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Abstract: Autism spectrum disorders are a group of mental illnesses highly correlated with 

gastrointestinal dysfunction. Recent studies have shown that there may be one or more 

microbial “fingerprints” in terms of the composition characterizing individuals with autism, 

which could be used for diagnostic purposes. This paper proposes a computational approach 

whereby metagenomes characteristic of “healthy” and autistic individuals are artificially 

constructed via genomic information, analyzed for the enzymes coded within, and then these 

enzymes are compared in detail. This is a text mining application. A custom-designed online 

application was built and used for the comparative metabolomics study and made publically 

available. Several of the enzyme-catalyzing reactions involved with the amino acid glutamate 

were curiously missing from the “autism” microbiome and were coded within almost  

every organism included in the “control” microbiome. Interestingly, there exists a leading 

hypothesis regarding autism and glutamate involving a neurological excitation/inhibition 

imbalance; but the association with this study is unclear. The results included data on the 

transsulfuration and transmethylation pathways, involved with oxidative stress, also of 

importance to autism. The results from this study are in alignment with leading hypotheses 

in the field, which is impressive, considering the purely in silico nature of this study. The 

present study provides new insight into the complex metabolic interactions underlying 

autism, and this novel methodology has potential to be useful for developing new 

hypotheses. However, limitations include sparse genome data availability and conflicting 
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literature experimental data. We believe our software tool and methodology has potential  

for having great utility as data become more available, comprehensive and reliable. 

Keywords: autism; metabolomics; comparative; microbial; computational; bioinformatics; 

biomarkers; gut; gastrointestinal; microbiome 

 

1. Introduction 

Autism spectrum disorders are a category of mental illnesses characterized by social cognitive 

impairments and stereotyped behaviors [1]. Autistic individuals often have trouble fitting into society 

and put a financial burden on their families, lifelong. Autism diagnosis has been steadily on the rise in 

the past decade or so, affecting one in every 88 children according to a source in 2012 [1] and one in 

every 68 children from current data (2015) from the Centers for Disease Control and Protection [2]. 

There are most likely many adults suffering from autism that have never been diagnosed. This is because 

there is as of yet no clear method to diagnose autism; diagnosis is purely based on making qualitative 

observations of an individual. This is why there is a pressing need to find reliable methods for autism 

diagnosis and for treatment, as well. 

Recent research suggests that individuals with autism often suffer from gastrointestinal dysfunction, 

as well [3,4]. Rather than focusing on the illness by way of human genetics, many scientists are now 

exploring the impact of microbial genetics. There exists a full isolated ecosystem of microbial lifeforms 

that inhabit the human gastrointestinal tract. These microbes have a profound impact on the health and 

disease of the human host and in general have a symbiotic co-existence with the host [5]. Microbial 

species or strain composition is believed to largely contribute to homeostasis or abnormality in humans. 

While each person’s microbial “fingerprint” is unique, there are specific patterns seen in those that are 

healthy and those that have specific illnesses [6,7]. Remarkably, autism has been correlated with the 

overgrowth of certain types of bacteria, such as certain species of Clostridia [8,9] and Desulfovibrio [9,10], 

and there is some preliminary evidence that Sutterella may be implicated, as well [11]. Data from the 

pyrosequencing study by Finegold et al. [9] suggested that several other organisms may be implicated in 

autism, as well, but these results were less significant than those implicating Clostridia and Desulfovibrio. 

Nonetheless, one organism, Akkermansia, was chosen from among these organisms to be included in 

the study, to see how much of an impact these less significant organisms might have. Akkermansia is 

part of the Verrucomicrobia phylum. According to a study by Williams et al. [12] where live intestinal 

biopsies were taken to measure bacterial composition, Verrucomicrobia made up approximately 1% of 

the total bacterial composition in individuals with autism and only 0.5% in healthy age-matched controls. 

This was another leading factor for the decision to include Akkermansia in the present study. 

As one might expect, as bacterial composition has an effect on health and disease, the molecular 

metabolites that these microbes produce are the “tools” that carry out these biological changes.  

For example, individuals with autism have been cited as having sulfur metabolic deficiencies, to suffer 

from elevated oxidative stress and to have trouble detoxifying xenobiotic compounds and heavy  

metals [13–15]. It is therefore important to analyze the metabolome of these individuals and that of 

healthy individuals (for control) in order to identify useful biomarkers and perhaps even gain a greater 
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understanding of the disorder. Knowledge may be gained about other related illnesses, as well, such as 

others related to gastrointestinal dysfunction. 

Metagenomics is the study of the genetic content contained in whole microbial ecosystems isolated 

from natural environments [16,17]. In contrast, the more traditional genomics is the study of only DNA 

from a single, isolated species or strain of organism. Metagenomics therefore brings with it new 

challenges in bioinformatics. This is because before regular genomics can be applied to each organism, 

the key organisms need to be identified by aligning sample DNA reads to reference sequences contained 

in curated databases [18]. Of course, the environment that this study focuses on is the human gut 

microbiome. This study does not use the conventional methods of metagenomics, but rather simplifies 

the problem by constructing artificial metagenomes based on genomes of organisms already known to 

be contained in the target environment. There are numerous pieces of literature already describing the 

composition of microbes contained in autistic individuals and “healthy” individuals. The present study 

constructs a metagenomics “model”, rather than conducting a pure metagenomics study. 

2. Methods 

The literature suggests that there are distinct microbiomes characteristic of a “healthy” individual and 

that of an autistic individual [4]. Therefore, the first step was to choose the microorganisms to represent 

these microbiomes. It was the intended goal to be as comprehensive as possible with this step, so that  

all possible enzymes and metabolites that are possible to exist in urinary or stool samples are covered. 

Choosing the correct microorganisms can be tricky, as sometimes there are conflicting data or 

interpretations of data in different literature [19]. Another quandary is whether to include the more 

common organisms in both microbiomes studied or to only include the “problem” organisms; that is,  

the microorganisms thought to cause the main differences between the two microbiomes. In the latter 

case, the autistic microbiome could be represented with just a few species of microbe. The end goal is 

to find the key enzymes and metabolites expressed that are entirely different in the autistic individual. 

Of course, autism is a complex disorder with multiple different pathways for pathogenesis, so the autistic 

microbiome chosen will try to represent all cases of autism arising from gut microbiological origin. 

Only those microorganisms thought to be represented in significantly higher amounts (proportionally) 

in the guts of autistic individuals were chosen for the autistic microbiome, with the core microorganisms 

representative of a healthy human gut for the control microbiome. However, there is still no consensus 

on what defines a typical “healthy” gut microbiome, so the “control” microbiome was chosen based on 

a few key steps. First, those microbes that have been reported to be in decreased quantities in autism 

were included in the “control” microbiome [9,12,20]. Next, those reported to have no change in 

composition were included. Finally, other organisms that are normally found in the human gut, but that 

had very little discussion in related autism literature were included in the “control” microbiome.  

To facilitate this final step, we have unpublished work where the MEtaGenome Analyzer (MEGAN 

software) [21,22] was used to analyze three sets of metagenomic data from the Human Microbiome 

Project’s collection of human stool samples [6,23]. These design criteria may seem confusing at first if 

we take into consideration that those microorganisms that are decreased in autism are nonetheless still 

implicated in autism, just like those organisms that are found in increased amounts. However, our design 

considerations are predicated on the assumption that those organisms that are found in decreased 
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numbers in autism are in fact usually beneficial for the host in otherwise “healthy” microbiomes. There 

is at least some evidence for two such cases: Lactobacillus species and Bifidobacterium species [24]. 

We can therefore justify stratifying gut microbes into two groupings based on a simple binary distinction: 

those microbes that are found in increased numbers in autism and those microbes that are not found in 

increased numbers in autism. Comparing these two groups should reveal key differences in expressed 

enzymes. Thus, finding enzymes that are expressed in the “autism” group and not in the “control” group 

may identify metabolites indicative only of our “problem” organisms and thus may serve as potential 

biomarkers for autism. On the other hand, finding enzymes that are expressed by the “control” group 

and not the “autism” group may also identify key biomarkers, except in this case, clinicians may be able 

to look for decreased quantities of such molecules instead. 

Enzyme Commission (EC) numbers were used for the comparative analysis. EC numbers are  

a standardized way to identify enzymes, much like CAS numbers (Chemical Abstracts Service) for 

common chemicals. GenBank files for each microbe were downloaded from the National Center for 

Biotechnology Information (NCBI) [25]. The limitations of this study occurred at this stage. Not all 

microbes known have a completely sequenced genome uploaded to NCBI, and even less still have  

their protein products annotated with EC numbers. This greatly limited which organisms could be  

used in the study. The following list organizes microorganisms into three categories: those included  

in the first software query, those additional organisms that were able to be included in Query 2 after  

de novo EC number annotations were made (more detail later) and those organisms that were desired  

to be included, but in the end were not. 

The usual approach for metagenomics presents significant bottlenecks for analysis and data storage. 

This is why the idea came about that there may be another approach that is more efficient in very specific 

circumstances. Instead of using metagenomic data, this study attempts to construct an artificial 

metagenome by carefully choosing the microorganisms to include in the model and using the curated 

database of GenBank files to analyze the full spectra of enzymes coded in the genomic DNA of these 

organisms. This study is differentiated from a proteomics study, because we are only interested in 

proteins that have been assigned a standardized Enzyme Commission (EC) number, so that there is no 

ambiguity between gene products. Two enzymes from two different organisms may have the same EC 

number, but slightly different amino acid sequences or slightly different protein names in the GenBank 

annotation files. Using EC numbers will allow automated programs to match identical enzymes 

correctly. The enzymes are correlated with their associated chemical reactions and the implicated 

metabolites. This method of intentionally leaving out some information and looking at the bigger picture 

on more of a systems level could be classified as systems biology [26]. 

A personal computer was used for all programming and analysis. A simple, personally-designed 

online application was used for all analysis. This software can be found at the web link [27]. Full 

instructions on how to use the software can be found in a link to the readme file on the main program 

interface linked above. The software utilizes a relational database system using MySQL to store and 

query information from the GenBank annotation files from NCBI and information from an EC number 

database [28]. The EC number data file was parsed for inserting data into a personally-designed database 

table. The following example (Figure 1) shows the type of information contained in the data file that was 

parsed for EC numbers. 



Int. J. Mol. Sci. 2015, 16 8953 

 

 

 

Figure 1. Example data extracted from The ENZYME Database in 2000, Bairoch [28]. 

The web application allows its user to choose two groups of microbiomes for metabolomics 

comparison. The program was designed with the intent to be used for any microbial metabolomics study 

between two microbiomes, two small alterations of the same microbiome or even simply between  

two single organisms. The application allows the user to upload a new genome file in GenBank  

format. Initially, the application could only accept GenBank files with EC number annotations present, 

but now, there does not need to be any EC number annotations in the original file. However, inserting 

EC number annotations with automation has certain limitations. Database queries fall into three 

categories for each comparison: no matches, one unique match or more than one match. In the event  

that there is more than one match, manual curation will be necessary. In the meantime, the program 

instead prints the first three matches to the GenBank file and makes a designation within the file and 

within the associated database that says that the information may be less reliable than unique matches  

or the data that was already annotated in the original file. 

The application returns output directly to the screen within the web browser. The output consists of  

a data table, where each row contains columns showing the GI accession number (from NCBI) of the 

organism that the data come from, the organism’s common name, an EC number, the predominant  

name associated with that EC number, the associated biochemistry, a “reliability factor” and  

a keyword describing which microbiome the data are associated with (default “Microbiome 1” and  

“Microbiome 2”, or custom names supplied by the user on the form page). The table is broken up into 

three major sections: those enzymes that are identical between the two microbiomes and those enzymes 

that are unique for each microbiome. For this study (and likely others that might benefit from this 

software package), the sub-tables showing the unique results are most useful. An example partial  

result (Figure 2) might be as follows. 

  

ID   1.8.1.19 

DE   Sulfide dehydrogenase. 

CA   Hydrogen sulfide + (sulfide)(n) + NADP(+) = (sulfide)(n+1) + NADPH. 

CF   Flavoprotein; Iron-sulfur. 

CC   -!- In the archaeon Pyrococcus furiosus the enzyme is involved in the

CC       oxidation of NADPH which is produced in peptide degradation. 

CC   -!- The enzyme also catalyzes the reduction of sulfur with lower 

CC       activity. 

DR   Q8U195, SUDHA_PYRFU;  Q8U194, SUDHB_PYRFU; 

// 
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Figure 2. Example extract from the original software results page. 

In Figure 2, GI accession is the unique identifier for that GenBank record within NCBI, and  

the reliability column differentiates between new annotations with multiple EC number matches  

(reliability = 0) and new annotations with unique matches and old annotations (reliability = 1). 

Three queries total were made with the web application. The first involved the organisms from the 

top section of Table 1. The second added the five organisms from the middle section of Table 1. In the 

third query, we tried to filter our results to just the organisms that are thought to be most important in 

each microbiome. These microbiomes consisted of those in Table 2. Table 1 is also available in the 

Supplemental Material as Table S1. 
  

Organisms in Microbiome1: 

187426706 Akkermansia muciniphila ATCC BAA-835

Organisms in Microbiome2: 

149935097 Bacteroides vulgatus ATCC 8482 

291526581 Eubacterium rectale DSM 17629 

Received search term query ''. 

Similar coded enzymes: 619 match(es). 

GI 

Accession 

Organism 

Name 
EC_number Enzyme Name Biochemistry Reliability 

Microbiome 

Name 

187426706 

Akkermansia 

muciniphila 

ATCC BAA-

835 

1.3.1.12 
Prephenate 

dehydrogenase.

Prephenate + NAD(+) = 4-

hydroxyphenylpyruvate + CO(2) + 

NADH. 

0 Microbiome1

291526581 

Eubacterium 

rectale DSM 

17629 

1.3.1.12 
Prephenate 

dehydrogenase.

Prephenate + NAD(+) = 4-

hydroxyphenylpyruvate + CO(2) + 

NADH. 

1 Microbiome2

187426706 

Akkermansia 

muciniphila 

ATCC BAA-

835 

6.5.1.2 
DNA ligase 

(NAD(+)). 

NAD(+) + (deoxyribonucleotide)(n) 

+ (deoxyribonucleotide)(m) = AMP + 

beta-nicotinamide D-ribonucleotide + 

(deoxyribonucleotide)(n+m). 

1 Microbiome1

291526581 

Eubacterium 

rectale DSM 

17629 

6.5.1.2 
DNA ligase 

(NAD(+)). 

NAD(+) + (deoxyribonucleotide)(n) 

+ (deoxyribonucleotide)(m) = AMP + 

beta-nicotinamide D-ribonucleotide + 

(deoxyribonucleotide)(n+m). 

1 Microbiome2
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Table 1. Microorganisms chosen for the comparative metabolomics study. Organisms 

included in Query 2 had de novo Enzyme Commission (EC) number annotations. 

Query “Healthy” Microbiome “Autism” Microbiome 

Included in Query 1 Bacteroides fragilis Desulfovibrio desulfuricans
 Bifidobacterium longum Clostridium perfringens 
 Ruminococcus bromii Clostridium difficile 
 Roseburia intestinalis Akkermansia muciniphila 
 Faecalibacterium prausnitzii  
 Eubacterium rectale  
 Alistipes putredinis  
 Alistipes shahii  
 Weissella koreensis  
 Prevotella ruminicola  
 Odoribacter splanchnicus  
 Methanobrevibacter smithii  
 Clostridium leptum  
 Lactobacillus acidophilus  

Additional organisms included Bacteroides thetaiotaomicron Sutterella wadsworthensis 
in Query 2 Bacteroides caccae Clostridium bolteae 
  Bacteroides vulgatus 

Desired, but not included Bacteroides finegoldii Desulfovibrio piger 
 Bacteroides ovatus Desulfovibrio intestinalis 
 Bacteroides uniformis Clostridium butyricum 
 Bifidobacterium adolescentis Clostridium paraputrificum 
 Bifidobacterium pseudolongum Clostridium subterminale 
 Eubacterium siraeum Clostridium tertium 
 Dorea Clostridium bifermentans 
 Veillonella Clostridium glycolicum 
 Turicibacter Bacteroides stercoris 
 Barnesiella intestinihominis Parabacteroides distasonis 
 Odoribacter laneus Parabacteroides merdae 
 Dialister invisus Paraprevotella xylaniphila 
  Eubacterium eligens 
  Prevotella oulorum 

Table 2. Selected organisms for Query 3 of the Metabolomics Software. 

Organisms in Control: 

392623967 Bacteroides caccae CL03T12C61 
60495220 Bacteroides fragilis ATCC 25285 = NCTC 93 
29342100 Bacteroides thetaiotaomicron VPI-5482 

666001751 Bifidobacterium longum BXY01 
488447870 Lactobacillus acidophilus La-14 
148552872 Methanobrevibacter smithii ATCC 35061; PS; DSMZ 
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Table 2. Cont. 

Organisms in Autism: 

149935097 Bacteroides vulgatus ATCC 8482 
480704622 Clostridium bolteae 90A9 
110676061 Clostridium perfringens ATCC 13124 
219869941 Desulfovibrio desulfuricans ATCC 27774 
115252745 Peptoclostridium difficile 630 
512689910 Sutterella wadsworthensis HGA0223 

The organisms chosen for each query were input into the program and the results copied and pasted 

into an Excel file (available as the Supplemental Material, Tables S2–S7: each query is separated into 

two worksheets, one for complete raw data, and one for filtered data of interest). The “unique” results 

were looked through manually and considered on a case by case basis, with literature data in mind. 

Special attention was paid to those enzymes and metabolites found in the methionine and cysteine 

metabolic pathways and those involved with oxidative stress [13] and amino acid metabolism [29–31]. 

3. Results 

The full results will not be reproduced here, but can easily be reproduced using the online  

software and the methods detailed above. The full results for each query are available as the 

Supplemental Material, Tables S2, S4, and S6. Additionally, the full results have been filtered for the 

most meaningful results and pasted within the Supplemental Material, Tables S3, S5, and S7. The first 

query resulted in the most meaningful results. It had 19,959 identical enzyme matches between the two 

microbiomes tested, 834 unique enzymes for the “control” microbiome and 161 unique enzymes for the 

“autism” microbiome. Gene copies are included in this count, so these numbers are a bit inflated. The 

identical enzymes are meaningless for this study, so we direct our attention to the tables of “unique” 

enzymes. Any meaningful results must be found manually. Table 3 below shows the differences in  

match statistics between each query. The majority of the results found with Query 1 were also found in 

Queries 2 and 3, with possibly a few minor differences. Judging by the quantity of the results, these 

minor differences were assumed to be near negligible. Therefore, when comparing Queries 1 and 2,  

we can come up with an approximate difference in the number of unique results by subtracting the 

statistics. Therefore, for instance, Query 2 only had 19 new results unique to the “control” microbiome 

and 34 new results unique to the “autism” microbiome, compared to the results of Query 1. Thus, one 

can see that Queries 2 and 3 would have less novel results overall than Query 1, given that Query 1  

was conducted first. 

Table 3. Comparing match statistics between web application queries. 

Query Similar Enzymes Control Unique Autism Unique 

1 19,959 834 161 
2 41,035 853 195 
3 14,451 356 387 
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From an experimental study on metabolic biomarkers in autistic individuals [29], we know that  

many amino acids are found in significantly lower abundance vs. controls, including glycine, serine, 

threonine, alanine, histidine, glutamine, glutamate and the organic acid, taurine. Antioxidants (especially 

glutathione) are also in much lower abundance. Another study [30] cites reduced glutathione as being  

in much lower abundance and another type of antioxidant, thioredoxins, as being in much higher 

abundance. James et al. [13] claims that there is a metabolic bottleneck in many autistic individuals, 

where the conversion of methionine to cysteine is inhibited, leading to diminished glutathione formation. 

This information was kept in mind when analyzing the data. The relevance of these findings will be 

discussed in more detail in the Discussion Section. 

In Tables 4–11 we present the most meaningful results obtained from the data mining. The majority 

of the results come from the first web application query. First, for the enzymes unique to the “control” 

microbiome, we present enzymes indicative of glutamate metabolism. Some of the entries below contain 

notation, such as “×3” after an organism name. This denotes that that organism has that number of gene 

copies coding for that particular enzyme (the first table with this notation is Table 6 below). 

Table 4. Acetylornithine transaminase expression (“control” unique). 

2.6.1.11 Acetylornithine Transaminase 
N(2)-Acetyl-L-ornithine + 2-Oxoglutarate =  
N-Acetyl-L-glutamate5-semialdehyde + L-Glutamate 

Expressed by the following organisms: 

291516108 Alistipes shahii WAL 8301 
291516108 Alistipes shahii WAL 8301 
60495220 Bacteroides fragilis ATCC 25285 = NCTC 93 
291526581 Eubacterium rectale DSM 17629 
291526581 Eubacterium rectale DSM 17629 
295102938 Faecalibacterium prausnitzii L2/6 
148552872 Methanobrevibacter smithii ATCC 35061; PS; DSMZ 
324314063 Odoribacter splanchnicus DSM 220712 
294473972 Prevotella ruminicola Bryant 23 
291541371 Roseburia intestinalis XB6B4 

Table 5. Phosphoserine transaminase expression (“control” unique). 

2.6.1.52 
Phosphoserine 

Transaminase 

(1) O-Phospho-L-serine + 2-Oxoglutarate = 3-Phosphonooxypyruvate + L-Glutamate  

(2) 4-Phosphonooxy-L-threonine + 2-Oxoglutarate =  

(3R)-3-Hydroxy-2-oxo-4-phosphonooxybutanoate + L-Glutamate 

Expressed by the following organisms: 

167660682 Alistipes putredinis DSM 17216 

291516108 Alistipes shahii WAL 8301 

60495220 Bacteroides fragilis ATCC 25285 = NCTC 93 

295102938 Faecalibacterium prausnitzii L2/6 

324314063 Odoribacter splanchnicus DSM 220712 

294473972 Prevotella ruminicola Bryant 23 

291541371 Roseburia intestinalis XB6B4 

291543183 Ruminococcus bromii L2-63 
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Table 6. 2-oxoglutarate synthase expression (“control” unique). 

1.2.7.3 2-Oxoglutarate Synthase 
2-Oxoglutarate + CoA + 2 Oxidized Ferredoxin =  
Succinyl-CoA + CO(2) +2 Reduced Ferredoxin + 2 H(+) 

Expressed by the following organisms (multiple gene copies present): 

291516108 Alistipes shahii WAL 8301 (×5) 
148552872 Methanobrevibacter smithii ATCC 35061; PS; DSMZ (×5) 
324314063 Odoribacter splanchnicus DSM 220712 (×3) 

Table 7. Glutamate synthase expression (“control” unique). 

1.4.1.14 Glutamate Synthase (NADH) 
2 L-Glutamate + NAD(+) =  
L-Glutamine + 2-Oxoglutarate + NADH 

Expressed by the following organisms: 

291526581 Eubacterium rectale DSM 17629 (×3) 
295102938 Faecalibacterium prausnitzii L2/6 (×4) 
291541371 Roseburia intestinalis XB6B4 (×3) 
291543183 Ruminococcus bromii L2-63 (×3) 

There were several enzymes of interest coded by Lactobacillus acidophilus alone, many involving 

methionine and cysteine metabolism. Arginase produces ornithine from arginine, a precursor to 

glutamate. Mercury (II) reductase is included, because sulfur metabolism is involved with detoxifying 

toxic heavy metals, such as mercury. NADH peroxidase is an antioxidant, and the enzymes associated 

with methionine metabolism are ultimately associated with glutathione formation, another antioxidant. 

See Table 8 for these results. 

Table 8. Enzymes of interest coded by Lactobacillus acidophilus: Query 1. 

2.1.1.10 Homocysteine S-methyltransferase. S-methyl-L-methionine + L-homocysteine = 2 L-methionine. 

2.1.1.14 
5-methyltetrahydropteroyltriglutamate 

homocysteine S-methyltransferase. 

5-methyltetrahydropteroyltri-L-glutamate + L-homocysteine =  

tetrahydropteroyltri-L-glutamate + L-methionine. 

3.5.3.1 Arginase. L-arginine + H2O = L-ornithine + urea. 

4.2.1.22 Cystathionine beta-synthase. L-serine + L-homocysteine = L-cystathionine + H2O. 

4.4.1.1 Cystathionine gamma-lyase. L-cystathionine + H2O = L-cysteine + NH3 + 2-oxobutanoate. 

1.16.1.1 Mercury(II) reductase. Hg + NADP+ + H+ = Hg2+ + NADPH. 

2.1.1.176 16S rRNA (cytosine(967)-C(5))-methyltransferase. 
S-adenosyl-L-methionine + cytosine(967) in 16S rRNA =  

S-adenosyl-L-homocysteine + 5-methylcytosine(967) in 16S rRNA. 

1.11.1.1 NADH peroxidase. NADH + H2O2 = NAD+ + 2 H2O. 

Other enzymes of interest were antioxidants superoxide reductase (1.15.1.2), coded by 

Faecalibacterium prausnitzii, and glutathione peroxidase (1.11.1.9), coded by Prevotella ruminicola. 

Several others exhibited metabolic pathways associated with glutamate, cysteine and methionine and  

a few for some amino acids of less interest, such as serine or histidine. 

The following (Table 9) are some enzymes of interest from the “autism” microbiome. Interestingly, 

Clostridium perfringens is the only organism studied (among both microbiomes) that codes for 

glutamate: cysteine ligase and glutathione synthase, the two enzymes needed for glutathione formation. 
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Table 9. Enzymes of interest coded by the “autism” microbiome; Query 1. 

110676061 Clostridium perfringens ATCC 13124 4.1.1.50 
Adenosylmethionine 

decarboxylase. 

S-adenosyl-L-methionine =  

S-adenosyl 3-(methylthio)propylamine + CO2. 

115252745 Peptoclostridium difficile 630 4.1.1.50 
Adenosylmethionine 

decarboxylase. 

S-adenosyl-L-methionine =  

S-adenosyl 3-(methylthio)propylamine + CO2. 

110676061 Clostridium perfringens ATCC 13124 4.1.1.22 Histidine decarboxylase. L-histidine = histamine + CO2. 

110676061 Clostridium perfringens ATCC 13124 6.3.2.2 Glutamate–cysteine ligase. 
ATP + L-glutamate + L-cysteine = ADP + 

phosphate + gamma-L-glutamyl-L-cysteine. 

110676061 Clostridium perfringens ATCC 13124 6.3.2.3 Glutathione synthase. 
ATP + gamma-L-glutamyl-L-cysteine + 

glycine = ADP + phosphate +glutathione. 

219869941 
Desulfovibrio desulfuricans  

ATCC 27774 
2.6.1.44 

Alanine–glyoxylate 

transaminase. 
L-alanine + glyoxylate = pyruvate + glycine. 

219869941 
Desulfovibrio desulfuricans  

ATCC 27774 
1.8.99.3 Hydrogen sulfite reductase. 

(O3S.S.SO3)2− + acceptor + 2 H2O + OH− =  

3 HSO3
− + reduced acceptor. 

115252745 Peptoclostridium difficile 630 4.4.1.11 Methionine gamma-lyase. 
L-methionine + H2O =  

methanethiol + NH3 + 2-oxobutanoate. 

115252745 Peptoclostridium difficile 630 1.8.1.2 Sulfite reductase (NADPH). H2S + 3 NADP+ + 3 H2O = sulfite + 3 NADPH. 

115252745 Peptoclostridium difficile 630 5.4.3.5 D-ornithine 4,5-aminomutase. D-ornithine = (2R,4S)-2,4-diaminopentanoate. 

115252745 Peptoclostridium difficile 630 5.1.1.12 Ornithine racemase. L-ornithine = D-ornithine. 

It was found that Desulfovibrio desulfuricans and Clostridium difficile uniquely coded for enzymes 

that involved the use of thioredoxins, including sarcosine reductase, betaine reductase and  

glycine reductase. 

Queries 2 and 3 had much less novel results in comparison. We will look at these results first, then 

take a look at why adding new EC number annotations to the files did not change much in terms of the 

overall results. 

Query 2 only resulted in one new meaningful result (Table 10): the conversion of S-adenosyl-methionine 

to S-adenosyl-homocysteine, part of the transsulfuration pathways. 

Table 10. SAM (S-adenosyl-methionine) conversion to SAH (S-adenosyl-homocysteine). 

219869941 
Desulfovibrio 

desulfuricans ATCC 27774 
2.1.1.77 

Protein-L-isoaspartate 

(D-aspartate)  

O-methyltransferase 

S-adenosyl-L-methionine + protein L-isoaspartate =  

S-adenosyl-L-homocysteine + protein L-isoaspartate α-methyl ester. 

Query 3 also resulted in only one major meaningful result, as well as two more that are at least 

noteworthy, involved with cyanide metabolism (Table 11). Of course, cyanide is highly toxic to humans, 

so the fact that Clostridium difficile is the only organism studied that can metabolize it is interesting,  

but its relevance to the present study is inconclusive. Also of note was that Bifidobacterium and 

Lactobacillus of the control microbiome uniquely coded for 2-haloacid dehalogenase, and Lactobacillus 

uniquely coded for haloalkane dehalogenase. Again, upon searching the literature in regards to these 

results, the interpretation is inconclusive. The relevance to the present study cannot be determined. 
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Table 11. Enzymes of interest coded by the “autism” microbiome in Query 3. 

115252745 Peptoclostridium difficile 630 2.8.1.2 
3-mercaptopyruvate 

sulfurtransferase. 

3-mercaptopyruvate + cyanide =  

pyruvate + thiocyanate. 

115252745 Peptoclostridium difficile 630 2.8.1.1 Thiosulfate sulfurtransferase. 
Thiosulfate + cyanide =  

sulfite + thiocyanate. 

115252745 Peptoclostridium difficile 630 4.4.1.8 Cystathionine beta-lyase. 
L-cystathionine + H2O =  

L-homocysteine + NH3 + pyruvate. 

666001751 Bifidobacterium longum BXY01 3.8.1.9 (R)-2-haloacid dehalogenase. 
(R)-2-haloacid + H2O =  

(S)-2-hydroxyacid + halide. 

666001751 Bifidobacterium longum BXY01 3.8.1.2 (S)-2-haloacid dehalogenase. 
(S)-2-haloacid + H2O =  

(R)-2-hydroxyacid + halide. 

666001751 Bifidobacterium longum BXY01 3.8.1.10 
2-haloacid dehalogenase 

(configuration-inverting). 

(1) (S)-2-haloacid + H2O =  

(R)-2-hydroxyacid + halide. 

(2) (R)-2-haloacid + H2O =  

(S)-2-hydroxyacid + halide. 

488447870 Lactobacillus acidophilus La-14 3.8.1.2 (S)-2-haloacid dehalogenase. 
(S)-2-haloacid + H2O =  

(R)-2-hydroxyacid + halide. 

488447870 Lactobacillus acidophilus La-14 3.8.1.5 Haloalkane dehalogenase. 
1-haloalkane + H2O =  

a primary alcohol + halide. 

In order to analyze why some organisms provided more information than others, we compared  

the number of EC number annotations within each GenBank file to the total CDSs (coding sequences) 

within each file. For the new organisms added for Queries 2 and 3, we can see that very few annotations 

were actually added compared to the total CDSs. “Good” coverage seems to lie between 12% and 25% 

when taking the ratio of EC number annotations to total CDSs, and all five of the newly annotated files 

fall well short of this mark. However, Bifidobacterium had greatly improved coverage after updating  

EC number annotations, rising from <4% to >25%. Despite this, very few new results were obtained.  

Table 12 shows these statistics. This table is included in the Supplemental Material as Table S8 as well. 

It may seem strange at first that there are so few EC number annotations compared to the number of 

annotated CDSs, but keep in mind that enzymes are only a fraction of the organisms’ proteome  

(e.g., non-catalytic proteins, such as inter-membrane proteins), and some of the organisms’ genes code 

for non-translated RNA transcripts, such as tRNAs. There also seems to be a dearth in annotation of  

EC numbers in general. 
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Table 12. GenBank file statistic comparisons between the number of EC number annotations 

and coding sequences (CDSs). 

 Original File Updated EC Annotations 

Organism Name Total CDSs 
Total EC 

Numbers 
% 

Total EC 

Numbers 

Total  

“Multi-EC” 

Designations 

Actual 

EC Total 
% % Increase 

Akkermansia muciniphila 2138 286 13.38 401 34 367 17.17 28.32 

Alistipes putredinis 659 92 13.96 110 6 104 15.78 13.04 

Alistipes shahii 2563 548 21.38 603 17 586 22.86 6.93 

Bacillus subtilis 4140 912 22.03 941 8 933 22.54 2.30 

Bacteroides fragilis 4406 366 8.31 377 5 372 8.443 1.64 

Bifidobacterium longum 1903 68 3.57 672 189 483 25.38 610.29 

Clostridium difficile 3902 1015 26.01 1,035 6 1029 26.37 1.38 

Clostridium leptum 602 100 16.61 114 4 110 18.27 10.00 

Clostridium perfringens 2878 504 17.51 539 10 529 18.38 4.96 

Desulfovibrio desulfuricans 2356 292 12.39 392 32 360 15.28 23.29 

Escherichia coli 4967 612 12.32 1542 285 1257 25.31 105.39 

Eubacterium rectale 2898 636 21.95 696 16 680 23.46 6.92 

Faecalibacterium prausnitzii 2756 586 21.26 641 17 624 22.64 6.48 

Lactobacillus acidophilus 1876 486 25.91 585 31 554 29.53 13.99 

Methanobrevibacter smithii 1795 414 23.06 454 12 442 24.62 6.76 

Odoribacter splanchnicus 3498 515 14.72 603 27 576 16.47 11.84 

Prevotella ruminicola 2791 480 17.20 519 12 507 18.17 5.62 

Roseburia intestinalis 3630 709 19.53 793 17 776 21.38 9.45 

Ruminococcus bromii 1811 467 25.79 496 9 487 26.89 4.28 

Weissella koreensis 1335 93 6.97 288 61 227 17 144.09 

Bacteroides caccae 3441 0 0.00 76 19 57 1.656  

Bacteroides thetaiotaomicron 4787 0 0.00 413 125 288 6.016  

Bacteroides vulgatus 4065 0 0.00 267 80 187 4.6  

clostridium bolteae 5830 0 0.00 737 227 510 8.748  

Sutterella wadsworthensis 2433 0 0.00 136 39 97 3.987  

4. Discussion 

The present study successfully identified several key enzymes associated with autism spectrum 

disorders using a bioinformatics data mining approach, by comparing the metabolomes of two distinct 

microbiomes. We must compare the results to published experimental data in order to evaluate the 

impact of this study, such as those found in [29–33]. 

We expected to find key biomarkers unique to Desulfovibrio and Clostridia species indicative of 

autism, but instead, the key was based on identifying enzymes that were missing from these organisms; 

hence, a decreased abundance of such enzymes could be used as diagnostic biomarkers for autism. 

Several different amino acids have previously been reported to be in lower abundance in autistic 

individuals, but in this study, the amino acid that stood out the most was glutamate. Several organisms 

in the “control” microbiome coded for enzymes associated with glutamate metabolism, but were 

curiously missing from the “autism” microbiome. Glutamate is an integral part of glutathione,  
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a tripeptide made of glutamate, cysteine and glycine. It was known before that glutathione was  

down-regulated in autism, but researchers focused their attention on an inhibition of cysteine metabolism 

to be the culprit. 

Upon closer inspection of glutamate’s association with autism, we find that there is a hypothesis that 

does not involve oxidative stress at all. Glutamate is the human body’s major excitatory neurotransmitter, 

which works in opposition to gamma-aminobutyric acid (GABA) [34,35]. Contrary to the Ming et al. 

study [29], these studies, as well as Adams et al. [31] reported higher quantities of glutamate vs. 

neurotypical controls. Tevarst van Elst et al. [34] actually reviewed two different hypotheses: that  

a hypoglutamatergic condition is related to autism and also that a hyperglutamatergic condition is related 

to autism. Regardless of which one it is, the authors theorize that an imbalance in the neurological 

excitation/inhibition chemical signaling in the central nervous system is thought to be associated with 

autism. Furthermore, glutamate decarboxylase is the enzyme responsible for converting glutamate into 

GABA. Loss of the gene coding for GABA in host neurons has been shown to lead to symptoms 

characteristic of autism [36]. Going back to the results of our software (i.e., Query 2), we found that 

glutamate decarboxylase is expressed by organisms from both the control and autism groups. Therefore, 

what then is the association of our research to the hypotheses on glutamate and autism? That remains to 

be determined, but we must not ignore the fact that we might not have heard of this field of research had 

not our software pointed in that direction. Even with limited data availability, it seems that our software 

can be useful in developing new hypotheses and revealing literature that was previously unknown to us. 

After completing our analysis, we came across another study where Akkermansia muciniphila was 

found in decreased amounts in individuals with autism [37]. According to the authors, Akkermansia is 

integral to the host’s gut health; the gut mucus layer is reduced as Akkermansia composition within the 

gut is depleted. This contradicts the Finegold et al. pyrosequencing study. In light of these two 

conflicting studies, it seems that we may have been correct in assuming that the involvement of 

Akkermansia in autism is questionable at best. We still included it in the study, because theoretically,  

it should serve as a basis for comparison. If we think that certain Clostridia species and sulfate reducers 

are indicative of autism, then we may be biased towards results that agree with that assumption. If we 

include a questionable case, such as Akkermansia, in the “autism” group analysis, then we may better be 

able to rule out false positives. Regarding this inclusion, no significant results were found in Queries 1 

or 2, leading to the exclusion of Akkermansia from Query 3. Query 3 had quite similar results as  

Queries 1 and 2, which lends credence to the idea that those organisms still included in the “autism” 

group for Query 3 are more likely to be involved in autism pathogenesis. 

Hydrogen sulfide has been cited as a toxic metabolite produced by Desulfovibrio species [10], but 

data on this metabolite were inconclusive. It was found that Desulfovibrio is not the only organism (in 

either microbiome) that can metabolize hydrogen sulfide. What we did notice is that Clostridium difficile 

codes for enzymes that metabolize alternative pathways for ornithine and methionine, precursors to 

glutamate and cysteine, respectively, with the enzymes ornithine racemase, D-ornithine 4,5-aminomutase, 

adenosylmethionine decarboxylase and methionine gamma-lyase. Nearly every organism studied codes 

for enzymes using ferredoxins and thioredoxins, alternative antioxidants to glutathione, which also use 

a sulfhydryl electron acceptor for reducing power. It is possible that thioredoxins were found in much 

higher abundance in autistic individuals [28], because thioredoxins had to take over from glutathione as 

the body’s dominant antioxidant. However, if glutathione is usually dominant, then there must be 
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something not as chemically favorable associated with ferredoxins and thioredoxins or perhaps they are 

just not sufficient to fill in the antioxidative gap that glutathione usually fills. That Clostridium difficile 

can uniquely use ornithine and methionine for other purposes other than glutathione formation provides 

evidence for this hypothesis. Interestingly, the final two catalytic steps in glutathione formation are 

uniquely coded by Clostridium perfringens, part of the “autism” microbiome. However, many of the 

precursor steps are uniquely coded by Lactobacillus acidophilus, part of the “control” microbiome. 

Glutathione is still existent in autistic individuals, so perhaps Clostridium perfringens allows for some 

extra utility in glutathione formation; or maybe this is just coincidence. 

Quite remarkable was the fact that nearly every reaction of the transsulfuration and transmethylation 

metabolic pathways was coded by the organisms studied, but that each microbiome (“control” and 

“autism”) could not express the pathways in their entirety alone. This suggests some sort of 

interdependence between the two microbiomes on completing these pathways. The control microbiome 

supplies glutamate metabolism, and cysteine and glutathione formation is split between the two groups 

of organisms. Based on this information, it seems that organisms, such as abnormal Clostridia species 

and Desulfovibrio, may be products of the sulfur metabolic deficiency found in so many autistic 

individuals and, therefore, may be essential in filling a unique metabolic niche. However, because  

of the known toxic byproducts of these organisms, they may still be causing gastrointestinal  

inflammation and subsequent neuro-inflammation associated with “leaky gut syndrome”, leading to 

regressive autism [15,31]. Therefore, even though these organisms may be causing some major ill effects, 

the matter becomes complicated by the necessity of their presence in the host. The sulfur metabolic 

deficiencies and lack of proper anti-oxidation therefore seem to lie at the heart of the problems that  

lead to regressive autism. If treatment is possible, it would therefore be more likely to entail dietary 

supplements that restore the metabolic deficiencies to normal conditions [13], rather than eradicating the 

proposed offending organisms from the host’s gut. James et al. [13] reported some improvements in 

symptoms with specific dietary supplements, and a study by Adams et al. [38] provides some more 

evidence of this. The Adams et al. study included adult subjects with autism, as well. 

It is important to note that there were some crucial limitations to this study. Besides the obvious,  

that this study is purely computational, the dependence on having annotation data for EC numbers  

greatly limits the scope of the study. When the first query to the web application was completed and 

analyzed, it was thought that including more organisms of interest (with newly annotated EC numbers) 

would greatly strengthen the study. This, in fact, hardly had any impact at all on the initial study. These 

files had so few annotations, that they did not give good representations of the metabolome of these 

organisms. Thus, we can only surmise that there may be other more meaningful results possible with 

better data. It is possible that this study could be improved by creating new gene annotations altogether 

by using the publically available BLAST tool for sequence alignment of microbial genomic DNA and 

then annotating these genes with translated gene products and EC numbers. Also of note is that the two 

Clostridium species studied most deeply in this context (C. perfringens and C. difficile) have not, to our 

knowledge, been specified as part of the “autism” microbiome, but they happened to be two of the  

most widely available and comprehensive genomes of Clostridia that could appear in the human gut. 

Therefore, they were chosen as “representatives” of the Clostridium genus, and thus, associated  

results should be interpreted with scrutiny. It appears that this type of study has not been attempted 

previously, yielding mixed results. This provides substantial evidence that the present approach is novel 
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and may be a step in a new, potentially useful direction, but its novelty severely limits its impact,  

because of a lack of resources. It is surmised that as data on microbial genomics and data on gut  

bacteria associated with autism patients improves, so too will the utility of our novel software and our 

comparative modeling approach. Future work could include full de novo genomic sequencing of gut 

microbes and validation through next-generation sequencing devices, followed by comprehensive 

annotation with accurate EC numbers. On NCBI’s server, there is a noted difference in genomic 

comprehensiveness between microorganisms, where key gut microbes are covered definitively less  

than model organisms, such as Escherichia coli or Bacillus subtilis. We need to be able to have more 

studies on gut microbes in their natural habitat and their interactions with host cells in order to have  

more experimental data to fine-tune our metabolomics model. It also remains to be determined what 

would be the best way of evaluating data significance from this type of study. 

Nevertheless, we still believe that substantial results came about from this study. We have not seen 

this type of comparative analysis conducted with autism in mind before, and we are proud to say that 

our computational approach was successful, given some of its parallels to previous experimental studies. 

Some experimental studies were not able to be validated with this approach, which is to be expected.  

As stated earlier, this software was designed with the intent to be used for many other applications, 

besides autism, hence making the software publically available online. Many other human illnesses and 

conditions are thought to be associated with the human gut microbiome [5], and we believe that these 

applications might benefit from our approach, as well. Microbiomes in other environments may also 

benefit; much potential could be lost if the software’s use were limited to only the human gut. 

Supplemental Materials 

Supplementary materials can be found at http://www.mdpi.com/1422-0067/16/04/8949/s1. 
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