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Abstract: Antibody directed enzyme prodrug therapy (ADEPT) utilizing β-lactamase is  

a promising treatment strategy to enhance the therapeutic effect and safety of cytotoxic 

agents. In this method, a conjugate (antibody-β-lactamase fusion protein) is employed to 

precisely activate nontoxic cephalosporin prodrugs at the tumor site. A major obstacle to 

the clinical translation of this method, however, is the low catalytic activity and high 

immunogenicity of the wild-type enzymes. To overcome this challenge, we fused a cyclic 

decapeptide (RGD4C) targeting to the integrin with a β-lactamase variant with reduced 

immunogenicity which retains acceptable catalytic activity for prodrug hydrolysis. Here, 

we made a further investigation on its targeting effect and pharmacokinetic properties, the 

results demonstrated that the fusion protein retains a targeting effect on integrin positive 

cells and has acceptable pharmacokinetic characteristics, which benefits its use in ADEPT. 
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1. Introduction 

Antibody directed enzyme prodrug therapy (ADEPT) is a targeted therapeutic method based on 

antibody-enzyme conjugates and prodrugs [1,2], which is a promising approach for targeting treatment 

of cancer. It is designed to restrict the action of cytotoxic agents at the tumor sites. The principle of 

ADEPT is to use an antibody targeted to a tumor-associated antigen to convey an enzyme to the tumor 

site. A nontoxic prodrug, a substrate for the enzyme, is administrated after eliminating of the unbound 

antibody-enzyme conjugate from blood and normal tissues, and cleaved by the enzyme, then a potent 

cytotoxic agent is generated [1,3]. The cytotoxic agent can be precisely released at tumor site which 

can avoid systemic toxicity, and can diffuse into adjacent cells making the non-antigen expressed 

tumor cells undergo treatment [4], which can further improve the treatment. The enzymes used in  

this strategy have relatively fixed relations with prodrugs, such as carboxypeptidase G2 and benzoic 

mustard [5], nitroreductase and CB1954 [6,7], L-methioninase and selenomethionine [8,9], cytosine 

deaminase and 5-fluorocytosine [9,10], β-lactamase and cephalosporin prodrugs [11,12]. In the 

previous study we constructed a conjugate (RGD4CβL) of RGD4C (ACDCRGDCFCG) and β-lactamase 

variant with low immunogenicity for use in the enzyme prodrug therapy, in which the RGD4C motif 

served as direct group for its specificity to αvβ3 integrin which is overexpressed on tumor cells and is 

usability for incorporation into proteins by recombinant technology [13–15], and studies showed the 

fusion protein not only retains catalytic activity of β-lactamase but has low immunogenicity and high 

stability [16,17]. The targeting and pharmacokinetics of the conjugate plays a key role in ADEPT. 

Therefore, we investigated the targeting effects and pharmacokinetics of the RGD4CβL in the present 

study, the results revealed a normal cell binding manner in vitro and favorable distribution and 

elimination mode in vivo, which benefits its use in enzyme prodrug therapy. 

2. Results and Discussion 

2.1. Immunofluorescent Staining 

To confirm its affinity on tumor cells, the RGD4CβL was labeled with fluorescein isothiocyanate 

(FITC) obtaining the labeled product (FITC-RGD4CβL) and immunofluorescent staining was performed. 

The concentration of FITC-RGD4CβL, which was determined by [(A280 − 0.31 × A495)/1.4],  

was 0.73 mg/mL; the ratio of FITC to RGD4CβL, which was determined by [3.1 × A495/(A280 −  

0.31 × A495)], was 6.3; and the FITC-RGD4CβL was diluted twice and used for staining, and the 

nucleus was stained using 4',6-diamidino-2-phenylindole (DAPI). The fluorescent images are shown  

in Figure 1. 
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Figure 1. Fluorescent images of FITC-RGD4CβL stained C6. (a) C6, white light;  

(b) FITC-RGD4CβL, fluorescence of FITC; (c) DAPI; (d) overlay of (b) and (c). 

Immunofluorescent staining showed that the RGD4CβL adhered to the C6 cells, which 

indicated the normal binding of RGD4C motif. 

2.2. Radiolabeling and Radiochemical Purity 

The RGD4CβL was labeled with 99mTc and purified, and then the labeling efficiency and 

radiochemical purity were determined using thin layer chromatography. The 99mTc-RGD4CβL and the 

unbound [99mTc(H2O)3(CO)3]+ were separated well on silica gel plates, using acetone as the mobile 

phase. In the present experiment, the radiolabeling efficiency as determined using thin layer 

chromatography, was 82.6% (Figure 2a). The crude product was purified by ultrafiltration to obtain the 

final product with radiochemical purity of 98.7% (Figure 2b). 

 

Figure 2. Radiolabeling efficiency and the purity of the 99mTc-RGD4CβL. The crude 

product was separated on silica gel plate. The main product had a retention factor (RF) of 

0.17 and the RF of [99mTc(H2O)3(CO)3]+ was 0.46. Labeling efficiency was calculated  

to be 82.6% (a); After purification by ultrafiltration, the radiochemical purity of the  
99mTc-RGD4CβL was 98.7% (b). 
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2.3. In Vitro Stability 

The radiochemical purity of the 99mTc-RGD4CβL was assayed under two conditions. Under both 

conditions the 99mTc-RGD4CβL showed good stability (Figure 3). 

 

Figure 3. In vitro stability. Radiochemical purity of the 99mTc-RGD4CβL remained more 

than 88% and 86% periodically over 24 h in normal saline at room temperature (25 °C) and 

in human serum at 37 °C, which was favorable for in vivo use. 

2.4. In Vitro Evaluation of the 99mTc-RGD4CβL 

The carbonyl technetium was conjugated to the His-tag, which is far from the activity center; so the 

affinity and specificity of the RGD4CβL may remain unaffected. To confirm this hypothesis, an in vitro 

binding assay was performed using C6 cells, and the result showed a normal binding manner that could 

be blocked with cold protein (Figure 4). 

 

Figure 4. Specific binding of the 99mTc-RGD4CβL. The 99mTc-RGD4CβL was incubated 

with C6 cells at a concentration of 0.02 to 80 nM, which showed normal binding manner, 

when the cells were treated with cold protein, the binding was blocked. Data were analyzed 

using Student’s t-test, and asterisks represent statistically significant values (p < 0.05).  

The result showed a specific binding manner of 99mTc-RGD4CβL, indicated normal 

affinity of RGD4C as a direct motif. 
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2.5. Blood Clearance of the 99mTc-RGD4CβL 

The pharmacokinetics of conjugate is important for its in vivo use; thus, we investigated the 

metabolism of the 99mTc-RGD4CβL in rats. The radioactivity-time curve shown below, the blood 

clearance was fast during the first 50 min. The half-lives of distribution (T1/2α) and elimination (T1/2β) 

were 7.8 and 21.9 min respectively (Figure 5). The short half-lives were acceptable for its use in ADEPT. 

 

Figure 5. Blood clearance of the 99mTc-RGD4CβL. Three Wistar rats were injected with 

the 99mTc-RGD4CβL. Blood was drawn at different time-points, and radioactivities were 

measured by a gamma counter, data are shown as %ID/g, T1/2α and T1/2β were 7.8 and  

21.9 min respectively. 

2.6. Biodistribution 

Rats bearing C6 xenografts were injected with the 99mTc-RGD4CβL, and dissected at 2, 4, and 8 h. 

The radioactivities of different organs were measured with a gamma counter. It was noted that the 

radiolabeled protein was mainly metabolized through the kidney. The radioactivity in tumor showed  

a slower decline than in blood, which benefits its use in enzyme prodrug therapy (Figure 6). 

 

Figure 6. Biodistribution of the 99mTc-RGD4CβL in xenograft-bearing rats. Data are 

shown as %ID/g, and expressed as mean ± SD (n = 4). High uptake and slow decline in  

tumor relative to blood was observed. The radiolabeled protein was mainly metabolized 

through the kidney, which may cause the high uptake. High uptake in liver, spleen and 

lung may be caused due to the dissociation of the radio-nuclide from the 99mTc-RGD4CβL.  

The high uptake in tumor than background may be favorable for its use in ADEPT. 
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ADEPT combining the high affinity and specificity of monoclonal antibodies and high catalytic 

activity of enzymes, which can restrict the action of cytotoxic drugs into tumor site, has become  

a promising approach for tumor treatment and derived a variety of related modalities [18]. Conjugates 

used in enzyme prodrug therapy, which consist by enzymes coupled with targeting molecules, require 

certain characteristics such as good stability, low immunogenicity, ease of manufacturing, and no 

substrates or inhibitors in human body. The RGD4CβL studied in the present work which was composed 

of RGD4C and broadly targeted multiple tumors overexpressing integrin and β-lactamase variant. This 

is an efficient hydrolase for cephalosporin prodrugs that has been manufactured in previous work and 

has shown high catalytic efficacy and low immunogenicity which benefits its use in enzyme prodrug 

therapy. Its targeting effect and pharmacokinetic properties were investigated with 99mTc labeling in 

this work to confirm its applicability. Here, we observed that the RGD4CβL could be efficiently 

labeled with 99mTc, with full retention of it functionality (i.e., specific recognition of αvβ3 integrin). 

Immunofluorescent staining of FITC-RGD4CβL and binding assay of 99mTc-RGD4CβL confirmed its 

affinity and specificity on tumor cells. Good in vivo tumor-to-background ratios were already obtained 

at 2 h after injection of the 99mTc-RGD4CβL, which revealed the rapid elimination of unbound 

conjugate from the circulation. The 99mTc-RGD4CβL is rapidly cleared from the blood, mainly via the 

kidneys. This property agreed the typical behaviour of peptides and small proteins whose molecular 

weight is below the threshold that can be filtered by the glomerular membrane [19]. Meanwhile,  
99mTc-RGD4CβL was eliminated relatively slow in tumor compared with rapid clearance from blood, 

which means that the prodrug can be administrated when the fusion protein eliminated from normal 

tissues and the residual in tumor site can release the cephalosporin prodrug to kill tumor cells. 

In summary, the conjugate (RGD4CβL) can be labeled with 99mTc efficiently, retaining the affinity 

and specificity. The pharmacokinetic property of the radiolabeled conjugate was codetermined by the 

size, the radionuclide and the affinity to tumor cells, which was favorable for its in vivo use. The High 

uptake and slow decline in tumor opened a perspective towards antibody-targeted imaging combined 

chemotherapy for optimization of dose and time schedules. Future studies will be performed in 

accordance with this combination concept to reveal the potential usability of RGD4CβL in ADEPT 

and molecular imaging. 

3. Experimental Section 

3.1. Materials 

Fresh 99mTc-pertechnetate eluent was obtained from a 99Mo–99mTc radionuclide generator (China 

Institute of Atomic Energy). Sodium borohydride, sodium carbonate, HCl, sodium potassium tartrate 

tetrahydrate and fluorescent dyes (FITC and DAPI) were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). Silica gel plates were purchased from Yantai Jiangyou silica Ltd. (Shandong, China). 

Carbon monoxide and carbon dioxide were purchased from Tianjin kunteng gas Ltd. (Tianjin, China). 

Centrifugal filter units with a molecular weight cut-off of 3000 Da were purchased from Millipore 

(Bedford, MA, USA), and used according to the specifications. Medium, fetal bovine serum (FBS), 

penicillin, streptomycin was purchased from Hyclone (Logan, UT, USA). Human serum (a mixture of 

healthy donors) was obtained from Tianjin blood center. 



Int. J. Mol. Sci. 2015, 16 9631 

 

 

3.2. RGD4C-β-Lactamase Conjugate 

The RGD4C-β-lactamase conjugate (RGD4CβL, 42 kd) was consist of β-lactamase fused with 

ACDCRGDCFCG peptide (RGD4C) by recombinant DNA technology. Fusion gene was cloned into  

E. coli BL21 (DE3); the protein was purified with nickel-nitrilotriacetic acid (Ni-NTA) resin, and was 

further confirmed by western blotting [16,17]. 

3.3. Cell Culture and Animals 

C6 cells was cultured in Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with 

10% fetal bovine serum (FBS), 100 U/mL penicillin, and 100 μg/mL streptomycin at 37 °C in 5% 

CO2. Wistar rats were purchased from Experimental Animal Center of Academy of Military Medical 

Sciences (Beijing, China). All animal procedures were approved by the Ethics Committee of Institute 

of Radiation Medicine of Chinese Academy of Medical Sciences (8 April 2014). The animal studies 

were conducted in accordance with the regulations of the Ethics Committee of Chinese Academy of 

Medical Sciences. 

3.4. Immunofluorescent Staining Assay 

The RGD4CβL (0.3 mg) was dialyzed thrice against phosphate buffer solution (PBS), subsequently, 

45 μL FITC (1 mg/mL in dimethylsulfoxide) was added, and the mixture was stirred gently for 20 h at 

4 °C. The reaction mixture was purified by ultrafiltration, and then washed twice using PBS to remove 

the unreacted FITC. The target product FITC-RGD4CβL was obtained, and the absorbance at A280 

and A495 was measured to determine the concentration of RGD4CβL and the ratio of FITC to the 

RGD4CβL. The concentration of FITC-RGD4CβL was adjusted and C6 cells were cultured in 24-well 

plates (4 × 104/well). After washing twice with PBS, the cells were fixed with ethanol at room 

temperature for 10 min, 0.5 mL serum-free medium and 100 μL of the FITC-RGD4CβL solution were 

added sequentially. After incubation for 80 min at 4 °C, the fluorescent images were acquired using 

fluorescent microscopy (DMI 6000B, Leica, Wetzlar, Germany) and the nucleus was stained using DAPI. 

3.5. Radioactive Technetium Labeling 

The RGD4CβL was labeled with 99mTc at its His-tag, as previously described [20,21]. Briefly, 

[99mTc(H2O)3(CO)3]+ was synthesized by adding 1 mL of fresh 99mTc-pertechnetate (10 mCi) from a 
99Mo–99mTc generator to a mixture of 22 mg sodium borohydride, 4 mg sodium carbonate, and 15 mg 

sodium potassium tartrate tetrahydrate under atmospheric carbon monoxide, the reaction mixture was 

maintained in boiling water bath for 20 min. After neutralization using 1 mol/L HCl, [99mTc(H2O)3(CO)3]+ 

was added to a 0.15 mg/mL RGD4CβL solution and incubated for 90 min at 50 °C. 

3.6. Purification and Radiochemical Purity 

The 99mTc-RGD4CβL solution was purified by ultrafiltration using PBS to wash off unbound 

[99mTc(H2O)3(CO)3]+ and passed through a 0.22-μm Millipore filter to eliminate possible aggregates. 

Thin layer chromatography (detected with an AR-2000 radio-TLC Imaging Scanner, Bioscan, 
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Washington, DC, USA) was then performed to determine the labeling efficiency and radiochemical  

purity of the 99mTc-RGD4CβL, both directly after labeling and after purification using acetone as 

mobile phase. 

3.7. In Vitro Stability 

Two portions of 100 μL 99mTc-RGD4CβL were added to 500 μL normal saline at room temperature 

(25 °C) and 500 μL human serum at 37 °C respectively. Radiochemical purities were assayed using 

thin layer chromatography at 1, 2, 6, and 24 h. 

3.8. In Vitro Evaluation of 99mTc-RGD4CβL 

C6 cells were implanted in 24-well plates in there logarithmic phase. After overnight incubation,  

the cells were washed twice using cold PBS, then the 99mTc-RGD4CβL was added at concentrations  

of 0.02–80 nM. The plates were incubated on ice for 1 h, then washed twice using cold PBS. Portions of 

1 mL sodium hydroxide (1 mol/L) were added and the plates were incubated at room temperature for 1 h. 

The lysates were then collected and radioactivities were measured by a gamma counter (2470 WIZARD2, 

PerkinElmer, Waltham, MA, USA). Meanwhile, the blocking experiment was performed by adding  

50 μg RGD4CβL to the wells and incubating each for 30 min before adding the 99mTc-RGD4CβL. 

3.9. Blood Clearance of 99mTc-RGD4CβL 

Three Wistar rats were intravenously injected with 7 μCi 99mTc-RGD4CβL. Blood samples were 

collected using a microcapillary at 5, 15, 30, 45, 60, 90, and 180 min after the injection to obtain  

a radioactivity-time curve. Data were presented as the percentage injected activity per total blood 

weight (%ID/g). Total blood weight was calculated as 7% of the total body weight. 

3.10. Biodistribution 

The distribution of the 99mTc-RGD4CβL was studied using Wistar rats bearing subcutaneously 

implanted xenografts of C6 cells. In the present experiment rats bearing C6 xenografts at left armpit 

were injected with 38 μCi 99mTc-RGD4CβL via the tail vein. At 2, 4, and 8 h post-injection, four rats 

were anaesthetized, bled, and dissected. Blood, tumor, and normal tissues were weighed, and radioactivities 

were measured using a gamma counter. Radioactivity uptake was calculated as %ID/g. 

3.11. Statistical Analysis 

Differences in cell binding test were statistically analyzed for each dose point using Student’s t-test. 

Two-sided significance levels were calculated and p < 0.05 was considered statistically significant. 
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