As a result, disordered datasets that only or mostly contain definitions from these 

types of structures may not contain adequate examples of longer IDRs or types of IDRs that would 

lead to problems preventing a protein’s structure to be determined experimentally. By using more than one 

source and type of IDRs, WiDNdisorder should be more generalizable to all types of IDRs. A similar 

process was used by Jones and Cozzetto [10] in the construction of DISOPREDV3. For ESpritz, three 

different methods were developed using three different training sets with IDR definitions stemming 

from three different sources (i.e., structures determined from X-ray crystallography, structures 

determined using NMR and DisProt) [7]. In this evaluation, ESpritz predictions were made using the 

“X-ray” model. As reported in the results, ESpritz had an AUC of 81.9 on the DO1111_TEST set. 

When considering only the proteins in DO1111_TEST that came from DISORDER723 (i.e., proteins  

in which the IDRs were determined from X-ray structures), ESpritz achieved an AUC of 86.3. 

WiDNdisorder achieved an AUC of 82.8 on the same reduced test set. As is to be expected, ESpritz 

performed better on these targets, since the IDRs are more similar to those in its training set. With 

WiDNdisorder, the desire was to strike a balance and to create one method from all of the IDR 

definition types. WiDNdisorder performs quite well on the varied dataset and is competitive with other 

more tailored methods, such as ESpritz. 

In addition to providing fast, quality order/disorder predictions, WiDNdisorder is novel in its application 

of a wide, fixed width sequence window as an input to the classification method. While other machine 

learning approaches have made use of the entire protein sequence for a protein structural prediction  

task (e.g., residue to residue contact prediction with recurrent neural networks), the input to feed 

forward neural networks has generally been limited to the range of 5–35 residues. Limiting the input to 

residues neighboring the target residue makes sense conceptually, since many structural features are 

more of a localized phenomenon. While the global topology of the protein does play a role, encoding 

more of the protein sequence typically results in poorer performance, as the machine learning method 

has difficulty distinguishing the limited signal present in the added input. With this work, however, it 

was found that larger windows (e.g., 91 residues) provided better performance. We hypothesize that 

the maxout nodes and dropout learning procedure guarded against overfitting or learning the noise in 

the longer range sequence data that was provided as input. The resulting deep network was then able to 

make use of the added data for a modest boast in performance. We are planning further studies to more 

extensively study this point and to investigate if a wider input window along with dropout and maxout 

nodes would be useful for other protein structure prediction tasks. 
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3. Experimental Section 

3.1. Construction of WiDNdisorder 

The underlying architecture of WiDNdisorder is a deep neural network. In simplest terms, a neural 

network can be viewed as a function that maps a numerical characterization of a phenomena to a 

particular real value that can be used to represent a class. To increase the expressive power of the 

neural network, several functions can be composed together in a layered fashion. Figure 3 graphically 

represents how the functions can be composed and the output of a neural network calculated.  

The lowest layer represents the input to the neural network. The values of those nodes can then be used 

to calculate the value of a node in the following layer by multiplying the value of each node by  

a weight and sending the sum of these products through a transform function (e.g., sigmoid). It is the 

collection of weights that parameterize the neural network, and through the process of training, they 

are adjusted. By using a collection of labeled data (i.e., inputs with known classifications), the weights 

in the neural network can be adjusted such that each input maps to the proper label. When properly 

trained, the neural network can be applied to predict the labels of novel data. A deep neural network is 

distinct in that it consists of several layers and as a result can learn more patterns and correlations in 

the data and use these to increase overall performance. 

 

Figure 3. Graphical representation of a neural network. 

Intuitively, the ordered/disordered state of a residue is a localized property and will depend to  

some extent on the ordered/disordered state of neighboring residues. With this in mind, a two-tiered 

order/disorder predictor was constructed and used to create WiDNdisorder. This idea mirrors the work 

produced by Spencer et al. in which local structural properties of a protein were predicted several 

times through an iterative prediction process [45]. The advantages of the two-tiered prediction are  

two-fold. First, it allows for a refinement of the previous prediction; and second, it allows the predicted 

ordered/disordered state of neighboring residues to be taken into account when making the final 

prediction for a residue. 
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With WiDNdisorder, the deep networks consist of four layers. For Tier 1, the input layer consists of 

1911 features, and the second and third layers each consist of 240 maxout nodes [46]. The final output 

is a two-class multinomial node. The deep network was trained using the PyLearn2 library [47] with 

stochastic gradient descent on batches of 1000 training examples. In addition to the maxout nodes,  

a dropout procedure [48] was used, which randomly dropped out the output of some of the nodes as 

their values were propagated through the network. This results in a more robust method less prone to 

overfitting. To select the hyper-parameters for this tier, a grid search was performed using Jobman. 

The objective was to maximize the area under the ROC curve on the DO1111_VALIDATION dataset.  

Figure 4 shows the general architecture of the method for Tier 1. The second stage predictor for 

WiDNdisorder (i.e., Tier 2) was formed using DO1111_TRAIN and DO1111_VALIDATION, the 

same training and validation sets used for Tier 1. Since Tier 2 refined the predictions from Tier 1  

(i.e., re-predicted the order/disorder state using the initial input and the predicted order/disorder state of 

neighboring residues), the training set was split into two sets. A model was created for each half of  

the training set and then used to make predictions for the other half. These predictions were used  

as additional features for the second-stage predictor. For Tier 2, the input layer consisted of 2093 

features. The final predicted value is then sent through a linear transformation to scale the output such 

that the balanced accuracy was maximized on the validation set when using a threshold of 0.5. Figure 5 

illustrates the overall architecture of Tier 2. 

 

Figure 4. General deep network architecture used for Tier 1 order/disorder prediction. 
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Figure 5. Tier 2 deep network architecture used to make final order/disorder prediction. 

3.2. Datasets and Feature Generation 

The principle dataset for this work was created by merging the DISORDER723 and the DisProt 

v6.0 datasets. DISORDER723 consists of 723 proteins whose experimental structure was determined 

by X-ray crystallography and deposited in the Protein Data Bank [49]. Each protein sequence in this 

dataset is at least 30 residues long, and residues missing from the experimentally-determined structure 

were considered disordered. This dataset was initially used to develop DISpro [50] and later used to 

produce PreDisorder [8] and DNdisorder [2]. The DisProt dataset is a set of proteins that contain 

regions that have been experimentally determined to be ordered or disordered [51]. For this work, 

Version 6.0 was downloaded from http://www.disprot.org/. It contains of 694 proteins sequences, each 

of which is a minimum of 27 residues in length. It should be noted that in the DisProt datasets, there 

were some residues that did not have an experimentally-determined target (i.e., there was no mention of 

the residue being ordered or disordered). These residues were not used in training or evaluation in order 

to avoid introducing noise into the training data. 

The two datasets were combined and filtered such that the pairwise sequence similarity between any 

two proteins in the dataset was ≤35%. This resulted in the final dataset called DO1111, containing 604 

protein sequences from the DISORDER723 dataset and 507 protein sequences from the DisProt 
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dataset. Of these protein sequences, the ratio of order to disorder was approximately 2.2:1 (i.e., ~32% 

of the residues were disordered). Note that the percentage of disordered residues present in the 

DO1111 dataset is higher than one might expect (i.e., ~5%–10%), and this is because the majority of 

the order/disorder annotations in the DisProt dataset are for disordered residues. To facilitate training 

and evaluating WiDNdisorder, the dataset was randomly divided into three datasets DO1111_TRAIN, 

DO1111_VALIDATION, DO1111_TEST, with each set comprising ~70%, ~15% and ~15% of the 

proteins, respectively. This was done to create three independent datasets, and DO1111_TRAIN and 

D01111_VALIDATION were used exclusively for training and adjusting the learning parameters (e.g., 

selecting the number layers, the number of nodes per layer, etc.). Once the training of WiDNdisorder 

was complete, D01111_TEST was used for evaluation. D01111_TEST was not used or inspected 

during the development of WiDNdisorder to ensure fair assessment of WiDNdisorder’s performance. 

For further evaluation, the CASP10 dataset was downloaded from the official CASP website 

(Available online: http://www.predictioncenter.rg/casp10/). This dataset contained 95 proteins, among 

which roughly 6%–7% of the residues were disordered. Figures 6–8 show the distribution of the length 

of the disordered regions in the two evaluation datasets and the training dataset. In terms of the relative 

percent of disordered regions, the three datasets are similar in nature, with the exception of CASP10, 

which has fewer IDRs of a length greater than 25 residues. 

 

Figure 6. Distribution of the length of disordered regions in the DO1111_TEST dataset. 

Each bin represents a range of five residues, and the last bin represents the number of 

disordered regions that have a length greater than 100 residues. 
  



Int. J. Mol. Sci. 2015, 16 15398 

 

 

 

Figure 7. Distribution of the length of disordered regions in the CASP10 dataset. Each bin 

represents a range of five residues, and the last bin represents the number of disordered 

regions that have a length greater than 100 residues.  

 

Figure 8. Distribution of the length of disordered regions in the DO1111_TRAIN. Each 

bin represents a range of five residues, and the last bin represents the number of disordered 

regions that have a length greater than 100 residues. 
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As input to WiDNdisorder, the protein’s primary sequence had to be characterized numerically to  

be feed into the deep network. The input to a neural network is often referred to as a feature, and  

with WiDNdisorder, features were encoded to represent the protein sequence for areas surrounding the 

target residue (i.e., the residue to be predicted as ordered or disordered). These features came from  

a fix window of 91 residues in length and centered on the target residue. (See Figure 9 for an 

illustration). For each residue in the window, 21 binary values were used to encode the residue type or 

missing residue. This provided a means to represent each of the 20 standard amino acid types and  

a missing residue (e.g., a missing residue would be a position in the fixed window that does not  

cover the protein’s sequence). This was done using a one-bit hot encoding scheme and, for Tier 1 

predictions, resulted in an input feature vector that was 1911 features long. It is important to note that 

this method only uses the sequence as input and does not make any use of sequence-derived 

information (i.e., PSSM, multiple sequence alignments or secondary structure prediction). To generate 

features for Tier 2, the same encoding process was used as previously described for Tier 1 with the 

addition of two more binary values for each residue in the window. The 22nd feature for each residue 

in the window was used to encode if a predicted disorder value was encoded (i.e., set to one if a 

predicted value is encoded), and we used the last bit to represent the real value prediction for a particular 

residue (stemming from the Tier 1 prediction) or zero if no prediction was available (i.e., if the position in 

the window did not cover the protein’s sequence). This resulted in a final input vector 2093 long in 

size for the Tier 2 prediction. 

 

Figure 9. Wide windows used for sequence encoding.  

3.3. Evaluation Metrics and Data Collection 

For the evaluation of WiDNdisorder, area under the ROC (AUC) and balanced accuracy (BAC) 

were used as the principle metrics. The AUC is the total area under a plot of the true positive rate 

versus the false positive rate across a range of decision thresholds. It provides a measure of a method’s 

overall effectiveness irrespective of any particular decision threshold. With the AUC, a higher score 

indicates better performance, and AUC values range from 0.5 for a random classifier to 1.0 for a 

perfect classifier. The balanced accuracy is the simple arithmetic mean of the positive predictive value 

(PPV = (TP/(TP + FP))) and the negative predictive value (NPV = (TN/(TN + FN))). Given the skewed 

nature of the number of ordered to disordered residues in most datasets, the balanced accuracy provides 

a better sense of a method’s performance on both ordered and disordered residues for a fixed decision 
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threshold. Additionally, the F-measure and Sw score (i.e., (TP/(TP + FN)) + (TN/(TN + FP)) − 1) were 

calculated. All of these metrics have been used extensively in the literature [5,7,11,42] and used in the 

official CASP assessments [43,44]. The recall (i.e., TP/(TP + FN)) for disordered predictions was used 

to assess each method’s performance for both short and long IDRs. TP (or TN) refers to a residue that 

was predicted to be disordered (or ordered) and was experimentally determined to be in the predicted state. 

FP and FN refer to incorrect predictions. The values reported in Tables 1–7 were all scaled by multiplying 

the calculated value by 100. Approximations for the standard error (SE) were obtained through  

a bootstrapping procedure in which 80% of ordered/disordered predictions for a method were sampled 

1000 times. 

In collecting the ordered/disordered predictions, DISOPREDV3, DNdisorder and WiDNdisorder 

were run locally. For ESpritz, the web service was used to make predictions for both datasets, selecting 

the “X-ray” dataset and “best Sw threshold”. For PrDOS-CNF, the predictions for the CASP10  

targets were downloaded from the official CASP10 data repository (Available online http://www. 

predictioncenter.org/download_area/CASP10/predictions/). For all methods, the decision threshold 

used to calculate recall, BAC, Sw and F-measure was 0.5 with the exception of ESpritz, which used  

a threshold of 0.064. 

4. Conclusions 

In this work, we reviewed the emerging applications of protein disorder predictions in a number of 

biomedical fields, such as protein evolution, protein function, membrane proteins, drug discovery, drug 

design, analysis of disease risks and some healthcare domains. The existing work demonstrates that 

disorder prediction has become an indispensable tool for many research and medical problems in these 

fields. In order to facilitate the large-scale application of disorder prediction to big data produced in 

this field, we also developed a new deep learning method to predict protein disorder from one single 

primary sequence only, which is several magnitudes faster than existing methods and has comparable 

performance. The method can be a valuable tool for large-scale scanning of big genomics data for 

identifying disorder proteins that are relevant to many biomedical problems. 
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