Supplementary Information

Figure S1. Characterization of the established iPSC 1-2, 1-3, and 1-4 lines from HGFs. HGF-iPSCs 1-2 (passage 23), 1-3 (passage 21), and 1-4 (passage 23), cultured on SNL feeder, were stained to identify any ALP activities and for OCT3/4, NANOG, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81. Scale bar = 400 μ m.

	HGF-iPSCs																	
	1-2						1-3						1-4					
2	and a second sec	26		1000		Although -	K	ļ				78	Canada Canad	() and	1			11
		96 5		金融 1	12	78			i,	Ķ	52	12	1960			75	9 8 9 9 8	55
Å 13	<u>80</u>	60 15	8 8	新 高 17	20 A	3 13	14	20		1040 10	主要 3月 17	2 H 18	8,8	ŝ,ŝ	Ē.	8	8 1,3	5,6
8 8 19	20 M	21	8 8 22	50	S ,	20 19 19	88 20	•		00 22	And a state	Y	**	8,3	6 6 21	5	. 85	Y

Figure S2. Karyotype analysis of the established iPSC 1-2, 1-3, and 1-4 lines from HGFs. HGF-iPSCs 1-2 (passage 23), 1-3 (passage 21), and 1-4 (passage 23), cultured on SNL feeder, were analized by G-band staining. A karyotype analysis showed a normal human karyotype for the tested three clones.

Figure S3. iPSCs have the potential to differentiate into three germ layers *in vivo*. Hematoxylin and eosin staining of teratoma derived from HGF-iPSCs 1-2 (passage 23), 1-3 (passage 21), and 1-4 (passage 23); and observation of neural tissue (ectoderm), cartilage (mesoderm), and gut-like tube (endoderm). Scale bar = $200 \mu m$.

Figure S4. Characterization of MSC-like cells derived from HGF-iPSCs 1-2. (**A**) MSLCs 1-2 were differentiated at passage 23. Flow cytometry analysis of MSC-related surface markers (CD44, CD73, CD90, and CD105), hematopoietic markers (CD34 and CD45), and pluripotent markers (SSEA-3 and TRA-1-60) in MSLCs 1-2 at passage 10; (**B**) MSLCs 1-2 at passage 10 were tested for their capacity of trilineage differentiation. MSLCs in control conditions were assessed for 21 days. Calcium deposition in osteogenic-differentiated MSLCs 1-2 was detected by Alizarin Red, in contrast control condition. Small lipid droplets in the cytoplasm of adipogenic-differentiated MSLCs 1-2 were observed by Oil Red O staining. Proteoglycan-rich extracellular matrices of chondrogenic-differentiated MSLCs 1-2 were stained red-purple by toluidine blue. Black Scale bar = 400 μ m, White Scale bar = 200 μ m.

Primer	Gene		Sequences (5' to 3')					
	OCT2/4	Forward	GAAACCCACACTGCAGCAGA					
	UC13/4	Reverse	TCGCTTGCCCTTCTGGCG					
	NANOC	Forward	CTCAGCTACAAACAGGTGAAGAC					
	NANUG	Reverse	TCCCTGGTGGTAGGAAGAGTAAA					
	SOX2	Forward	GGGAAATGGGAGGGGGGGCAAAAGAGG					
		Reverse	TTGCGTGAGTGTGGATGGGATTGGTG					
	KLF4	Forward	CGCTCCATTACCAAGAGCTCAT					
a lugia at ant an anly an		Reverse	CGATCGTCTTCCCCTCTTTG					
pluripotent marker	REX1	Forward	TGCAGGCGGAAATAGAACCT					
		Reverse	TCATAGCACACATAGCCATCACAT					
	TERT	Forward	CGTACAGGTTTCACGCATGTG					
		Reverse	ATGACGCGCAGGAAAAATGT					
	C-MYC	Forward	GTTGGTCAGGCTGGTCTTGAA					
		Reverse	CATGCGCCTGTAATCCTAGCA					
		Forward	CAGACGCGGCTGCTGAA					
	DPPAJ	Reverse	TGCTCGATGTAAGGGATTCGA					
intogration on organis marker	pED4 S	Forward	TTCCACGAGGGTAGTGAACC					
	per4-3	Reverse	TCGGGGGTGTTAGAGACAAC					
internal control		Forward	CCACTCCTCCACCTTTGACG					
internal control	UALDU	Reverse	ATGAGGTCCACCACCTGTT					

 Table S1. List of primers used for quantitative RT-PCR of iPSCs [7,15].

Antibodies	Supplier	Cat. No.	Dilution		
OCT3/4	Santacruze	SC5279	1/200		
NANOG	Cell Signaling	3580	1/800		
SSEA3	abcam	ab16286	1/200		
SSEA4	Millipore	MAB4360	1/200		
TRA1-60	Millipore	MAB4304	1/200		
TRA1-81	Millipore	MAB4381	1/200		
β-IIITUBLIN	SIGMA	T4026	1/200		
α-SMA	SIGMA	A2547	1/100		
AFP	Millipore	MAB5386	1/100		
DAPI	invitrogen	D1306	5 μg/mL		
Alexa Fluor 488 mouse	invitrogen	A11059	1/500		
Alexa Fluor 594 mouse	invitrogen	A11062	1/500		
Alexa Fluor 488 rat	invitrogen	A11006	1/500		
Alexa Fluor 594 rat	invitrogen	A21211	1/500		
Alexa Fluor 488 rabbit	invitrogen	A11008	1/500		
Alexa Fluor 594 rabbit	invitrogen	A11012	1/500		
CD34	Biolegend	343606	1/100		
CD44	BD	560890	1/125		
CD45	Biolegend	304012	1/100		
CD73	eBioscience	17-0739-42	1/65		
CD90	BD	559869	1/50		
CD105	eBioscience	12-1057-42	1/100		
IgG1k(PE)	BD	555749	1/100		
IgG1k(APC)	BD	550854	1/100		

Table S2. Antibodies used for immunochemical staining for HGF-iPSCs and flow cytometry for MSC-like cells derived from HGF-iPSCs [7,26].