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Abstract: Computational methods are prevailing in identifying protein intrinsic disorder. 

The results from predictors are often given as per-residue disorder scores. The scores describe 

the disorder propensity of amino acids of a protein and can be further represented as a disorder 

curve. Many proteins share similar patterns in their disorder curves. The similar patterns 

are often associated with similar functions and evolutionary origins. Therefore, finding and  

characterizing specific patterns of disorder curves provides a unique and attractive perspective 

of studying the function of intrinsically disordered proteins. In this study, we developed  

a new computational tool named IDalign using dynamic programming. This tool is able  

to identify similar patterns among disorder curves, as well as to present the distribution of 
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intrinsic disorder in query proteins. The disorder-based information generated by IDalign is 

significantly different from the information retrieved from classical sequence alignments. 

This tool can also be used to infer functions of disordered regions and disordered proteins. 

The web server of IDalign is available at (http://labs.cas.usf.edu/bioinfo/service.html). 

Keywords: intrinsic disorder; structural flexibility; disorder pattern; dynamic programming; 

dynamic time warping 

 

1. Introduction 

Computational prediction is now a prevailing strategy in identifying intrinsically disordered 

proteins (IDPs) and intrinsically disordered regions (IDRs) for both individual proteins and entire 

proteomes [1–3]. By definition, IDPs/IDRs do not have rigid three-dimensional structures partially due 

to diminished hydrophobic interactions [4–7] determined by the specific amino acid compositions of 

IDPs and IDRs, which are typically depleted in hydrophobic, order-promoting residues, but are 

enriched in polar and charged disorder-promoting residues [8–11]. For this reason, information on the 

amino acid sequences and compositions of protein chains has been successfully used to predict if a 

given amino acid or a specific amino acid segment in a query protein is intrinsically disordered or not. 

Currently, the prediction accuracy of protein intrinsic disorder is reaching ~80% [1], which is 

becoming comparable with the accuracy of many low-resolution experimental techniques. 

Although without rigid structures, IDPs/IDRs are highly abundant in nature and have critical biological 

functions. It was estimated that the fraction of IDPs/IDRs increases from ~20% in prokaryotic 

proteome to ~60% in eukaryotic proteomes [12–14]. Some prokaryotic proteomes also have higher 

fraction of IDPs/IDRs and were found to be associated with the extreme environmental conditions, at 

which the organisms thrive well [15,16]. The abundance of IDPs/IDRs in various proteomes is a strong 

indication that these proteins or regions perform important biological functions. Generally speaking, 

IDPs/IDRs play crucial roles in the processes of cell signaling and regulation [4,17,18]. In addition, 

IDPs/IDRs are also involved in many other functions. Post-translational modification sites are 

frequently within or near the IDRs [14,19–28]. Alternative splicing sites are also associated with  

IDRs [29–32]. Many long IDRs contain short hydrophobic-prone segments. These segments may 

undergo a disorder-to-order transition when forming complexes with specific binding partners [33]. 

The binding affinity with partners can also be tuned by IDRs [34,35]. IDPs/IDRs perform their 

functions through multiple mechanisms. In many cases, functionality is determined by specific amino 

acid sequences and compositions. In these cases, these functional regions can be recognized by 

sequence alignments. In other cases, the dynamics or the increased flexibility of disordered residues or 

regions is also critical. For example, disorder and related high structural flexibility facilitate the 

process of molecular recognition [36,37]. The dynamics of IDPs/IDRs is also a major contributor to 

the fuzziness of protein complexes [38]. 

Whether an amino acid residue or a protein segment is disordered or not can be evaluated by 

disorder scores generated by specific predictors. The predicted disorder scores of all residues in a 

query protein can be presented as a curve using the sequential index of amino acid as x-axis and disorder 
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score as y-axis. The resulting curve is normally called disorder profile, per-residue disorder plot, or 

disorder curve. Disorder curve can be used to not only grade the structural flexibility of protein or its 

segments, but also infer functional roles of IDRs. For example, a “dip” within a segment that have  

high disorder scores indicates a short structure-prone motif in the middle of long disordered region, 

and this structure-prone motif may often act as a binding motif, such as molecular recognition feature  

(MoRF) [39,40] and ANCHOR-identified binding site (AIBS) [41]. Based on these observations, 

several computational tools have been developed to predict these disorder-based binding motifs [40–44]. 

The disorder curves of many proteins are similar to each other [45–48]. In addition, as evidenced by 

some of these studies, the similarity among disorder curves of query proteins often reflects common 

mechanisms of their function and evolution. The patterns of disordered curves are different from sequential 

patterns generated by traditional sequence alignment algorithms [49]. The disorder curves provide  

information on the structural flexibility, which may hardly be inferred from sequences directly.  

In a recent study, the peculiarities of disorder pattern were found to be critical for ion binding and the 

functions of heparinase II in Pedobacter heparinus [50]. In another recent study, comparison of 

disorder profiles was used to analyze regions that are involved in isoform-specific binding of 

tropomodulin (Tmod) to tropomyosin (TM), and to predict the residues that characterize isoform 

differences in binding [34]. In another related study, comparative analysis of disorder profiles of the 

wild type and the mutant forms of Tmod-1 and the wild type of Tmod-4 was used to define mutations 

that would affect the affinity of Tmod-1 to skeletal striated TM and make it similar to that of Tmod-4 [51]. 

A recent analysis on a dormancy-associated plant gene family DORMANCY 1/AUXIN Represses 

Protein (DRM1/ARP) revealed that these plant proteins can be grouped into six distinct classes based 

upon the similarity of their disorder profiles [52]. Similar analysis of another group of plant proteins, 

RPM1-interacting proteins 4 (RIN4) that belongs to the family of proteins containing nitrate-induced 

(NOI) domains and playing important roles in the plant immune responses to various pathogens, provided 

another proof that comparison of disorder curves facilitates functional annotation of proteins [53]. 

Additionally, disorder-based sequence alignments were used to show similarity of disorder distribution 

in several milk proteins, such as different casein classes [54], lactoperoxidases [55], and C- and N-lobes of 

lactoferrin [56]. Additionally, a new concept of de novo design of artificial IDPs was also recently 

brought into the scientific community [57]. Apparently, characterizing disorder patterns is a prerequisite 

for these new advancements in the IDP field. 

However, to the best of our knowledge, none of the current computational tools in this field is 

specifically designed for comparative analysis of disorder patterns. Therefore, to fill this gap, we 

developed a novel computational tool to measure the similarity of different disorder curves by using 

dynamic programming. Dynamic programming has been broadly used in time series data analysis [58], 

sequence alignment [59], and string match [60]. In our study, dynamic programming was for the first 

time applied to compare disorder curves. It is expected that the results from this study provide new ideas to 

characterize patterns of intrinsic disorder and to infer functions associated with structural flexibility. 
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2. Results 

2.1. Building up the Dataset 

Figure 1 shows the distribution of proteins on a two-dimensional space formed by the length of  

protein sequences and the fraction of disordered residues in the sequence, for yeast proteome and for 

all disordered proteins in DisProt. Although the actual number of proteins is very different (6660 in 

yeast and 694 in DisProt), the overall distributions are similar. Most proteins have less than 500 residues, 

and less than 30% of disordered residues. It is also obvious that a small group of proteins in DisProt, 

which have less than 200 residues, is characterized by a high fraction of disordered residues (~100%). 

For the computational efficiency, 100 sequences shorter than 400 residues were randomly selected 

from each of these two sets, yeast proteome and DisProt proteins. These two dataset are referred to as 

Y100 and D100 dataset, respectively. 

 

Figure 1. Abundance of proteins as a function of length and fraction of disordered residues 

(IDAA%) in both (A) Yeast and (B) DisProt datasets. All protein sequences longer than  

1000 residues were merged with into the group of proteins of 1000 residues. The per-residue 

disorder score was calculated from PONDR-FIT. All residues of which the disorder score 

is higher than 0.5 were counted as disordered residues. The fraction of disordered residues 

is the ratio over the length of corresponding protein. Colors from purple, to blue, green, 

yellow, and red represents the increased abundance. 

2.2. Gap Penalty 

For all sequence pairs in each of the datasets, their alignment scores increased when the gap penalty 

increased as shown in Figure 2. Nonetheless, the increment of alignment scores saturated after 

reaching the threshold values, indicating that the alignment is becoming stable. Therefore, the mean 

value of the normalized alignment scores over all sequence pairs in a dataset was used in Figure 2 to 

find the optimal threshold value of gap penalty for that dataset. The optimized gap penalty values for 

Y100 dataset and D100 dataset are slightly different, with the former being 0.3 and the latter being 0.5. 

In addition, mean value of normalized fraction of matches was also calculated to compare with the 
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alignment score. It should be noted that all sequence pairs in each dataset can be divided into two  

sub-groups: (1) sequence pairs for which the fraction of matches decreases with the raising penalty 

score (typically, these are pairs with very low sequence similarities); and (2) sequence pairs for which 

the fraction of matches increases with the penalty score. Figure 2 demonstrates the presence of these two 

types of sequence pairs by showing two opposite trends in the correlation between fraction of matches 

and gap penalty scores. The lower standard errors within each group further validated the consistence 

of sequences within each group. This evidence added a second requirement on the selection of 

threshold value: The threshold value of gap penalty should have an intermediate value to balance the 

opposite influence on two sub-groups of sequence pairs. Therefore, after taking into consideration of 

all the factors, we chose 0.4 as the optimized gap penalty in all further studies. 

 

Figure 2. Influence of gap parameter on global matches for (A) Yeast dataset and (B) DisProt 

dataset. The solid line shows for normalized alignment score, while dash line and dotted 

lines represent normalized fraction of matches for two types of sequence pairs. Error bars 

present standard error. The first type of sequence pairs has lower similarity on their 

disorder curve and the calculated fraction of matches increases with gap penalty. The 

second type of sequence pairs is on the contrary. They have higher similarity on their 

disorder curves and their calculated fraction of matches decreases with the gap penalty. 

2.3. Match Threshold 

After the alignment path being identified, the matches between data points were determined by 

comparing their pair-wise distance with the threshold of match score Vmatch. The value of Vmatch will 

not affect the final alignment score, but only the fraction of identified matches. Conceivably, the larger 

the Vmatch, the higher the fraction of matches. Figure 3 presented the analysis on the correlation 

between fraction of matches and Vmatch for both Y100 and D100 datasets. At the low end of each 

match threshold, the fractions of matches increased rapidly with the threshold value in both datasets. 

After reaching 0.05, the fractions became stabilized. Therefore, with the purpose of limiting the 

number of matched segments identified in the alignment, 0.05 was used as the threshold value for the 

matched data points in the application. 
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Figure 3. Match parameter influences fraction of identified matches. The averaged fraction 

of matches on one pair of sequences was calculated and then normalized in the datasets. 

Solid line and dash line are the correlation between match parameter and fraction of 

matches for DisProt and Yeast datasets, respectively. 

2.4. Examples/Applications 

To examine the powerfulness and usefulness of this newly developed computational strategy,  

we performed several case studies. Figure 4 presents the similarity of disorder curves between two  

uncharacterized proteins from yeast (A0A023PXP4 and A0A023PZE6). These two proteins have  

different lengths, rather different sequences (see Figure 4A), and different fractions of disordered  

residues. However, they do have local similarity in their disorder profiles, such as the presence of the 

double-peak segments in the middle of their sequences, and the specific “dips” within their C-terminal 

tails (Figure 4B). The contour map in Figure 4C describes the similarity in more details. In the contour 

map, darker colors represent lower distance scores and therefore more similarity. Therefore, the region 

filled by darker colors connecting the first residue to the last residue tracks down a warping path and 

therefore represents the alignment path. It is clear that at the N-terminal ends, the alignment path is  

off-diagonal. In the region from 20 to 60 on x-axis and from 40 to 80 on y-axis, the alignment path 

becomes diagonal, representing matched curves. This region corresponds to the double-peak segments 

on both disorder curves. Afterwards, following another off-diagonal segment, the alignment path becomes 

narrow and diagonal in the range from ~110 to ~130 on x-axis and ~90 to ~100 on y-axis, indicating a 

highly matched curves at the C-terminal tails. By using the outputs from the identified alignment path, 

the original disorder curves were stretched and aligned in Figure 4D. The highlighted four short 

regions were characterized by similar patterns of the disorder distribution. By comparing the results of 

sequence alignment in Figure 4A, it is clear that these regions with matching disorder profiles have 

very limited sequence similarity. 
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Figure 4. Identified alignment path for a sequence pair (Uniprot IDs: A0A023PXP4 and 

A0A023PZE6) from the Yeast dataset. (A) Traditional pair-wise sequence alignment. “*”, 

“:”, “.”, and “-” stand for identical amino acids, highly similar amino acids, similar amino 

acids, and gaps, respectively; (B) Original disorder predictions for A0A023PXP4 (upper 

panel) and A0A023PZE6 (lower panel). The gray shadow behind the disorder curves is 

estimated prediction error from PONDR-FIT; (C) Alignment path between two sequences 

identified by our newly developed package; (D) Alignment of disorder curves between 

A0A023PXP4 (pink) and A0A023PZE6 (black) along the alignment path. Many pairs of 

segments between pink and black curves overlap with each other. Only the pairs, of which 

the distance between two segments less than 0.05, were highlighted by cyan. 

Another example for the alignment of disorder curves between DP00270 (anti-ssDNA Fab DNA-1) 

and DP00710 (Fab fragment of immunoglobulin G1 MAK33 heavy chain) from the DisProt database 

is presented in Figure 5. These two proteins have very similar disorder curves in their C-terminal tails 

(Figure 5B). Actually, as shown in Figure 5A, the C-terminal tails of these two proteins have almost 

identical sequences. The alignment path in Figure 5C is almost completely diagonal but the color is 

lighter than that in Figure 4C. Multiple matched regions were identified in Figure 5D. Although the 

sequences become nearly identical starting at around residue 100, the disordered curves have less 

matches. The discrepancy comes from the predictive results of IUPred and will be explored further  

in the discussion section. An important conclusion from examples shown in both Figures 4 and 5 is 

that the alignment of disorder curves provides additional information that may not be revealed by 

traditional sequence alignment. 

At the next stage, we analyzed the usefulness of IDalign for the analysis of an important protein p53 

and its homologues. Although this tumor suppressor is a well-known protein that does not require long 

introduction, some important information is provided below. The activity of this crucial transcription 

factor is modulated by various stress signals affecting genome integrity and cell proliferation. 
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Activation of p53 triggers a complex cellular response regulating expression of genes involved in 

various biological processes, such as DNA repair, cell cycle progression, induction of apoptosis, 

response to cellular stress, senescence, etc. [61–63]. Some developmental abnormalities in animals are 

associated with the p53 deficiency [64]. Furthermore, the loss of p53 function is often related to the 

cancerous transformation of the cell [65]. In fact, cancers showing mutations in p53 are found in colon, 

lung, esophagus, breast, liver, brain, and in hemopoietic and reticuloendothelial tissues [65]. Human 

p53 is a 393 residue-long protein containing three functional regions, the N-terminal region, the central 

DNA Binding Domain (DBD), and the C-terminal region [62]. The N-terminal region can be further 

subdivided into TransActivation Domain 1 (TAD1) (residues 1–40), TAD2 (residues 40–60), and a 

Proline-Rich region, PR (residues 64–92). The C-terminal region contains a tetramerization or 

Oligomerization Domain (OD; residues 325–356), and a regulatory C-Terminal Domain (CTD; 

residues 356–393) [62,66]. Intrinsic disorder is known to be crucial for function of p53 [67–69], 

where, for example, the intrinsically disordered C-terminal region possesses a unique binding 

plasticity, being able not only to interact with various binding partners, but also to gain different 

structures in its bound form [70]. 

 

 

Figure 5. Identified alignment path for a sequence pair (Disprot IDs: DP00270 and 

DP00710) from the DisProt dataset. (A) Traditional pair-wise sequence alignment. “*”, “:”, 

“.”, and “-” stand for identical amino acids, highly similar amino acids, similar amino 

acids, and gaps, respectively; (B) Original disorder prediction for DP00270 (upper panel) 

and DP00710 (lower panel). The gray shadow behind the disorder curves is estimated 

prediction error; (C) Alignment path between two sequences identified by our newly 

developed package; (D) Alignment of disorder curves between DP00710 (pink) and 

DP00270 (black) along the alignment path. Only overlapped segment pairs of which the 

distance between two segments lower than 0.05 were highlighted by cyan. 
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For human p53, disorder evaluations together with important disorder-related functional 

information were retrieved from D2P2 database (http://d2p2.pro/) [71]. D2P2 is a database of predicted 

disorder that represents a community resource for pre-computed disorder predictions on a large library 

of proteins from completely sequenced genomes [71]. D2P2 database uses outputs of PONDR® VLXT [8], 

IUPred [72], PONDR® VSL2B [73,74], PrDOS [75], ESpritz [76], and PV2 [71]. This database is 

further enhanced by information on the curated sites of various posttranslational modifications and on 

the location of predicted disorder-based potential binding sites. Figure 6 represents the results of the 

application of this tool to human p53 and provides further support for the abundance and functional 

importance of intrinsic disorder in this protein. In fact, Figure 6 shows that this protein contains long 

disordered regions, which are enriched in potential disorder-based binding motifs and numerous  

sites of posttranslational modifications, PTMs. The fact that disordered domains/regions of human  

p53 are heavily enriched in various PTM sites is in agreement with the well-known notion that 

phosphorylation [77] and many other enzymatically catalyzed PTMs are preferentially located within 

the IDPRs [28]. 

 

Figure 6. Evaluation of the functional intrinsic disorder propensity of human p53 (UniProt 

ID: P04637) by D2P2 database (http://d2p2.pro/) [71]. In this plot, top two lines represent 

annotated disordered regions in the DisProt and IDEAL databases. Next nine colored bars 

represent location of disordered regions predicted by different disorder predictors (Espritz-D, 

Espritz-N, Espritz-X, IUPred-L, IUPred-S, PV2, PrDOS, PONDR® VSL2b, and PONDR® 

VLXT, see keys for the corresponding color codes). Green-and-white bar in the middle of 

the plot shows the predicted disorder agreement between these nine predictors, with green 

parts corresponding to disordered regions by consensus. Yellow bar shows the location of 

the predicted disorder-based binding site (MoRF region), whereas colored circles at the  

bottom of the plot show location of sites of various posttranslational modifications  

(red—phosphorylation, blue—methylation, yellow—acetylation; orange—glycosylation; 

and violet—ubiquitylation). 
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Figure 7 represents the results of the IDalign-based alignments of the disorder profiles of human 

p53 with its evolutionary distant homologues, p53 proteins from fish (UniProt ID: P79820) and fly 

(UniProt ID: Q9N6D8). In both cases, the resulting contour maps (Figure 7A,C), especially within the 

N-terminal regions of corresponding pairs, are asymmetric, with regions with darker colors that 

correspond to more similar sequence segments being located off-diagonal. Figure 7A,C also shows that 

there is another level of asymmetry, since the disorder-based similarity worsens while moving to the 

N- to the C-terminus, giving rise to the dark, off-diagonal, N-terminal regions and noticeably lighter, 

mostly on-diagonal, C-terminal regions. By using the outputs from the identified alignment paths, the 

original disorder curves were stretched and aligned (see Figure 7B,D). The highlighted short regions in 

Figure 7B,D correspond to sequence segments characterized by similar patterns of the disorder 

distribution. As expected, the number of these similar patterns is lower in more distant human-fly pair. 

The corresponding traditional sequence alignments are shown in Figure S1. 

 

 

Figure 7. Identified alignment paths and alignments for sequence pairs between human 

p53 (Uniprot ID: P04637) and fish p53 (Uniprot ID: P79820) in (A,B), and between human 

p53 and fly p53 (Uniprot ID: Q9N6D8) in (C,D), respectively. (A,C) Alignment paths 

(contour maps) between two sequences in each of the sequence pairs were identified using 

our newly developed package; (B,D) Alignment of disorder curves along the alignment 

paths for two sequence pairs: P79820 (pink) and P04637 (black) in (B); Q9N6D8 (pink) 

and P04637 (black) in (D). Only overlapped segments of which the distance less than 0.05 

were highlighted by cyan. 
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The p53 protein is a member of an important protein family that includes p53, p63 (see [78,79]) and 

p73 [80]. Both p63 and p73 are structurally similar and functionally related to p53 [67]. The members 

of the p53 family are interlinked in a unique family-based signaling network that controls various 

aspects of cell life such as proliferation, differentiation, and death [63]. Both human p63 and p73 are 

almost two-fold longer than p53 and have 680 and 636 residues respectively. The domain organization 

of the members of p53-family is rather similar, and all three proteins have identifiable TAD, DBD and 

OD. In p63 and p73, there is an additional C-terminal sterile-α motif (SAM), which is required for p63 

and p73 transcriptional activity, but they seem to lack the CTD found in p53 [63]. The various p53 

family members have limited overall homology, but strong similarity in the DBD (approximately 60% 

between p53 and p63/p73 and approximately 85% between p63 and p73) [81,82]. Figure 8A,C 

represents the contour plots and the aligned profiles of human p53-p63 and p63-p73 pairs. Here, likely 

due to the large difference in the sequence lengths, the p53-p63 alignment is highly asymmetric, with 

the vast majority of darker regions being located off-diagonal (see Figure 8A). Although the contour 

plot representing the p63-p73 alignment is more symmetric (Figure 8C), this plot is characterized by 

noticeably lighter colors, which is expected due to the limited overall sequence homology of these two 

proteins. Figure 8B,D represents stretched and aligned disorder profiles of the human p53-p63 and 

p63-p73 pairs respectively. The highlighted short regions in Figure 8B,D correspond to sequence 

segments characterized by similar patterns of the disorder distribution. Note that these highlighted 

regions are concentrated mostly around the DBDs, reflecting higher levels of sequence/disorder pattern 

similarity in these domains in comparison with other regions. Again, the corresponding traditional  

pair-wise sequence alignments for human p53-p63 and p63-p73 pairs are shown in Figure S1. 

2.5. Web Server 

In order to facilitate the large-scale proteomic analysis of the common patterns of disorder curves, 

as well as the accurate positioning of the matched segments, we further developed a webserver, which 

can be accessed through the following link (http://labs.cas.usf.edu/bioinfo/service.html). The layout of 

this web server is shown in Figure 9. Users may choose one of the following two methods to input data. 

In the first method, the users may input comma-delimited disorder scores for two proteins. In the other 

method, the users may upload two data files that contain disorder scores in a single-column format. 

The output of the web server has three columns. The first column is the sequential index after alignment. 

The second and the third columns are disorder scores after alignment for the 1st and 2nd sets of input 

data, respectively. It should be noted that if two curves do not match to each other at a specific position, 

the score will be assigned as “−1”. 
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Figure 8. Identified alignment paths and alignments for sequence pairs between human 

p53 (Uniprot ID: P04637) and human p63 (Uniprot ID: Q9H3D4) in (A,B), and between 

human p63 and human p73 (Uniprot ID: O15350) in (C,D), respectively. (A,C) Alignment 

paths (contour maps) between two sequences in each of the sequence pairs were identified 

by our newly developed package; (B,D) Alignment of disorder curves along the alignment 

paths for two sequence pairs: Q9H3D4 (pink) and P04637 (black) in (B); O15350 (pink) 

and Q9H3D4 (black) in (D). Only overlapped segment pairs of which the distance less than 

0.05 were highlighted by cyan. 

 

Figure 9. Layout the IDalign web server. 
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3. Discussions 

It has been well recognized in the field of dynamic programming that both the gap penalty and the 

calculation of cost matrix may significantly shift the identified global matches. In various applications 

of dynamic time warping algorithms, the calculation of distance and cost matrix is extremely critical 

for the applicability of the algorithm. In this study, the calculation of distance is rather straight forward 

due to the nature of the problem. However, we did observe the significant influence of the gap penalty 

on the final output. When the gap penalty is low, a small increment may change the alignment score  

remarkably, as well as change the fraction of matches. 

In addition, we observed the presence of two types of sequence pairs in both yeast and DisProt  

datasets. One type of the sequence pairs had low similarity of the corresponding disorder curves,  

and their overall fraction of matches increased with the gap penalty. The other type of sequence pairs 

had higher similarity of their disorder curves, and their fraction of matches decreased when the value 

of gap penalty was raised. 

The aforementioned observations imposed rather strict criteria for the selection of gap penalties. 

Alignment score became saturated at higher values of gap penalty, indicating a stable alignment. In 

this meaning, the larger the gap penalty, the better the alignment. However, due to the presence of two 

types of sequence pairs, of which one type has decreased fraction of matches at higher penalty and the 

other has increased fraction of matches, a gap penalty of intermediate values may suit better to a 

general purpose alignment. 

The disorder curves used in this study were generated by the PONDR-FIT, which is a meta-predictor 

built on six component predictors: PONDR-VLXT, PONDR-VSL2, PONDR-VL3, IUPred, FoldIndex, 

and TopIDP [83]. Most of the component predictors applied the sliding-window technique to take into 

consideration the influence of neighboring residues on the disorder score of the query residue, which is 

in the central of the sliding-window. Therefore, the disorder score of one residue is determined by all 

other residues inside the sliding-window that is normally 20 to 30 residues. In this respect, the IUPred [72] 

is very different from other component predictors. IUPred applies the pairwise amino acid interactions 

from next 100 amino acids along the sequence. Therefore, the calculated per-residue score from 

IUPred may be affected by the sequentially more distant residues. Consequently, the PONDR-FIT 

score may also be affected by the residues far away from the query residue. That is the reason why 

highly identical sequences in Figure 5D still have obviously different patterns of their disorder curves. 

To further validate our argument for the influence of IUpred on the alignment path, we tested the 

alignment between DP00710 and DP00270 using PONDR@VLXT scores [8] (Figure S2), which does 

not include the influence of long-range amino acids. It is clear that in the alignment of 

PONDR@VLXT scores, the influence of long-range amino acids is no longer present. Nonetheless, 

this difference shown in Figure 5D is advantageous since the result from IUPred takes into consideration 

the presence of long-range interactions, which are missed in other sliding-window methods. Therefore, 

the disorder curve from PONDR-FIT, which incorporates the results of IUPred, reflects partially  

the influence of long-range interactions on structural flexibility. That is also the reason why  

disorder-curve-based alignment provides additional information that is overlooked by sequence-alignment 

based methods. 
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4. Experimental Section 

4.1. Datasets and Disorder Prediction 

The entire proteome of Saccharomyces cerevisiae (strain ATCC 204508/S288c) was downloaded 

from UniProt (ftp://ftp.uniprot.org/pub/databases/uniprot/). This proteome contains 6740 protein 

sequences. After removing sequences shorter than 40 residues, the remaining dataset has 6660 

proteins. All these protein sequences were predicted using PONDR-FIT [83] to get the per-residue 

disorder scores. In addition, the fraction of disordered residues was calculated for each sequence using 0.5 

as threshold value for disordered residues. Finally, a subset of proteins of which the lengths are between 

100 and 400, and the fractions of disordered residues are between 10% and 30% was randomly 

selected. The reasons for filtering out sequences shorter than 100 and longer than 400 amino acids are: 

(1) the prediction accuracies of terminal residues are normally lower than the accuracy of internal 

residues [84]. Since many predictors use sliding windows of 20~30 amino acids, the accuracies on the 

first and the last 20~30 residues in the sequence will be affected. Therefore, we chose 100 amino acids 

as the lower limit of the length of sequences in the dataset to ensure the overall acceptable prediction 

accuracy; (2) proteins are often organized in different domains. The length of a single domain is 

normally from tens of residues to around 400 amino acids. In other words, sequences longer than  

400 amino acids may be composed of multiple domains and contain many linker regions. Therefore, 

we selected sequences shorter than 400 amino acids to build the dataset. The final dataset includes  

100 sequences and is addressed as the Y100 dataset. 

The second dataset used in this study is a subset of experimentally validated disordered proteins 

from DisProt [85]. DisProt has a total of 694 disordered protein sequences. All the sequences were also  

predicted by PONDR-FIT. Afterwards, 100 sequences with length in the range from 100 to 400 

residues were selected to compose the D100 dataset. 

4.2. Dynamic Programming 

Assume the first disorder curve has N data points (x1, x2, . . ., xN), and the second one has M data 

points (y1, y2, . . ., yM). The purpose of this study is to calculate the pair-wise distance between the data 

points on two different curves and finally to evaluate the similarity between two curves. We designed 

an algorithm similar to dynamic time warping (DTW) [86] to compare the disorder curves. The 

Euclidian distance between any two data points from two different curves was calculated as fi,,j = |xi − yj|,  

I = (1, N) and j = (1, M). The cost function in the algorithm is Fi,j = min (fi-1, j-1, fi-1, j, fi, j-1) + fi, j. In 

addition, we also introduced a gap penalty score P when initializing the cost function. The gap penalty 

serves as a global constraint and does influence the results of identified global matches. The pseudo 

code for the implementation of the algorithm is shown in Figure 10. 
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Figure 10. Pseudo code of the algorithm. Dynamic programming was applied to search for 

the similarity between two disorder curves. When initiating the matrix, the penalty score P 

was assigned to the first column and first row of the matrix. Then the data points on the 

disorder curves were uploaded into the 2nd column and 2nd row of the matrix. Next, the 

distance and cost function were calculated using the formula described in the method 

section starting from the first vacant cell. After completing the calculation for all cells in 

the matrix, the alignment path was identified starting from the last cell to the first cell by 

connecting cells with lower cost function values. 

4.3. Fraction of Matches 

The data points in this study are per-residue disorder scores, which ranges from 0 to 1. The result 

from above-mentioned dynamic programming analysis is an alignment path (or warping path as used 

in DTW). Therefore, the distances between data points from two curves along this path can be 

calculated. The distances can also be compared to a threshold value Vmatch. If the distance between  

two data points is less than Vmatch, these two data points are considered to be a pair of matches. 

Furthermore, the fraction of matched data points for a pair of curves can be calculated as  

fM = 2 × Nmatch/(N1 + N2). Nmatch is the number of matched data points. N1 and N2 are the lengths  

of two curves. 
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