## **Supplementary Information**

**Table S1.** Baseline characteristics of the studies included in the meta-analysis.

| Author (Year) [Ref.]                        | Country<br>(Ethnicity)  | Genotyping<br>Method | Mean Age<br>(Cases/Controls) | Source of Controls | Diagnose Criteria                             | BMI<br>(Cases; Controls)                      | SNPs Studied              |
|---------------------------------------------|-------------------------|----------------------|------------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|---------------------------|
| Thawnashom <i>et al.</i> (2005) [4]         | Thailand<br>(Asian)     | PCR-RFLP             | 40/38                        | НВ                 | BMI ≥ 25                                      | 31.5 (25.1–56.2);<br>21.8 (18.52–24.97) *     | MTHFR C677T               |
| Terruzzi et al. (2007) [5]                  | Italy<br>(Caucasian)    | PCR-RFLP             | 43.3/35.2                    | НВ                 | BMI $\geq$ 30                                 | 34.1 ± 7.1;<br>22.4 ± 1.8 #                   | MTHFR C677T;<br>MTRR A66G |
| Lewis et al. (2008) [6] <sup>a</sup>        | English<br>(Caucasian)  | TaqMan               | 68.8 <sup>e</sup>            | PB                 | $BMI \ge 30$                                  | None                                          | MTHFR C677T               |
| Lewis et al. (2008) [6] b                   | English<br>(Caucasian)  | TaqMan               | 28.5 ° (Young women)         | PB                 | BMI $\geq$ 30                                 | None                                          | MTHFR C677T               |
| Lewis <i>et al.</i> (2008) [6] <sup>c</sup> | English<br>(Caucasian)  | TaqMan               | 9.9 °<br>(Children)          | РВ                 | Females:<br>BMI > 23.46<br>Males: BMI > 23.39 | None                                          | MTHFR C677T               |
| Lewis et al. (2008) [6] d                   | Danish<br>(Caucasian)   | PCR-RFLP             | 57.6 °                       | PB                 | BMI $\geq$ 30                                 | None                                          | MTHFR C677T               |
| Settin et al. (2009) [7]                    | Saudi Arabia<br>(Asian) | TaqMan               | 27/24                        | НВ                 | BMI ≥ 25                                      | 27 ± 9.8;<br>24 ± 8.8 #                       | MTHFR C677T               |
| Bazzaz et al. (2010) [8]                    | Iran (Asian)            | PCR-RFLP             | 44.8/41.6                    | НВ                 | BMI $\geq$ 30                                 | 33.8 ± 3.4;<br>24.8 ± 2.9 #                   | MTHFR C677T               |
| Gara et al. (2011) [9]                      | Tunisia<br>(African)    | Pyrosequencing       | 4.6–14.3/NA                  | НВ                 | BMI > 97% percentile                          | None                                          | MTHFR C677T               |
| Chauhan <i>et al.</i> (2012) [10]           | India (Asian)           | GoldenGate<br>assay  | 44–64 <sup>e</sup>           | PB                 | BMI $\geq$ 23                                 | None                                          | MTHFR C677T               |
| Yin et al. (2012) [11]                      | China<br>(Asian)        | PCR-RFLP             | 41.25/41.48                  | PB                 | BMI $\geq$ 24                                 | $26.48 \pm 2.59;$<br>$21.23 \pm 1.68$ #       | MTHFR C677T               |
| Tabassum <i>et al</i> . (2012) [12]         | India (Asian)           | GoldenGate<br>assay  | 13.00/14.00                  | РВ                 | BMI ≥ 25                                      | 25.85 (23.97–28.97);<br>17.58 (15.86–19.44) * | MTHFR C677T,<br>MTRR A66G |

Abbreviation: *MTHFR*, methylenetetrahydrofolate reductase; *MTRR*, methionine synthase reductase; PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism; HB, hospital based; PB, population based; BMI, body mass index; NA, not available; <sup>a</sup> BWHHS cohort study; <sup>b</sup> ALSPAC women cohort study; <sup>c</sup> ALSPAC children cohort study; <sup>d</sup> CCHS cohort study; <sup>e</sup> The mean age of all subjects; \* Data are presented as the median (25th–75th); <sup>#</sup> Data are presented as the mean ± SD.



**Figure S1.** Forest plot of the association between the *MTHFR* C677T polymorphism and being overweight/obesity in the recessive model (TT vs. CT + CC).



**Figure S2.** Forest plot of the association between the *MTHFR* C677T polymorphism and being overweight/obesity in the dominant model (TT + CT vs. CC).



**Figure S3.** Forest plot of the association between the *MTHFR* C677T polymorphism and being overweight/obesity in the homozygous codominant model (TT vs. CC).



**Figure S4.** Forest plot of the association between the *MTHFR* C677T polymorphism and being overweight/obesity in the heterozygous codominant model (CT vs. CC).



**Figure S5.** Forest plot of the association between the *MTHFR* C677T polymorphism and being overweight/obesity in the allelic model (T vs. C).



**Figure S6.** Funnel plot analysis on the detection of publication bias in the meta-analysis of the associations between MTHFR polymorphisms and being overweight/obesity:

(A) recessive model; (B) dominant model; (C) homozygous codominant model;

(D) heterozygous codominant model; (E) allelic model.



**Figure S7.** Forest plot of the association between the MTRR A66G polymorphism and being overweight/obesity in the recessive model (TT vs. CT + CC).



**Figure S8.** Forest plot of the association between the *MTRR* A66G polymorphism and being overweight/obesity in the dominant model (TT + CT vs. CC).



**Figure S9.** Forest plot of the association between the *MTRR* A66G polymorphism and being overweight/obesity in the homozygous codominant model (TT *vs.* CC).



**Figure S10.** Forest plot of the association between the *MTRR* A66G polymorphism and being overweight/obesity in the heterozygous codominant model (CT vs. CC).



**Figure S11.** Forest plot of the association between the *MTRR* A66G polymorphism and being overweight/obesity in the allelic model (T vs. C).