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Abstract: Aging is associated with a progressive loss of maximal cell functionality,  

and mitochondria are considered a key factor in aging process, since they determine the ATP 

availability in the cells. Mitochondrial performance during aging in skeletal muscle is 

reported to be either decreased or unchanged. This heterogeneity of results could partly be 

due to the method used to assess mitochondrial performance. In addition, in skeletal 

muscle the mitochondrial population is heterogeneous, composed of subsarcolemmal and 

intermyofibrillar mitochondria. Therefore, the purpose of the present review is to summarize 

the results obtained on the functionality of the above mitochondrial populations during 

aging, taking into account that the mitochondrial performance depends on organelle number, 

organelle activity, and energetic efficiency of the mitochondrial machinery in synthesizing 

ATP from the oxidation of fuels. 

Keywords: mitochondria; aging; skeletal muscle; proton leak 

 

1. Introduction 

Increasing age leads to a decline in cell functionality, generally termed as “aging” [1]. All tissue and 

organs of the body are involved in the phenomenon of aging, but the extent of the cellular impairment is 

greatly variable, since post-mitotic tissues are the most sensitive targets of the aging process [2]. Among 
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the latter, skeletal muscle tissue is profoundly affected during aging, and its functional decline is 

characterized by a progressive atrophy, that becomes more severe with advancing age and that from a 

certain point onwards can lead to mobility impairment, increased risk of falls, and physical frailty [3,4]. 

The loss of function in skeletal muscle is also responsible for the development of age-associated insulin 

resistance and related metabolic disturbances [5–9]. For these reasons, understanding the mechanisms 

underlying aging in skeletal muscle is fundamental for promotion of health and mobility in the elderly. 

To this end, the most used animal model of human aging is represented by ad libitum fed caged rodents, 

that exhibit a sedentary lifestyle and unrestricted diet, and that develop an age-induced spontaneous 

obesity and insulin resistance already at 4 months of age [7]. 

Although the loss of skeletal muscle protein mass during aging could at least partially explain the 

decline in muscle performance, a role for mitochondria has been postulated in the aging process [10,11]. 

In fact, mitochondria have a major role in energetic homeostasis by determining ATP availability in the 

cells. A decrease in mitochondrial function could therefore cause an inability to meet cellular ATP 

demands, so that skeletal muscle cells lose their capacity to adapt to physiological stress imposed across 

the entire lifespan [12]. In addition, dysfunctional mitochondria could contribute to the development of 

age-induced insulin resistance [13], since mitochondrial oxidative capacity has been considered a good 

predictor of insulin sensitivity [14]. 

One important issue that should be taken into account when studying mitochondria in skeletal 

muscle is that the mitochondrial population is heterogeneous, composed of mitochondria located either 

beneath the sarcolemmal membrane (subsarcolemmal, SS) or between the myofibrils (intermyofibrillar, 

IMF) [15] (Figure 1). Since these two mitochondrial populations exhibit different energetic characteristics 

and can be differently affected by physiological stimuli [16], it is important that both are separately 

studied. Therefore, the purpose of the present review is to summarize the results obtained on the 

functionality of the above mitochondrial populations during aging, taking into account that the 

mitochondrial performance depends on organelle number, organelle activity, and energetic efficiency of 

the mitochondrial machinery in synthesizing ATP from the oxidation of fuels. A search in PubMed 

of relevant articles was conducted, by using query “skeletal muscle mitochondria and aging”, 

“subsarcolemmal mitochondria and aging”, and “intermyofibrillar mitochondria and aging”, with the 

inclusion of related articles by the same groups. 

 

Figure 1. Heterogeneous mitochondrial populations in skeletal muscle cells. Scale bar = 3 µm. 

White arrows = Intermyofibrillar mitochondria; Black arrows = Subsarcolemmal mitochondria. 
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2. Age-Related Changes in Mitochondria 

Although many studies have addressed the issue of mitochondrial performance attenuation during 

aging in skeletal muscle, the obtained results are contradictory, with some papers reporting impairment 

of mitochondria with increasing age [17–23] and others showing no age-induced change [24,25], 

underscoring the complexity of understanding in this area. 

The discrepancy between the published data can partly be explained by differences in experimental 

approach. However, even when comparing the results obtained with similar methodological approach, 

divergent outcomes are evident. For example, among the studies that have measured the activity of 

enzymatic complexes, such as citrate synthase and electron transport chain complexes, to obtain indirect 

insights into the energy producing (respiratory) capacity of the mitochondria, some of them have reported 

an age-dependent decrease in aging muscle [26–28] while other studies found no variation [29] or 

reported a variable response in different muscles [30]. An alternative approach used to study mitochondrial 

alteration in aging muscle is assessing total mitochondrial content. Again, some studies reported that 

mitochondrial content is reduced in aging muscle [31,32] and others found no change [21,33–35]. 

There is however consensus on the finding that aging skeletal muscle has a blunted capacity for 

generation of new mitochondria in response to both endurance exercise training [36] and chronic 

electrical stimulation [37,38]. 

To our knowledge, studies carried out specifically on mitochondria located beneath the sarcolemmal 

membrane (SS) and between the myofibrils (IMF) from skeletal muscle during aging are scarce.  

In a pioneering research, Farrar et al. [39] found that ADP-stimulated respiration did not change with 

increasing age in IMF and SS mitochondria, while aging decreased the amount of IMF proteins.  

Chabi et al. [32] studied senescent (3 years) rats and have found that in SS and IMF mitochondria the 

capacity for ATP production was reduced, as a result of diminished mitochondrial content per gram of 

muscle. Drew et al. [40] found a decrease in ATP production between 12 and 26 months of age in SS 

mitochondria from gastrocnemius muscle in Fisher rats. Very few studies specifically addressed the 

differential regulation of SS and IMF mitochondria with aging in humans. These studies evaluated 

the SS and IMF mitochondrial content of skeletal muscle in young and old men and reported no  

age-dependent change in both mitochondrial populations [34,41]. From all the above results, it emerges 

a differential effect of aging on SS and IMF mitochondria, at least in animal models. More studies on 

humans are needed to validate the differential effect of aging on the two mitochondrial populations.  

In addition, studies on changes in mitochondrial function induced by aging or other physiological stimuli 

should be carried out on the two different mitochondrial populations existing in skeletal muscle. 

3. Mitochondrial Energetic Efficiency during Aging 

From the analysis of the published results on the differential effect of aging on IMF and SS 

mitochondria, no clear picture can be obtained, partly because of differences in the experimental 

approach used to evaluate mitochondrial function. The mitochondrial performance depends on organelle 

number, organelle activity, and energetic efficiency of the mitochondrial machinery in synthesizing ATP 

from the oxidation of fuels. In addition, it is well known that the amount of fuels oxidized by the cell is 

dictated mainly by ATP turnover rather than by mitochondrial oxidative capacity and therefore a 
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decrease in mitochondrial capacity and/or number becomes more important when cells increase their 

metabolic activity, i.e., during contraction, while an increased mitochondrial efficiency still alter the 

amount of oxidized fuels also at rest (Figure 2). The efficiency with which dietary calories are converted 

to ATP is determined by the degree of coupling of oxidative phosphorylation. If the respiratory chain is 

highly efficient at pumping protons out of the mitochondrial inner membrane, and the ATP synthesis is 

highly efficient at converting the proton flow through its proton channel into ATP (from ADP), then the 

mitochondria will generate maximum ATP and minimum heat per calorie. In contrast, if the efficiency 

of proton pumping is reduced and/or more protons are required to make each ATP molecule, then each 

calorie will yield less ATP. 

 

Figure 2. Factors affecting cellular fuel oxidation. The amount of burned fuels mainly 

depends on mitochondrial energetic efficiency and ATP turnover (in red). Mitochondrial 

mass and oxidative capacity are less important because mitochondria are thought to have  

a much greater capacity to generate ATP than what is usually required [42]. 

The main point of regulation of the oxidative phosphorylation efficiency [43] is represented by the 

degree of coupling between oxygen consumption and ATP synthesis, which is always lower than 1 and 

can vary according to the metabolic needs of the cell [44]. Among the factors, which affect mitochondrial 

degree of coupling, an important role is played by the permeability of the mitochondrial inner 

membrane to H+ ions (leak). It is now well known that mitochondrial inner membrane exhibit a basal 

proton leak pathway, whose contribution to the basal metabolic rate in rats has been estimated to be 

about 20%–25% [45]. In addition, it is well known that fatty acids can act as natural uncouplers of 

oxidative phosphorylation, by generating a fatty acid-dependent proton leak pathway [46–48], which is 

a function of the amount of unbound fatty acids in the cell. 

The issue of mitochondrial efficiency has been explored in humans in vivo, and it has been found that 

the effect of aging is fiber type-dependent. In fact, in mildly uncoupled fiber types (i.e., tibialis anterior) 

no age effect is evident, while a substantial uncoupling takes place with aging in well coupled fiber types 

(i.e., dorsal interosseous) [49]. Due to the in vivo conditions, these studies do not distinguish between 

SS and IMF mitochondria. Since aging has been show to selectively affect IMF but not SS mitochondria 

in heart [50], and taking into account the above considerations, a study was carried out on the putative 

changes in mitochondrial performance and efficiency during aging in SS and IMF mitochondria. In the 
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transition from young adulthood (60 days) to adulthood (180 days), SS and IMF skeletal muscle 

mitochondria displayed an increase in the degree of coupling and efficiency, as well as a decreased fatty 

acid dependent proton leak [51]. The above modifications in mitochondrial performance occurred 

concomitantly with an increase in whole body lipids and plasma non-esterified fatty acids (NEFA) [51], 

suggesting a link between skeletal muscle increased mitochondrial efficiency and metabolic impairments. 
These results were extended to the evaluation of how the progression of aging affects skeletal muscle 

mitochondrial function by measuring mitochondrial respiratory capacity and proton leak in SS and IMF 

mitochondria from adult (six months) and old (two years) rats [52]. A significant decrease in oxidative 

capacity was found in skeletal muscle homogenates, as well as in SS and IMF mitochondria from old 

rats. Oxidative capacity measured in the homogenate reflects the product of mitochondrial mass and 

activity, while oxidative capacity in isolated organelles depends only on mitochondrial activity,  

and therefore the similar age-induced decrease in oxidative capacity in homogenates and isolated 

mitochondria found in old rats could be indicative of a lack of changes in mitochondrial mass. A decreased 

mitochondrial mass has been found in senescent rats (36 months old) [32], thus suggesting that  

an impairment of mitochondrial biogenesis occurs in late aging and/or it takes place selectively in 

specific muscles, such as gastrocnemius, whose mitochondrial mass has been found decreased in  

old rats [20,53]. 

Both mitochondrial populations from old rats exhibited a significant decrease in proton leak [52], 

suggesting that with increasing age the efficiency of oxidative phosphorylation increases both in SS and 

IMF mitochondria. Similar results have been obtained in vivo in aged rat skeletal muscle, where a trend 

for a higher coupling efficiency was found [20]. Skeletal muscle cells in sedentary laboratory rats 

operate in conditions of low ADP availability, near to state 4 (when no ADP is available), with a high 

contribution of proton leak to total oxygen consumed by mitochondria [54], and therefore the decreased 

proton leak found in SS and IMF mitochondria from old rats is physiologically relevant. When mitochondria 

are more efficient, less substrates are oxidized to obtain ATP. Therefore, the increased mitochondrial 

coupling in skeletal muscle could contribute to the decreased energy expenditure that is evident even 

after the decrease in lean mass has been taken into account and that is at the basis of age-induced 

obesity, since skeletal muscle energy metabolism accounts for about 30% of whole body energy 

expenditure in resting conditions [45]. 

One interesting question is: What could be the impact of the increased mitochondrial coupling on 

ATP yield? Although it is very difficult to calculate the theoretical difference in ATP yield per calorie 

in highly efficient vs. inefficient proton pumping, a rough estimate could be obtained using a published 

estimate of the control value of proton leak on P/O ratio in skeletal muscle [55]. This value is reported 

to be −0.72 [55], so we can calculate that the 40% decrease in proton leak found in old rats [52] would 

result in a 29% increase in P/O ratio, and therefore in the amount of ATP obtained per unit of oxygen 

consumed. However, when mitochondria are more coupled, ATP is produced at a slower rate [44,56], 

that could be unable to meet cellular energy demands, especially during skeletal muscle contraction.  

In fact, in elderly subjects it has been found that a lower speed of ATP production is associated with 

higher fatigability [57]. 

Another deleterious consequence of reduced substrate burning in skeletal muscle could be intracellular 

triglyceride accumulation and lipotoxicity, since NEFA serum levels are significantly higher in older 

rats. In fact, in conditions of increased plasma NEFA, more fatty acids enter in the cells and if they are 
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poorly oxidized, they accumulate intracellularly in myocytes mainly as long-chain fatty acyl-CoA, 

monoacylglcyerol, diacylglycerol, phosphatidic acid, triacylglycerol and ceramide. Among these fatty 

acid derivatives, high intramyocellular levels of diacylglycerol and ceramides are directly associated 

with insulin resistance [58]. The metabolic implications of increased mitochondrial energetic efficiency 

are summarized in Figure 3. 

 

Figure 3. Summary of the metabolic implications of the increased mitochondrial energetic 

efficiency in skeletal muscle with aging. The red circles identify the pathological outcomes. 

4. Oxidative Stress in Aging Mitochondria 

Reactive oxygen species (ROS) production increases when mitochondrial potential is higher [59,60], 

and therefore increased mitochondrial energetic efficiency could induce a condition of increased 

oxidative stress. In fact, one of the postulated physiological roles for the uncoupling effect of fatty acids 

is to maintain mitochondrial membrane potential below the critical threshold for ROS production, 

especially in situations of low rates of ATP turnover, such as in resting skeletal muscle [61]. It has been 

proposed that ROS generation during the normal oxidative activity of mitochondria leads to damage of 

lipids, proteins and DNA, especially in postmitotic tissues, such as skeletal muscle, and that this 

oxidative damage is at the basis of the biological phenomenon of cellular aging [10,11]. Therefore, 

the increased coupling of mitochondrial oxidative phosphorylation found in 180 day-old rats [51] 

could led to the oxidative damage of skeletal muscle cell, detectable later in life. However, the increased 

uncoupling protein 3 (UCP3) protein content found in SS and IMF mitochondria from 180 days old rats 

could be involved in the protection from oxidative damage [62,63]. In fact, it has been proposed that 

UCP3 translocates fatty acid peroxides from the inner to the outer membrane leaflet, thus preserving 

macromolecules from being oxidized by very aggressive fatty acid peroxides [62,63], while its 

uncoupling effect is considered very low, due to its low content in skeletal muscle mitochondria [64]. 

Therefore, the up-regulation of UCP3 during aging could buffer oxidative damage, that otherwise could 

be even higher. 

In 2 year-old rats, an increase in the degree of lipid peroxidation was found only in SS mitochondria, 

although the decrease in proton leak is the same in both mitochondrial populations [52], while  
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Chabi et al. [32] studied senescent (3 years) rats and found that ROS production was enhanced in SS 

and IMF mitochondria. The differential susceptibility to oxidative stress of SS and IMF mitochondria 

could depend on their different content of UCP3. In fact, a significant increase in UCP3 content was 

evident in SS and IMF mitochondria from old rats, but it was more marked in IMF mitochondria (about 

10-fold) than in SS mitochondria (about 5-fold). Therefore, the lower increase in UCP3 content in SS 

mitochondria is probably the cause of the higher oxidative damage found in this mitochondrial 

population, while IMF mitochondria seem more protected by oxidative damage by the marked up-regulation 

of UCP3, so preserving the capacity to produce ATP for muscle contraction. One could speculate that, 

as aging proceeds, SS mitochondria undergo progressive oxidative damage with loss of functional 

activity. In fact, in senescent (30–36 month-old) animals, an increase in mitochondrial proton leak [65], 

a decrease in mitochondrial coupling [66] or a decrease in mitochondrial membrane potential in SS but 

not in IMF mitochondria has been found [32]. In conclusion, the increased coupling of SS mitochondria 

causes an increase of the oxidative damage in this mitochondrial population, that is located beneath the 

plasma membrane and provides ATP for membrane transports and signal transduction pathways [67]. 

On the other hand, IMF mitochondria, that provide ATP for muscle contraction, seems to be more 

protected from oxidative damage, and could thus increase their oxidative capacity and density in 

response to endurance training even in old age [68]. 

A decreased UCP3 content has been found in skeletal muscle mitochondria from old rats [31,69,70], 

but these results have been obtained using Fischer 344 rats, a rat strain that gain weight only moderately 

with age compared with other strains (i.e., Sprague-Dawley, Wistar, Long Evans) [8]. Therefore,  

it can be hypothesized that the regulation of UCP3 with aging in skeletal muscle mitochondria is 

strain-dependent. Therefore, it is possible that age-induced oxidative damage in skeletal muscle and  

age-induced obesity are intimately linked. Further studies on the degree of obesity and oxidative damage 

induced by aging in different strains and species are needed to substantiate the hypothesis. 

5. Conclusions 

In the rat model of human obesity the progression of aging is accompanied by an increased efficiency 

of SS and IMF mitochondria but an increased oxidative damage occurs only in the SS population. 

Therefore, a differential susceptibility of SS and IMF mitochondria to aging-induced damage emerges, 

although more studies on humans are needed to validate the differential effect of aging on the two 

mitochondrial populations. These observations also indicate that studies on changes in mitochondrial 

function induced by aging or other physiological stimuli should be carried out on the two different 

mitochondrial populations existing in skeletal muscle. 
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