Response of Different Genotypes of Faba Bean Plant to Drought Stress
Abstract
:1. Introduction
2. Results and Discussion
Treatments | Genotypes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Zafar 1 | Zafar 2 | Giza Blanka | Espan | Makmora | Shebam 1 | Giza 3 | C4 | C5 | G853 | |
Plant Height (cm) Plant−1 | ||||||||||
Control | 56.00 ± 0.58 ijk | 59.00 ± 0.58 ghi | 61.00 ± 0.58 fgh | 54.33 ± 1.20 jkl | 47.33 ± 1.20 no | 64.33 ± 1.86 ef | 58.00 ± 1.53 hij | 79.00 ± 0.58 c | 107.67 ± 1.45 a | 36.67 ± 0.88 st |
Mild | 45.67 ± 1.76 op | 56.00 ± 0.58 ijk | 57.33 ± 1.45 hij | 52.00 ± 1.15 lm | 31.33 ± 0.33 uv | 62.00 ± 1.53 fg | 40.00 ± 1.73 qrs | 70.33 ± 0.33 d | 86.67 ± 0.88 b | 25.67 ± 0.88 w |
Moderate | 37.33 ± 1.20 rs | 42.33 ± 1.45 pq | 50.00 ± 1.00 mn | 45.33 ± 1.76 op | 30.00 ± 1.53 uv | 39.00 ± 1.73 qrs | 52.67 ± 1.86 klm | 66.67 ± 0.88 e | 73.67 ± 0.33 d | 19.00 ± 0.58 x |
Severe | 28.67 ± 1.67 vw | 38.67 ± 0.33 qrs | 33.67 ± 0.88 tu | 41.00 ± 1.73 qr | 21.67 ± 0.88 x | 28.33 ± 1.20 vw | 32.67 ± 1.76 u | 58.00 ± 0.58 hij | 66.67 ± 0.88 e | 13.67 ± 0.33 y |
Shoot FW (g) Plant−1 | ||||||||||
Control | 5.63 ± 0.48 cd | 5.10 ± 0.12 cdef | 4.87 ± 0.44 cdefgh | 5.70 ± 0.10 cd | 5.13 ± 0.03 cdef | 5.47 ± 0.78 cd | 5.00 ± 0.06 cdefg | 6.00 ± 0.31 c | 8.50 ± 0.23 a | 2.40 ± 0.06 nopqrs |
Mild | 2.97 ± 0.87 klmnopqr | 3.53 ± 0.82 hijklmno | 4.70 ± 0.32 defghij | 4.53 ± 0.35 defghi | 4.73 ± 0.12 cdefgh | 3.77 ± 0.43 fghijklm | 4.07 ± 0.46 efghijk | 4.87 ± 0.12 cdefgh | 7.17 ± 0.15 b | 2.20 ± 0.06 opqrst |
Moderate | 2.13 ± 0.52 pqrst | 2.03 ± 0.29 pqrst | 4.07 ± 0.50 efghijk4 | 3.13 ± 0.83 jklmnopq | 1.80 ± 0.38 qrst | 3.70 ± 0.15 ghijklmn | 3.90 ± 0.21 efghijkl | 4.00 ± 0.15 efghijkl | 5.27 ± 0.09 cde | 1.43 ± 0.24 stu |
Severe | 1.67 ± 0.35 rstu | 2.43 ± 0.75 mnopqrs | 3.27 ± 0.32 ijklmnoq | 2.67 ± 0.60 lmnopqrs | 0.90 ± 0.25 tu | 1.97 ± 0.49 pqrst | 3.17 ± 0.43 ijklmnop | 2.70 ± 0.06 lmnopqrs | 4.37 ± 0.15 defghij | 0.50 ± 0.06 u |
Shoot DW (g) Plant−1 | ||||||||||
Control | 0.76 ± 0.16 ab | 0.63 ± 0.06 abcdef | 0.70 ± 0.23 abc | 0.73 ± 0.07 ab | 0.59 ± 0.02 bcdefg | 0.56 ± 0.07 bcdefgh | 0.57 ± 0.02 bcdefgh | 0.56 ± 0.04 bcdefgh | 0.83 ± 0.03 a | 0.40 ± 0.01 ghijklm |
Mild | 0.46 ± 0.02 efghijk | 0.40 ± 0.12 ghijklm | 0.67 ± 0.06 abcde | 0.50 ± 0.01 cdefghi | 0.46 ± 0.07 efghijkl | 0.44 ± 0.06 fghijklm | 0.45 ± 0.06 fghijklm | 0.37 ± 0.07 ghijklm | 0.68 ± 0.02 abcd | 0.29 ± 0.01 ijklm |
Moderate | 0.41 ± 0.01 fghijklm | 0.30 ± 0.09 ijklm | 0.46 ± 0.05 efghijkl | 0.45 ± 0.05 fghijklm | 0.36 ± 0.02 hijklm | 0.42 ± 0.06 fghijklm | 0.47 ± 0.03 defghij | 0.25 ± 0.00 klm | 0.50 ± 0.01 cdefghi | 0.24 ± 0.07 lm |
Severe | 0.30 ± 0.01 ijklm | 0.23 ± 0.07 m | 0.41 ± 0.03 ghijklm | 0.42 ± 0.06 fghi | 0.24 ± 0.05 klm | 0.28 ± 0.03 ijklm | 0.28 ± 0.03 ijklm | 0.25 ± 0.01 jklm | 0.35 ± 0.01 hijklm | 0.01 ± 0.00 n |
Area (cm2) Leaf−1 | ||||||||||
Control | 20.00 ± 0.58 c | 13.34 ± 0.69 fgh | 12.25 ± 0.89 ghij | 15.60 ± 0.74 de | 14.79 ± 0.41 ef | 14.91 ± 0.55 ef | 12.59 ± 0.47 ghi | 7.63 ± 0.15 opqrs | 27.33 ± 0.88 a | 8.53 ± 0.34 nopqr |
Mild | 17.00 ± 0.58 d | 11.82 ± 0.32 hij | 12.17 ± 0.58 ghij | 13.91 ± 0.36 efg | 11.38 ± 0.35 ijk | 10.94 ± 0.88 ijkl | 10.79 ± 0.76 ijklm | 6.56 ± 0.53 rstu | 23.37 ± 0.32 b | 7.17 ± 0.18 pqrst |
Moderate | 11.33 ± 0.88 ijk | 8.73 ± 0.44 nopq | 9.77 ± 0.79 klmn | 9.35 ± 0.34 lmno | 8.51 ± 0.71 nopqr | 9.00 ± 0.58 mnop | 9.78 ± 0.53 klmn | 6.17 ± 0.15 stu | 20.00 ± 0.58 c | 5.98 ± 0.39 stu |
Severe | 10.63 ± 0.55 jklm | 7.27 ± 0.92 pqrst | 7.41 ± 0.89 opqrst | 5.65 ± 0.42 tuv | 7.00 ± 0.47 qrst | 7.15 ± 0.69 p | 7.92 ± 0.56 nopqrs | 5.03 ± 0.93 uv | 16.76 ± 0.39 d | 4.10 ± 0.32 v |
Treatments | Genotypes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Zafar 1 | Zafar 2 | Giza Blanka | Espan | Makamora | Shebam 1 | Giza 3 | C4 | C5 | G853 | |
RWC % | ||||||||||
Control | 75.19 ± 0.36 de | 78.15 ± 0.28 b | 73.23 ± 0.29 f | 71.05 ± 0.69 g | 73.03 ± 0.33 f | 76.51 ± 0.76 cd | 69.14 ± 0.10 h | 76.89 ± 0.44 bc | 80.84 ± 0.33 a | 62.71 ± 0.55 n |
Mild | 64.89 ± 0.50 lm | 70.84 ± 0.53 g | 66.14 ± 0.89 ijkl | 69.24 ± 0.44 h | 71.24 ± 0.58 g | 64.14 ± 0.66 m | 65.20 ± 0.50 klm | 65.09 ± 0.38 klm | 74.03 ± 0.13 ef | 53.89 ± 0.05 r |
Moderate | 66.92 ± 0.33 ij | 66.26 ± 0.37 ijkl | 60.96 ± 0.70 o | 66.51 ± 0.59 ijk | 55.71 ± 0.60 q | 57.18 ± 0.69 p | 60.92 ± 0.30 o | 60.20 ± 0.55 o | 68.12 ± 0.23 hi | 50.13 ± 0.18 tu |
Severe | 34.48 ± 0.46 z | 44.39 ± 0.30 w | 49.19 ± 0.11 uv | 41.79 ± 0.20 x | 45.26 ± 0.45 w | 48.15 ± 0.11 v | 50.87 ± 0.26 st | 38.23 ± 0.94 y | 52.09 ± 0.14 s | 25.82 ± 0.65 z |
Pro (μg−1·FW) | ||||||||||
Control | 0.91 ± 0.01 opq | 1.30 ± 0.02 hijkl | 0.90 ± 0.06 pq | 1.05 ± 0.02 lmnopq | 0.56 ± 0.03 r | 0.89 ± 0.07 pq | 0.91 ± 0.03 opq | 1.21 ± 0.03 ijklmn | 1.34 ± 0.01 hijk | 0.49 ± 0.02 r |
Mild | 1.11 ± 0.01 klmnopq | 1.85 ± 0.02 f | 1.17 ± 0.03 ijklmnop | 1.21 ± 0.09 e | 0.99 ± 0.01 mnopq | 0.91 ± 0.05 opq | 1.10 ± 0.05 klmnopq | 1.45 ± 0.01 hi | 2.42 ± 0.02 d | 0.51 ± 0.03 r |
Moderate | 1.78 ± 0.03 fg | 2.28 ± 0.06 de | 1.24 ± 0.01 ijklm | 2.11 ± 0.05 ijklmn | 1.19 ± 0.02 ijklmno | 1.19 ± 0.01 ijklmno | 1.21 ± 0.07 ijklmn | 1.55 ± 0.01 gh | 2.82 ± 0.01 c | 0.84 ± 0.01 fg |
Severe | 2.29 ± 0.11 de | 3.11 ± 0.42 b | 1.43 ± 0.02 hijk | 2.53 ± 0.03 d | 1.82 ± 0.08 f | 1.52 ± 0.17 h | 1.16 ± 0.01 jklmnop | 2.82 ± 0.03 c | 3.65 ± 0.06 a | 0.94 ± 0.01 nopq |
Total Chl (mg·g−1·FW) | ||||||||||
Control | 40.47 ± 0.53 cde | 40.07 ± 0.74 cde | 40.87 ± 0.59 cd | 41.50 ± 0.42 bcd | 38.77 ± 0.67 efg | 37.43 ± 0.76 gh | 38.00 ± 0.06 f | 41.97 ± 0.24 bcd | 46.77 ± 0.59 a | 35.00 ± 0.58 j |
Mild | 37.27 ± 0.62 ghi | 38.00 ± 0.85 fg | 35.40 ± 0.23 ij | 35.37 ± 0.35 ij | 38.00 ± 0.58 fg | 32.77 ± 0.19 kl | 37.67 ± 0.88 fg | 39.67 ± 0.39 def | 42.80 ± 0.23 b | 27.00 ± 0.58 p |
Moderate | 35.60 ± 0.60 hij | 32.33 ± 0.88 l | 34.43 ± 0.70 jk | 32.40 ± 0.83 l | 32.83 ± 0.44 kl | 29.27 ± 0.43 no | 32.57 ± 0.78 kl | 35.67 ± 0.93 hij | 37.80 ± 0.46 fg | 23.67 ± 0.88 q |
Severe | 32.00 ± 0.58 l | 26.83 ± 0.44 p | 27.80 ± 0.20 op | 29.90 ± 0.90 mn | 31.03 ± 0.98 lmn | 29.27 ± 0.73 no | 32.23 ± 0.62 l | 29.73 ± 0.37 mn | 31.43 ± 0.43l m | 18.67 ± 0.88 r |
Treatments | Genotypes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Zafar 1 | Zafar 2 | Giza Blanka | Espan | Makamora | Shebam 1 | Giza 3 | C4 | C5 | G853 | |
Electrolyte Leakage (%) | ||||||||||
Control | 32.67 ± 1.45 n | 37.00 ± 1.15 n | 35.33 ± 1.45 n | 36.00 ± 1.53 n | 37.67 ± 1.45 n | 43.33 ± 1.76 m | 37.33 ± 1.20 n | 37.67 ± 1.45 n | 35.00 ± 0.58 n | 47.00 ± 1.15 klm |
Mild | 45.00 ± 2.65 m | 46.67 ± 1.20 klm | 46.33 ± 0.88 lm | 48.00 ± 1.53 klm | 55.33 ± 1.20 ij | 55.33 ± 1.76 ij | 51.33 ± 1.86 jkl | 45.33 ± 1.45 m | 45.00 ± 2.65 m | 57.67 ± 1.45 hi |
Moderate | 55.67 ± 2.03 ij | 55.33 ± 2.03 ij | 53.67 ± 2.33 ij | 64.00 ± 2.65 efg | 66.00 ± 1.73 defg | 66.00 ± 2.08 defg | 57.67 ± 0.88 hi | 61.67 ± 1.20 gh | 51.67 ± 2.03 jk | 66.67 ± 1.67 defg |
Severe | 66.00 ± 1.53 defg | 67.00 ± 1.15 def | 69.00 ± 0.58 cde | 70.33 ± 0.88 cd | 76.33 ± 2.19 ab | 72.33 ± 1.20 bc | 67.67 ± 1.33 cde | 76.00 ± 1.53 ab | 62.33 ± 1.45 fgh | 77.67 ± 1.45 a |
MDA Content (nmol·g−1·FW) | ||||||||||
Control | 27.33 ± 1.20 n | 27.00 ± 1.15 n | 24.67 ± 2.03 n | 26.00 ± 1.53n | 27.67 ± 1.45 n | 33.33 ± 1.76 m | 25.00 ± 0.58 n | 27.67 ± 1.45 n | 22.33 ± 1.45 n | 37.00 ± 1.15 lm |
Mild | 41.33 ± 1.86 kl | 36.67 ± 1.20 lm | 36.33 ± 0.88 lm | 38.00 ± 1.53 lm | 45.33 ± 1.20 jk | 45.33 ± 1.76 jk | 35.00 ± 2.65 m | 35.33 ± 1.45 m | 35.00 ± 2.65 m | 47.67 ± 1.45 ij |
Moderate | 45.67 ± 2.03 jk | 45.33 ± 2.03 jk | 51.67 ± 1.20 hi | 54.00 ± 2.65 fgh | 56.00 ± 1.73 efgh | 56.00 ± 2.08 efgh | 47.67 ± 0.88 ij | 43.67 ± 2.33 jk | 45.00 ± 1.73 jk | 57.67 ± 1.45 defg |
Severe | 55.33 ± 2.03 efgh | 60.33 ± 0.88 cde | 58.33 ± 1.20 def | 62.33 ± 1.20 bcd | 64.33 ± 2.60 abc | 55.33 ± 1.86 efgh | 57.67 ± 1.33 defg | 67.00 ± 1.53 ab | 52.33 ± 1.45 ghi | 67.67 ± 1.45 a |
H2O2 Content (mμ·mol g−1·leaf·FW) | ||||||||||
Control | 15.00 ± 0.58 q | 18.67 ± 0.88 o | 16.00 ± 0.58 pq | 18.00 ± 1.15 op | 18.00 ± 0.58 op | 18.67 ± 0.88 o | 20.00 ± 0.58 no | 19.00 ± 0.58 o | 15.00 ± 0.58 q | 18.67 ± 0.33 o |
Mild | 23.33 ± 0.88 lm | 24.67 ± 0.67 kl | 22.00 ± 1.15 mn | 24.00 ± 0.58 lm | 20.33 ± 0.88 no | 26.00 ± 0.58 jkl | 27.00 ± 1.15 jk | 25.00 ± 0.58 kl | 19.00 ± 0.58 o | 25.33 ± 0.88 kl |
Moderate | 29.67 ± 0.88 hi | 28.33 ± 0.8 8 ij | 29.67 ± 0.88 hi | 30.00 ± 1.15 hi | 26.00 ± 1.15 jkl | 31.00 ± 0.58 gh | 33.33 ± 0.88 efg | 27.00 ± 0.58 jk | 23.33 ± 0.88 lm | 32.00 ± 1.15 fgh |
Severe | 34.67 ± 0.88 cde | 33.67 ± 0.88 def | 35.00 ± 0.58 cde | 37.67 ± 0.88 b | 31.33 ± 0.88 fgh | 36.00 ± 0.58 bcd | 37.00 ± 0.58 bc | 31.67 ± 0.88 fgh | 28.33 ± 0.88 ij | 43.67 ± 0.88 a |
Treatments | Genotypes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Zafar 1 | Zafar 2 | Giza Blanka | Espan | Makamora | Shebam 1 | Giza 3 | C4 | C5 | G853 | |
CAT Activity (units·mg −1·protein·min −1) | ||||||||||
Control | 130.3 ± 0.88 r | 142.7 ± 1.45 pq | 143.0 ± 1.15 pq | 143.3 ± 2.60 pq | 165.0 ± 1.73 lm | 155.0 ± 1.73 no | 191.0 ± 2.08 fg | 149.7 ± 1.45 nop | 180.0 ± 3.61 hi | 139.3 ± 0.88 q |
Mild | 148.7 ± 1.76 op | 178.0 ± 1.73 hi | 156.0 ± 2.08 n | 167.7 ± 3.76 klm | 172.3 ± 1.20 jk | 171.0 ± 2.08 jk | 197.0 ± 2.31 f | 181.3 ± 1.86 hi | 206.0 ± 3.06 e | 154.7 ± 2.60 no |
Moderate | 164.7 ± 1.76 lm | 195.0 ± 1.73 f | 163.0 ± 2.08 m | 178.0 ± 1.53 hi | 182.3 ± 1.45 h | 184.0 ± 1.53 h | 194.0 ± 5.13 f | 209.0 ± 3.21 e | 222.7 ± 1.45 cd | 163.3 ± 2.03 m |
Severe | 247.7 ± 1.45 a | 204.3 ± 2.33 e | 185.3 ± 2.03 gh | 216.3 ± 4.10 d | 194.0 ± 2.31 f | 223.7 ± 2.73 c | 220.3 ± 1.20 cd | 237.3 ± 2.33 b | 242.7 ± 1.76 ab | 175.0 ± 1.73 ij |
POD Activity (unit·min−1·g−1·FW) | ||||||||||
Control | 20.50 ± 0.23 kl | 20.33 ± 0.32 lm | 13.70 ± 0.12 q | 16.27 ± 0.27 o | 19.83 ± 0.15 lm | 11.27 ± 0.27 r | 16.43 ± 0.24 o | 9.87 ± 0.47 s | 21.33 ± 0.23 jk | 13.63 ± 0.18 q |
Mild | 23.10 ± 0.31 hi | 23.30 ± 0.31 hi | 16.30 ± 0.23 ° | 19.50 ± 0.17 m | 23.50 ± 0.21 gh | 13.90 ± 0.23 q | 20.40 ± 0.32 lm | 11.93 ± 0.47 r | 24.67 ± 0.12 ef | 15.70 ± 0.26 op |
Moderate | 25.37 ± 0.18 e | 25.53 ± 0.23 e | 19.77 ± 0.47 lm | 21.60 ± 0.15 j | 26.57 ± 0.18 d | 18.50 ± 0.23 n | 24.30 ± 0.26 fg | 15.30 ± 0.26 p | 27.23 ± 0.24 bcd | 20.40 ± 0.32 lm |
Severe | 27.50 ± 0.23 bc | 26.67 ± 0.30 cd | 24.47 ± 0.85 f | 24.33 ± 0.32 fg | 28.10 ± 0.12 b | 20.53 ± 0.23 kl | 26.53 ± 0.23 d | 18.30 ± 0.29 n | 29.50 ± 0.21 a | 22.47 ± 0.20 i |
SOD Activity (units·mg−1·protein·min−1) | ||||||||||
Control | 9.33 ± 0.33 rst | 10.00 ± 0.58 qrs | 11.00 ± 0.58 pqr | 6.00 ± 0.58 v | 8.00 ± 0.58 tu | 7.00 ± 0.58 uv | 8.67 ± 0.33 stu | 7.33 ± 0.33 uv | 11.33 ± 0.33 pq | 14.00 ± 0.58 mn |
Mild | 15.33 ± 0.67 lm | 14.00 ± 0.58 mn | 14.67 ± 0.67 lmn | 14.00 ± 0.58 mn | 12.00 ± 0.58 op | 9.67 ± 0.33 qrst | 11.33 ± 0.33 pq | 13.33 ± 0.33 no | 17.67 ± 0.33 ijk | 15.67 ± 0.67 lm |
Moderate | 20.00 ± 0.58 efg | 19.00 ± 0.58 ghi | 20.00 ± 0.58 efg | 18.00 ± 0.58 hij | 17.67 ± 0.88 ijk | 14.00 ± 0.58 mn | 16.00 ± 1.15 kl | 16.33 ± 0.33 jkl | 21.33 ± 0.88 def | 18.67 ± 0.33 ghi |
Severe | 25.00 ± 0.58 b | 24.00 ± 0.58 bc | 25.00 ± 0.58 b | 22.67 ± 0.88 cd | 21.67 ± 0.88 de | 24.33 ± 0.33 bc | 21.00 ± 0.58 def | 19.67 ± 0.33 fgh | 28.00 ± 0.58 a | 20.33 ± 0.33 efg |
3. Experimental Section
3.1. Plant and Treatment
3.2. Determination of Physio-Biochemical Characteristics
3.2.1. Leaf Relative Water Content
3.2.2. Total Chlorophyll Concentration
3.2.3. Proline Concentration
3.2.4. MDA Concentration
3.2.5. Electrolyte Leakage
3.2.6. Hydrogen Peroxide (H2O2)
3.3. Determination of Antioxidant Enzymes’ Activity
3.4. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blum, A. Drought resistance—Is it really a complex trait? Funct. Plant Biol. 2011, 38, 753–757. [Google Scholar] [CrossRef]
- Zlatev, Z.; Lidon, F.C. An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir. J. Food Agric. 2012, 24, 57–72. [Google Scholar] [CrossRef]
- De Carvalho, M.H.C. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal. Behav. 2008, 3, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Cornic, G. Drought stress inhibits photosynthesis by decreasing stomatal aperture: Not by affecting ATP synthesis. Trend Plant Sci. 2000, 5, 187–188. [Google Scholar] [CrossRef]
- Parry, M.A.J.; Androlojc, P.J.; Khan, S.; Lea, P.J.; Keys, A.J. Rubisco activity: Effects of drought stress. Ann. Bot. 2002, 89, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Bota, J.; Medrano, H.; Flexas, J. Is photosynthesis limited by decreased Rubisco acivity and RuBP content under progressive water stress? New Phytol. 2004, 162, 671–681. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Sankar, B.; Murali, P.V.; Gomathinayagam, M.; Lakshmanan, G.M.A.; Panneerselvam, R. Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; Impacts on ajmalicine accumulation. Colloids Surf. B 2008, 62, 105–111. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A.; Wahid, A.; Cheema, Z.A.; Cheema, M.A.; Khaliq, A. Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza. sativa L.). J. Agron. Crop Sci. 2008, 194, 325–333. [Google Scholar] [CrossRef]
- Shinozaki, K.; Yamaguchi-Shinozaki, K. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 2007, 58, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.H.; Khan, M.N.; Mohammad, F.; Khan, M.M.A. Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. J. Agron. Crop Sci. 2008, 194, 214–224. [Google Scholar] [CrossRef]
- Razmjoo, K.; Heydarizadeh, P.; Sabzalian, M.R. Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria. chamomile. Int. J. Agric. Biol. 2008, 10, 451–454. [Google Scholar]
- Barnabás, B.; Jäger, K.; Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [PubMed]
- FAOSTAT, Food and Agriculture Organization. 2009. Available online: http://faostat.fao.org/site/567/default.aspx#ancor (accessed on 17 April 2015).
- Blair, M.W.; Soler, A.; Cortès, A.J. Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS ONE 2012, 7, 10–11. [Google Scholar]
- Cortès, A.J.; Monserrate, F.A.; Ramírez-Villegas, J.; Madriñán, S.; Blair, M.W. Drought tolerance in wild plant populations: The case of common beans (Phaseolus. vulgaris L.). PLoS ONE 2013, 8, 1–10. [Google Scholar]
- Cortés, A.J.; This, D.; Chavarro, C.; Madriñán, S.; Blair, M.W. Nucleotide diversity patterns at the drought-related DREB2 encoding genes in wild and cultivated common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 2012, 125, 1069–1085. [Google Scholar] [CrossRef] [PubMed]
- Loss, S.P.; Siddique, K.H.M. Adaptation of faba bean (Vicia faba L.) to dryland Mediterranean-type environments I. Seed yield and yield components. Field Crop. Res. 1997, 53, 17–28. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wahid, A.; Siddique, K.H.M. Drought stress in plants: An overview. In Plant Responses to Drought Stress from Morphological to Molecular Features; Aroca, R., Ed.; Springer-Verlag: Berlin, Germany, 2012; pp. 1–36. [Google Scholar]
- Yordanov, I.; Velikova, V.; Tsonev, T. Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol. 2003, Special Issue 2003, 187–206. [Google Scholar]
- Ouzounidou, G.; Ilias, I.F.; Giannakoula, A.; Theocharidou, I. Effect of water stress and NaCl triggered changes on yield, physiology, biochemistry of broad bean (Vicia faba L.) plants and on quality of harvested pods. Biologia 2014, 69, 1010–1017. [Google Scholar] [CrossRef]
- Ali, H.M.; Siddiqui, M.H.; Al-Whaibi, M.H.; Basalah, M.O.; Sakran, A.M.; El-Zaidy, M. Effect of proline and abscisic acid on the growth and physiological performance of faba bean under water stress. Pak. J. Bot. 2013, 45, 933–940. [Google Scholar]
- Asrar, A.W.A.; Elhindi, K.M. Alleviation of drought stress of marigold (Tagetes. erecta) plants by using arbuscular mycorrhizal fungi. Saudi J. Biol. Sci. 2011, 18, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, S.W.; Nguyan, H.T.; Holaday, A.S. Leaf Water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop. Sci. 1990, 30, 105–111. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, M.; Hu, J.; Zhang, X.; Wang, K.; Ashraf, M. Modulation role of abscisic acid (ABA) on growth, water relations and glycinebetaine metabolism in two maize (Zea. mays L.) cultivars under drought stress. Int. J. Mol. Sci. 2012, 13, 3189–3202. [Google Scholar] [CrossRef] [PubMed]
- Khanna-Chopra, R.; Selote, D.S. Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environ. Exp. Bot. 2007, 60, 276–283. [Google Scholar] [CrossRef]
- Blum, A.; Ebercon, A. Genotypic responses in sorghum to drought stress. III. Free proline accumulation and drought resistance. Crop Sci. 1976, 16, 428–431. [Google Scholar] [CrossRef]
- Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.C.; Sohrabi, Y. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop Sci. 2010, 4, 580–585. [Google Scholar]
- Reddy, M.P.; Vora, A.B. Changes in pigment composition, Hill reaction activity and saccharides metabolism in Bajra (Pennisetum typhoides S & H) leaves under NaCl salinity. Photosynthetica 1986, 20, 50–55. [Google Scholar]
- Terzi, R.; Kadioglu, A. Drought stress tolerance and the antioxidant enzyme system in Ctenanthe setosa. Acta Biol. Crac. Ser. Bot. 2006, 48, 89–96. [Google Scholar]
- Quan, R.; Shang, M.; Zhang, H.; Zhao, Y.; Zhang, J. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol. J. 2004, 2, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Huang, B. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 2001, 41, 436–442. [Google Scholar] [CrossRef]
- Foyer, C.H.; Fletcher, J.M. Plant antioxidants: Colour me healthy. Biologist 2001, 48, 115–120. [Google Scholar] [PubMed]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Sakran, A.M.; Basalah, M.O.; Ali, H.M. Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress. Int. J. Mol. Sci. 2012, 13, 6604–6619. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.S.; Johnston, C.M.; Cornforth, I.S. Comparison of nutrient solutions for growth of plants in sand culture. New Phytol. 1983, 94, 537–548. [Google Scholar] [CrossRef]
- Gulen, H.; Eris, A. Some physiological changes in strawberry (Fragaria × Ananassa. cv. “Camarosa”) plants under heat stress. J. Hort. Sci. Biotechnol. 2003, 78, 894–898. [Google Scholar]
- Arnon, D.I. Copper enzymes in isolated chloroplast. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 9, 205–207. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Lutts, S.; Kinet, J.M.; Bouharmont, J. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J. Exp. Bot. 1995, 46, 1843–1852. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Chance, B.; Maehly, A.C. Assay of catalase and peroxidases. Methods Enzymol. 1955, 2, 764–775. [Google Scholar]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqui, M.H.; Al-Khaishany, M.Y.; Al-Qutami, M.A.; Al-Whaibi, M.H.; Grover, A.; Ali, H.M.; Al-Wahibi, M.S.; Bukhari, N.A. Response of Different Genotypes of Faba Bean Plant to Drought Stress. Int. J. Mol. Sci. 2015, 16, 10214-10227. https://doi.org/10.3390/ijms160510214
Siddiqui MH, Al-Khaishany MY, Al-Qutami MA, Al-Whaibi MH, Grover A, Ali HM, Al-Wahibi MS, Bukhari NA. Response of Different Genotypes of Faba Bean Plant to Drought Stress. International Journal of Molecular Sciences. 2015; 16(5):10214-10227. https://doi.org/10.3390/ijms160510214
Chicago/Turabian StyleSiddiqui, Manzer H., Mutahhar Y. Al-Khaishany, Mohammed A. Al-Qutami, Mohamed H. Al-Whaibi, Anil Grover, Hayssam M. Ali, Mona S. Al-Wahibi, and Najat A. Bukhari. 2015. "Response of Different Genotypes of Faba Bean Plant to Drought Stress" International Journal of Molecular Sciences 16, no. 5: 10214-10227. https://doi.org/10.3390/ijms160510214
APA StyleSiddiqui, M. H., Al-Khaishany, M. Y., Al-Qutami, M. A., Al-Whaibi, M. H., Grover, A., Ali, H. M., Al-Wahibi, M. S., & Bukhari, N. A. (2015). Response of Different Genotypes of Faba Bean Plant to Drought Stress. International Journal of Molecular Sciences, 16(5), 10214-10227. https://doi.org/10.3390/ijms160510214