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Abstract: The number of thyroid cancers is increasing. Standard treatment usually includes 

primary surgery, thyroid-stimulating hormone suppressive therapy, and ablation of the thyroid 

remnant with radioactive iodine (RAI). Despite the generally good prognosis of thyroid 

carcinoma, about 5% of patients will develop metastatic disease, which fails to respond to RAI, 

exhibiting a more aggressive behavior. The lack of specific, effective and well-tolerated drugs, 

the scarcity of data about the association of multi-targeting drugs, and the limited role of 

radioiodine for dedifferentiated thyroid cancer, call for further efforts in the field of new 

drugs development. Rearranged during transfection (RET)/papillary thyroid carcinoma gene 

rearrangements, BRAF (B-RAF proto-oncogene, serine/threonine kinase) gene mutations, 

RAS (rat sarcoma) mutations, and vascular endothelial growth factor receptor 2 angiogenesis 

pathways are some of the known pathways playing a crucial role in the development of 

thyroid cancer. Targeted novel compounds have been demonstrated to induce clinical 

responses and stabilization of disease. Sorafenib has been approved for differentiated thyroid 

cancer refractory to RAI. 
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1. Introduction 

Thyroid cancer is the most common endocrine malignancy, causing approximately 1%–5% of all 

cancers in females and less than 2% in males [1,2]. 

New risk factors have emerged in the last decade [3]. 

Differentiated thyroid carcinomas (DTC), more than 90% of all thyroid tumors, arise from follicular 

cells, and are classified as papillary (PTC) or follicular (FTC) according to histopathological criteria [2]. 

In the last decades, an increasing incidence of thyroid cancer (TC) has been reported, in particular  

for PTC [1]. DTC therapy options are near-total or total thyroidectomy and lymph nodes dissection  

(in the case lymph nodes are thought to be involved). If the tumor stage of the patients (pts) leads to 

suppose a significant risk of recurrence or disease-related mortality, subsequent radioiodine ablation is 

recommended [4]. Thyroid-stimulating hormone (TSH) suppressive therapy is undertaken and annual 

follow-up based on neck ultrasonography and serum thyroglobulin (Tg) determination are performed [5–7]. 

In pts with no clinically evident residual tumor and with undetectable serum Tg level and negative 

neck ultrasonography, diagnostic whole-body radioactive iodine (RAI) scan is usually not necessary [4]. 

DTC show a good prognosis, as more than 85% pts has normal life expectancy [8]. 

Five percent of pts show distant metastasis at the diagnosis (50% lungs, 25% bones, 20% lungs and 

bones, 5% other sites). During the follow-up, 10%–15% of pts present recurrent disease (localized in  

the thyroid bed and lymph nodes), and show a reduction of survival (from 68% to 49% at 10-year);  

about one third of cancer-related deaths are associated with the presence of neck lesions alone [9]. 

As the tumor progresses and tumor cells lose the iodide uptake ability, cancer becomes resistant to 

the traditional therapeutic strategies, and the prognosis worsens significantly [10]. 

From a histopathological point of view, poorly differentiated thyroid carcinomas (PDTCs) are  

a subset of thyroid tumors intermediate between DTC and anaplastic thyroid cancers (ATC);  

Poorly differentiated thyroid carcinomas are more aggressive than DTC, but less than ATC [11,12]. 

Various molecular changes within PTC cells, such as RET/PTC rearrangements, RAS and BRAF 

mutations [13], β-catenin mutations [14] underlie the loss of iodide uptake ability. 

The aim of this review is to evaluate the state of art of targeted therapies in the approach of dedifferentiated 

papillary thyroid cancer (DePTC). 

2. Molecular Pathways Involved in DePTC 

2.1. RET/PTC Rearrangements, BRAF, RAS, PAX8/PPARγ, Histone Acetylation 

RET (REarranged during Transfection), that is involved in cell differentiation, migration and 

proliferation, is a proto-oncogene located on 10q11.2, and encodes a transmembrane protein whose 
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intracellular region harbors a tyrosine kinase (Figure 1). Activating RET mutations and rearrangements 

have been found in various human cancer and cancer syndromes [15–17]. 

In particular, an erroneous reparative fusion of the C-terminal kinase domain of RET and N-terminal 

domain of an unrelated gene, close to RET, causes RET rearrangements. The resultant chimeric protein 

dimerizes and autophosphorilates the tyrosine residues of RET. This causes the constitutively activation 

of the chimeric protein, resulting in an uncontrolled proliferation [18]. 

For instance, RET/PTC rearrangements are found in up to 40% of adult sporadic PTC [16]. 

The most frequent rearrangements, RET/PTC (RET gene rearrangements in papillary thyroid 

carcinomas) (given by the fusion with the CCDC6 gene, formerly H4) and RET/PTC3 (given by the 

fusion with the NCOA4 gene, formerly ELE1) [19] induce thyroid tumors characterized by nuclear 

grooves and ground glass cells, continuous slow growth rate, and loss of iodide uptake, in transgenic 

mice similarly to human PTC [20]. 

Several studies show that thyroid cells exposed to ionizing radiations develops RET/PTC rearrangements, 

particularly RET/PTC3 [21]. 

This rearrangement is also associated with the solid variant, a more aggressive phenotype, a greater 

tumor size, and a more advanced stage at diagnosis, which are all poor prognostic factors [22]. 

Many authors hypothesize that RET/PTC rearrangements are important for the initiation of the tumor, 

but are not necessary for its further progression, as RET/PTC rearrangements are frequently found in 

microcarcinomas, in thyroid adenomas and non neoplastic lesions [23]. 

BRAF, a member of the RAF family proteins, is a serine-threonine kinase that, upon binding to RAS, 

phosphorilates MEK (mitogen-activated protein kinase kinase) activating the MAPK (mitogen-activated 

protein kinases) cascade (Figure 1). Valine to glutamate substitution at residue 600 (V600E) is found in 

about 45% PTC and rarely in FTC and is correlated with the tumor aggressiveness at presentation, with 

the risk of tumor recurrence, and with the loss of iodide uptake [18,24]. 

RAS (“Rat Sarcoma”) is the name given to a gene family, constituted by K-RAS, N-RAS and  

H-RAS. These genes encode intracellular G-proteins involved in activation of several signaling  

pathways (Figure 1) [25]. 

The translocation of the DNA binding domain of PAX8 (Paired box gene 8) to domains A–F of the 

peroxisome proliferator-activated receptor (PPAR)γ1 gene is found in 30%–40% of FTC and in 2%–10% 

of follicular adenomas [26,27]. PAX8/PPARγ rearrangements are less common in the follicular variant 

of PTC, and rarely are found in the other variants of PTC (0%–1%) [27]. 

The mechanism of acetylation of NH2-terminal lysine residues on histones enhances gene 

transcription switching chromatin in a more open configuration. When histones are hypoacetylated, 

chromatin maintains a closed configuration, which hinders gene transcription [28]. 

2.2. Factors Involved in Angiogenesis 

By measuring microvascular density, differences in angiogenesis have been related to differences in 

tumor behavior. Thyroid tumors are more vascular than normal thyroid tissue, and there is a clear correlation 

between increased angiogenesis and a more aggressive thyroid tumor behavior and metastasis [29]. 
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Experimental evidence has shown that thyroid neoplastic growth and subsequent metastasis formation 

depend on the tumor’s ability to induce an angiogenic switch, induced by a change in the balance of 

angiogenic stimulators and inhibitors [30,31]. 

Some of these are VEGF (vascular endothelial growth factor)/VEGF receptors, EGF (epidermal 

growth factor)/EGF receptors, PDGF (platelet-derived growth-factor)/PDGF receptors, FGF (fibroblast 

growth factor)/FGF receptors, HGF (hepatocyte growth factor)/c-Met, and the downstream signaling 

through Ras-Raf-ERK, Ras-PI3K-AKT-mTOR (Figure 1). Growth factors receptor and the downstream 

molecules mostly are protein kinases that act by phosphorylation [32]. 

In the classic model by Hanahan and Weinberg, the molecules are constitutively activated by mutations, 

rearrangements or amplifications, so that tumor growth is independent from the external growth factors [33]. 

2.2.1. Vascular Endothelial Growth Factor (VEGF) 

VEGF gene family includes VEGF A–C, placental growth factor (PlGF) and PDGF A–D [34]. VEGF 

is able to mediate endothelial cell adhesion and migration on extracellular matrix, and for this reason  

is associated with an increased aggressiveness, growth and distant spread of several tumors, including 

TC [35,36]. 

VEGF is overexpressed and its main receptor VEGFR-2 is up-regulated in many DTC [28]. 

In TCs a consistent increase in VEGF, VEGF-C, and angiopoietin-2 was observed. The overexpression 

of angiopoietin-2 and VEGF was shown in thyroid tumor progression, such as a strong association between 

tumor size and high levels of VEGF and angiopoietin-2. It has been also shown an increased expression 

of VEGF-C in lymph node invasive thyroid tumors and, on the other hand, a decrease of thrombospondin-1, 

an angioinhibitory factor, in thyroid malignancies capable of hematic spread. These results suggest  

that, in human thyroid tumors, angiogenesis factors are involved in neoplastic growth, progression and 

aggressiveness [30]. 

Systemic administration of antiangiogenic drugs that target components of the VEGF-A-VEGF signal 

transduction pathway (Figure 1) has become a therapeutic option for patients with TC [37]. 

2.2.2. EGF Receptor (EGFR) 

Similarly to VEGF, EGFR (ErbB-1; HER1 in humans) plays a role in TC growth and spread, so  

that it is highly expressed in aggressive TC (Figure 1). EGFR mutations contribute to RET activation  

in thyroid cancer [38,39]. In turn, RET/PTC1 and RET/PTC3 up-regulate EGFR expression, with  

a magnitude of induction similar to that for TSH [38]. 

The expression of EGFR1 protein is significantly up-regulated in poorly differentiated and ATCs, 

whereas it is absent or faint in normal thyroid gland tissue and in differentiated thyroid papillary carcinomas, 

suggesting that up-regulation of EGFR1 expression may be a molecular marker of dedifferentiation in 

thyroid epithelial carcinomas [40]. 

High expression of EGFR is associated with lymph node metastasis in PTC, and plays a role in  

the progression of TC [41–43]. 

More recently, it has been reported a patient with metastatic poorly differentiated thyroid carcinoma 

with an EGFR mutation who responded to treatment with the selective EGFR TKI (tyrosine kinase 

inhibitor) erlotinib, strongly suggesting the importance of EGFR as therapeutic target in DePTC [44]. 
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Figure 1. Molecular targets and tyrosine kinase inhibitors in the signaling pathways involved 

in dedifferentiated papillary thyroid cancer. 

2.3. Genomic Analysis 

It has been recently described the genomic landscape of 496 PTCs. A low frequency of somatic 

alterations was observed and it was extended the set of known PTC driver alterations to include EIF1AX, 

PPM1D, and CHEK2 and some gene fusions. The fraction of PTC cases with unknown oncogenic driver 

was reduced from 25% to 3.5%. Combining the results of the analyses of genomic variants, with gene 

expression, and methylation it was demonstrated that different driver groups lead to different pathologies 

with specific differentiation characteristics. It was also proposed a reclassification of TCs into molecular 

subtypes that better reflect their underlying signaling and differentiation properties. This reclassification 

could improve the pathological classification of PTC, helping the management of the disease [45]. 

2.4. Tyrosine Kinase Inhibitors (TKIs) 

Many strategies have been carried out to block TKI. As RNA interference is difficult to implement, 

TKI blockade is achieved through monoclonal antibodies against growth factors receptors or TKIs, 

which act by interfering with the kinase domain-ATP interaction or as allosteric inhibitors [32]. 

TKIs are emerging as potentially effective options in the treatment of advanced TC. As TKIs are  

not specific for one kind of tyrosine kinase, we refer to them as multikinase inhibitors. They mostly act 

on the abovementioned pathways, which, in turn, are involved in angiogenesis, growth, invasiveness, 

avoidance of apoptosis, and both local and distant spread [46]. 
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Given the fact that TKIs act on pathways that are not selective for a specific malignancy, they have 

been tested on several tumors, including DTC, medullary thyroid cancer (MTC) and ATC [47]. 

Individual patient responses are assessed by the response evaluation criteria in solid tumors (RECIST) 

in the clinical trials evaluating TKIs [48]. 

Since stable disease in the absence of active treatment is not uncommon, an essential component of 

the RECIST is that the selection criteria for clinical trials have to include patients who demonstrate 

measurable disease progression about within 6 months before enrollment. RECIST requires that enrolled 

patients have measurable target lesions > 2 cm in the largest diameter using conventional imaging techniques 

or > 1 cm using spiral computed tomography scan, up to a maximum of 5 lesions per organ and  

10 lesions in total. Then, the response is analyzed using this baseline evaluation, but it precludes  

the enrollment of some thyroid cancer patients who do not meet such stringent criteria but may still 

benefit from targeted therapy [49]. 

Therefore, a “rapidly progressive disease” has been defined as one showing a >30% tumor growth 

progression within 12 months. 

3. Sorafenib 

Sorafenib (BAY 43-9006) is a multikinase inhibitor, with a potent activity against RAF, VEGF receptors 

(VEGFR-2, VEGFR-3), PDGF receptor (PDGFR), c-KIT and RET kinases [50,51]. 

In preclinical studies, sorafenib has been shown a broad-spectrum antitumor activity in several cancer 

xenograft models, as colon, breast and non-small-cell lung cancer [50]. Carlomagno et al. [52] published 

a paper on inhibition of oncogenic RET mutants by sorafenib in 2006, showing as the TKI prevented the 

growth of the TPC1 and TT cell lines, TC cell lines that contain the RET/PTC1 and C634W RET mutation, 

respectively. This drug, therefore, potentially may inhibit TC growth both through anti-proliferative and 

anti-angiogenic mechanisms [53]. 

Sorafenib, actually approved by Food and Drug Administration (FDA) for hepatocellular and renal 

cell carcinoma, is orally administered at a maximum dose of 400 mg twice daily, and generally is well 

tolerated. The most frequently reported drug-related adverse events (AE) at any grade included fatigue, 

anorexia, diarrhea, rash/desquamation and hand–foot syndrome [54]. Given the encouraging results from 

in vitro and in vivo trials and the necessity to develop new therapies for iodine-refractory metastatic TC, 

new studies have been initiated (Table 1). 

A phase II trial [55], evaluated the efficacy of sorafenib in 30 pts with metastatic, iodine-nonavid, 

TC, including differentiated, poorly differentiated, medullary, and anaplastic subtypes. The drug was 

administrated at 400 mg bid/die; the median duration of treatment was 27 weeks. Six pts (20%) discontinued 

treatment as a result of AE. Doses were reduced in 47% of pts (14 pts) to control toxicities. A partial 

response (PR) rate was observed in 23.3% and a stable disease (SD) rate in 53.3%, obtaining a clinical 

benefit rate (PR plus SD) of 77%, with a median progression-free survival (PFS) of 21 months in pts 

with DTC. The rate of AE is consistent with other sorafenib trials [55].  

A few months later, a study was published of 58 pts with metastatic TC, divided in two parts [56].  

In the first part, 25 pts were enrolled with metastatic PTC and chemotherapy naive; in the second, 

patients with PTC, but previously treated with chemoterapy, and other subtype (follicular, Hurthle cell, 

anaplastic, or mixed thyroid carcinoma) were enrolled. Activating mutations in exon 15 of BRAF was 
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found in 17 of 22 pts with PTC examined. Sorafenib was administrated at 800 mg daily, in two doses, 

generally well tolerated. This trial showed that sorafenib has clinical and biologic antitumor activity in 

metastatic PTC, obtaining a PR in 6 pts, while 23 pts had SD longer than 6 months. However, the role 

of BRAF has not been elucidated definitively [56]. An open-label phase II study of sorafenib at  

maximum dose (800 mg daily) in metastatic iodine-refractory TC was conducted by Brose et al., in 55 pts  

with different histological subtypes (47% PTC, 36% FTC/Hürthle Cell, 8% MTC, 9% poorly 

differentiated/anaplastic) [57]. Genotyping of BRAF was complete in 16 pts. The preliminary results 

presented at 2009 ASCO annual meeting evidenced an increased PFS in pts with PTC/FTC with  

B-RafV600E compared to wild-type B-Raf (84 vs. 54 weeks, p = 0.028). Also, heterogeneity of expression 

of p-ERK and p-AKT was demonstrated in different tissue areas on treatment [57]. 

The ability of sorafenib to reinduce RAI uptake in pts with progressive metastatic or locally advanced 

RAI refractory DTC was evaluated in a prospective phase II study [58]. During 26 weeks, 31 pts received 

sorafenib 400 mg twice daily. It was observed 59% of clinical beneficial response, 25% of PR and 34% 

of SD, the estimated PFS was 58 weeks. However, 22% of pts had progressive disease (PD) and diagnostic 

body scan did not reveal any reinduction of RAI uptake. Sorafenib results were clearly less effective in 

pts with bone metastases [58]. 

A paper published in 2010 reports the M. D. Anderson Cancer Center’s experience with the off-label 

use of the TKIs sorafenib and sunitinib for refractory to iodine DTC (papillary and follicular thyroid 

cancer) [59]. Sorafenib was used in 13 pts, at the same dose of previous trials described. The results 

obtained are comparable to other phase II studies evaluating sorafenib in TC (remission rate of 20%, 

durable response rate of 66%, and a clinical benefit rate of 80%). A longer PFS (19 months) and  

the median overall survival at 2 years was 67%. In this study, a response variability of the different 

metastases in the same patient to same therapy was found, with best response in lung and minimal  

in nonirradiated bone lesions, suggesting a differential expressions and inhibitions of various receptors. 

Moreover, it has also been evidenced a reduction of Tg levels preceding tumor shrinkage and  

a correlation between the log Tg and the response to treatment after the start of therapy, suggesting that 

Tg would be a reliable biologic marker of response to treatment. These data should be validated in larger 

studies [59]. 

In another phase II study, sorafenib was administered at 400 mg twice daily in 15 pts with metastatic 

MTC and 19 pts with locally advanced RAI refractory DTC [60]. The radiological response rate (RR) 

was 18% for pts with DTC, while the PFS at 2 years was 62% and overall survival 72%. However, 79% 

of pts required dose reduction for AE (hand–foot syndrome, other skin toxicities, diarrhoea and alopecia).  

A mutation in BRAF exon 15 was detected in one patient who had demonstrated a dramatic response 

after 3 months of therapy. Anyway, the sequencing was performed on 10 DTC pts and results were obtained 

on only 3 of these [60]. 

In the 2011 ASCO annual meeting the results of UPCC 03305 phase II trial of sorafenib for advanced 

thyroid carcinoma was presented. Fifty-five pts (85% DTC/PDTCs, 9% ATC, 6% MTC) received  

the drug at same dose provided in the preceding studies. A longer PFS was observed in pts with 

DTC/PDTCs (96 vs. 93.6 weeks of other thyroid cancer), 38% achieved a PR, 47% had SD. In 66% 

tissue from patient with DTC/PDTCs was found at least 1 mutation (45% BRAF, 19% RAS, 11% RET, 

9% PIK3CA), while in 17% multiple mutation (60% in ATC) [61]. 
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In 2012, data from a retrospective, longitudinal study on use of sorafenib in pts with progressive  

RAI-refractory DTC was published [62]. Sorafenib has been used off-label in 17 pts, independently from 

their performance status, at conventional dose. Although the drug was tolerated, 5 fatal events was reported 

(3 severe bleeding and 2 cardiac arrest), all pts needed dose reductions and/or transient drug interruption 

to control AE. Thirty percent of pts achieved PR, 41% SD and 18% PD, median PFS was 9 months and 

median overall survival 10 months. These results probably depended on the general pts conditions at  

the beginning of the trial, which were worse than other studies. The RR was greater in lymph nodes than 

lung metastasis, baseline fluorodeoxyglucose-positron emission tomography (FDG-PET) assessment 

and early FDG-PET response were correlated to radiological response. The FDG-PET could be helpful 

for the timely identification of non-responding pts, in fact an early reduction in average standardized 

uptake value was recorded in all pts, but was greater in responding subjects [62]. 

To evaluate the efficacy of sorafenib in pts with advanced RAI refractory DTC, another phase II trial 

was conducted on 31 pts receiving sorafenib at 800 mg (400 mg twice daily); the median follow-up and 

period of treatment was 25 and 9 months, respectively [63]. BRAF V600E was the most observed mutation 

among the ones evidenced, but not related to disease progression. PR was obtained in 31% and 42% 

achieved SD after a median follow-up of 25 months. The dose of TKI used was generally well tolerated, 

although dose reductions were required in 58% of pts, most frequent AE was dermatological [63]. 

Table 1. Clinical trials of Sorafenib in patients with thyroid cancer. 

Drug 
Thyroid 
Cancer 

Responses 

Authors 
PR SD PD 

PFS 
(months) 

Sorafenib 30 DeTC 23.3% 53.3% 7% 21 Gupta-Abramson et al. [55] 

Sorafenib 41 DeTC 15% 56% – 15 Kloos et al. [56] 

Sorafenib 31 DeTC 25% 34% 22% 14.5 Hoftijzer et al. [58] 

Sorafenib 13 DeTC 20% 60% 20% 19 Cabanillas et al. [59] 

Sorafenib 
19 DeTC  
15 MTC 

18% DeTC 
25% MTC 

– – – Ahmed et al. [60] 

Sorafenib 
47 DeTC  
5 ATC  
3 MTC 

38% DeTC 
47% 

DeTC 
– 23.4 Keefe et al. [61] 

Sorafenib 17 DeTC 30% 41% 18% 9 Marotta et al. [62] 

Sorafenib 31 DeTC 31% 42% – 18 Schneider et al. [63] 

Sorafenib 207 DeTC – – – 10.8 Brose et al. [64] 

Sorafenib 8 DeTC 12.5% 62.5% 25% 14–24 Pitoia [65] 

Sorafenib  
Sunitinib  

Vandetanib 

32 DeTC  
13 ATC  
17 MTC 

15% vs. 8% 
DeTC  

36% MTC 
– – 

6.7 vs. 7 
DeTC 

Massicotte et al. [66] 

Anaplastic thyroid cancer (ATC); dedifferentiated thyroid cancer (DeTC); medullary thyroid cancer (MTC); 

partial response (PR); progressive disease (PD); progression-free survival (PFS); stable disease (SD). 

A randomized, double-blind, placebo-controlled, phase III trial (DECISION), investigated sorafenib 

(400 mg orally twice daily) in pts with RAI-refractory locally advanced or metastatic DTC that had 

progressed [64]. The intention-to-treat population included 417 pts (207 in the sorafenib group and  
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210 in the placebo group) and the safety population was 416 pts (209 pts instead of 210 in  

the placebo group). Median PFS was higher in the sorafenib group (10.8 months) than in the placebo 

group (5.8 months) and improved in all clinical and genetic biomarker subgroups, irrespective of mutation 

status. AE occurred in 98.6% pts receiving sorafenib: the most frequent were hand-foot skin reaction 

(76.3%), diarrhoea (68.6%), alopecia (67.1%), and rash or desquamation (50.2%). These results suggest 

that sorafenib is an effective treatment for pts with RAI-refractory DTC [64]. 

Also, other more recently published studies suggest a possible role for sorafenib in the treatment of 

progressive metastatic DTC [65,66]. 

4. Sunitinib 

Sunitinib (SU011248) is a small molecule, multitargeted TKI, acting as a selective inhibitor of 

VEGFR-1, 2, and 3, PDGFR, cKIT, and RET/PTC subtypes 1 and 3, that are involved in signal transduction 

and growth and their inhibition is determinant in the development of solid tumors [67,68]. Sunitinib is 

orally administered and is approved for the therapy of clear-cell renal carcinoma and gastrointestinal 

stromal tumor (GIST) on an intermittent treatment schedule [69], but is under investigation also in other 

human malignancies. The most common drug-related AE described are fatigue, diarrhea, palmar-plantar 

erythrodysesthesia, neutropenia, hypothyroidism and hypertension [70]. 

The antitumoral properties of sunitinib have been investigated by various preclinical studies  

(Table 2) and Kim et al. showed that is a potent inhibitor of RET/PTC oncoproteins in vitro [71]. 

Sunitinib decreases RET/PTC autophosphorylation and STAT3 (signal transducer and activator of 

transcription) activation, and blocks the transforming capacity of RET/PTC. Furthermore, it exerted  

a powerful growth-inhibitory effect on the TPC1 cell line, that spontaneously harbors an RET/PTC 

rearrangement [71]. 

A study has been performed to investigate the effects of sunitinib in RET/PTC1 rearrangement cells, 

focusing on signal transduction pathways and gene expression of iodide metabolizing proteins.  

An increase in sodium-iodide symporter (NIS) gene expression has been demonstrated through  

the inhibition of MEK/ERK and SAPK/JNK cytoplasmic pathways, individually and in combination, 

suggesting that blocking these pathways is the mechanism by which sunitinib exerts its direct 

antiproliferative effect [72]. 

In another preclinical study the authors investigated the different mechanism of inhibitory effects of 

sunitinib against RET/PTC rearrangement and BRAF mutation in cell lines and orthotopic TC mouse 

model [73]. Sunitinib inhibited RET/PTC but not BRAF mutated cells, suggesting that clinical application 

of sunitinib should be directed by genotyping [73]. 

The preliminary results of different phase II studies were presented in the ASCO annual meeting  

in 2008 [74]. In the first trial, 43 pts with evidence of progression of disease (37 DTC, 6 MTC) received 

sunitinib 50 mg daily on a 4-week-on/2-week-off schedule. Thirty-one pts with DTC completed 2 cycles 

for evaluation: PR was 13%, SD 68%. For MTC the best response was SD, at 83% [74]. 

In the second trial, Goulart et al. [75] enrolled 18 subjects with metastatic, RAI-refractory and 

evidence of FDG-PET avid TC (3 MTC, 15 DTC). Sunitinib was administrated at 37.5 mg daily and  

FDG-PET was performed in 16 pts at baseline and after 7 days of treatment. The FDG-PET response 
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rate was observed in 7 pts, all of them with DTC histology; the RECIST response rate was still being 

evaluated at the time of report. One patient died for gastrointestinal bleeding [75]. 

The results for first period of the THYSU study were presented [76]. Sunitinib was given at 50 mg 

daily for 4 weeks every 6 weeks. Fifteen/17 pts were enrolled (1 ATC, 4 MTC, 8 PTC and 4 other TC) 

and evaluable for response: 1 pt had a PR, 12 had SD, with 1 pt with >90% decrease of Tg and 1 pt with 

a dramatic decrease of symptoms [76]. 

The data from the largest open-label phase II trial was published in 2010 [77], conducted on 28 pts 

with progressive DTC and 7 with MTC, who received 37.5 mg of sunitinib on continuous basis. A complete 

response (CR) was observed in 3%, PR in 28% and SD in 46% of subjects. The most common toxicities 

observed included fatigue (11%), neutropenia (34%), hand/foot syndrome (17%), diarrhea (17%), and 

leukopenia (31%). Reduction in fluorodeoxyglucose uptake in positron emission tomography was  

a predictor of PR or stabilization of the disease [77]. 

Also other more recently published studies suggest a possible role for sunitinib in the treatment of 

progressive metastatic DTC [66,78]. 

Table 2. Clinical trials of Sunitinib in patients with thyroid cancer. 

Drug Thyroid Cancer 

Responses 

Authors 
PR SD PD 

PFS 
(months) 

Sunitinib 
37 DeTC  
6 MTC 

13% DeTC 
68% DeTC 
83% MTC 

10% DeTC 
17% MTC 

 Cohen et al. [74] 

Sunitinib 
12 DeTC  
1 ATC  
4 MTC 

6% 71%   Ravaud et al. [76] 

Sunitinib 
7 MTC  

28 DeTC 
28% PR + 

3% CR 
46% 17% 12.8 Carr et al. [77] 

Sunitinib 11 DeTC 
18% PR + 

9% CR 
45% 27% 11.5 Dìez et al. [78] 

Anaplastic thyroid cancer (ATC); complete response (CR); dedifferentiated thyroid cancer (DeTC); medullary 

thyroid cancer (MTC); partial response (PR); progressive disease (PD); progression-free survival (PFS); stable 

disease (SD). 

5. Imatinib 

Imatinib (STI571) is a TKI affecting several protein-tyrosine kinases: Bcr-Abl, PDGFR α e β, c-Kit 

and RET [79], approved by the USA FDA and European Medicines Agency (EMA) for the treatment of 

chronic myelogenous leukemia, and gastrointestinal stromal tumor. Imatinib has been used in several 

studies to evaluate the inhibiton of MTC, but no objective response was observed [79–81]. 

In a recent phase I study of imatinib, dacarbazine, and capecitabine in advanced endocrine cancers, 

no responses were seen in patients with MTC, but 4 of 5 patients experienced SD [82]. 
  



Int. J. Mol. Sci. 2015, 16 6163 

 

 

6. Vandetanib 

Vandetanib (ZD6474) (Table 3), is an orally active low-molecular-weight receptor TKI, potent 

inhibitor of VEGFR-2, targeting also VEGFR-3, EGFR, and RET kinases. The inhibition of RET 

oncoproteins kinase activity by ZD6474 in RET-mutant cell lines is known since 2002 [83]. 

Two single-arm phase II clinical trials were developed to evaluate the clinical utility of vandetanib in 

hereditary MTC, and reported similar preliminary results (20% of pts had a PR while an addictional 53% 

of pts experienced a SD at 24 weeks [84]; PR was achieved in 16%, SD >24 weeks in 53% [85]). 

The ZETA trial [86], an international randomized phase III trial has been performed, comparing 

ZD6474 (vandetanib 300 mg daily) and placebo in 331 MTC pts: PFS prolongation with vandetanib vs. 

placebo was observed (hazard ratio [HR], 0.46; 95% CI, 0.31 to 0.69; p < 0.001). 

Vandetanib was approved by FDA as the first TKI to treat adult pts with metastatic or progressive 

MTC in April 2011 [86]. 

In a double-blind phase II study [87], 145 pts with locally advanced or metastatic DTC (PTC, FTC, 

or PDTCS) improved PFS; 72 of them received vandetanib 300 mg/daily and 73 placebo. PFS was higher 

in pts treated with TKI than with placebo (11.1 and 5.9 months, respectively), PR and SD were 8% and 

57%, while for the other group they were 5% and 42%, respectively. The safety and tolerability were 

consistent with previous studies on vandetanib [87]. 

Also a more recently published study shows that vandetanib is effective in the treatment of 

progressive metastatic MTC [66]. 

Table 3. Clinical trials of Vandetanib in patients with thyroid cancer. 

Drug Thyroid Cancer 
Responses 

Authors 
PR SD PD PFS (months) 

Vandetanib 30 MTC 20% 53% 3% 27.9 Wells et al. [84] 
Vandetanib 19 MTC 16% 53% 16% 168 days Robinson et al. [85] 
Vandetanib 231 MTC 45% 42% – – Wells et al. [86] 
Vandetanib 145 DeTC 8% 57% – 11.1 Lebolleux et al. [87] 

Dedifferentiated thyroid cancer (DeTC); medullary thyroid cancer (MTC); partial response (PR); progressive 

disease (PD); progression-free survival (PFS); stable disease (SD). 

7. Motesanib Diphosphate 

Motesanib diphosphate (AMG 706) is an ATP-competitive inhibitor of VEGFR1, 2, 3, PDGFR, and 

Kit. It inhibits human endothelial cell proliferation VEGF-induced, and increases endothelial apoptosis, 

in vitro [88]. 

The first clinical trial, a phase I study with motesanib diphosphate 125 mg/day orally was conducted 

in 5 pts affected by DTC, 3 of them had a PR (i.e., >30% reduction in tumor diameters) [89]. 

Three phase II trials have been carried out in pts with advanced or metastatic, RAI-resistant TC [90–92], 

two of which in pts with MTC [90,92]. 

In all the three studies, motesanib diphosphate was administered orally 125 mg/day. This daily dose 

was confirmed to be the best dose to achieve the longest PFS [93]. 
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Sherman et al. [90] tested motesanib diphosphate on 93 DTC pts (57 pts, 61% were PTC). A PR was 

achieved in 14% of them, while SD in 35% for at least 24 weeks. Serum Tg decreased in 81% of pts compared 

to baseline. The tumor progressed in 7 pts (8%). The median PFS was 40 weeks. The most frequent AE 

were gastrointestinal (diarrhea, 59%), followed by hypertension (56%), asthenia (46%) and weight loss 

(40%). Primary hypothyroidism occurred in less than a third of pts (22%). The most common grade 3 

side effect was hypertension (25%) [90]. 

To predict the effectiveness of TKIs, various biomarkers have been identified. Bass et al. [92] treated 

184 pts (93 DTC and 91 MTC) with motesanib 125 mg/day orally for up to 48 weeks in a phase II trial; 

48% of MTC pts achieved SD for at least 24 weeks. Median PFS was 40 weeks for DTC pts, and 48 weeks 

for MTC pts [92]. Serum PlGF, antagonizing VEGF, increased, while soluble VEGFR2 decreased over 

the treatment. Both reverted toward baseline at the end of the study. Serum PlGF, soluble VEGFR2 and 

serum caspase-3/7 activity correlated with the tumor response to motesanib, while baseline serum VEGF 

correlated with a better prognosis [92]. 

8. Axitinib 

Axitinib (AG-013736) is a second-generation inhibitor of VEGFR1, 2, 3, PDGFR and c-Kit [34,94]. 

Compared to other VEGF-TKIs, it has a greater receptor specificity, particularly against VEGFR2, 

and for this reason it is the most potent available VEGFR2-TKI [95,96]. It also inhibits endothelial nitric 

oxide, protein kinase B, ERK, and induces endothelial cells apoptosis that cannot be rescued by exogenous 

VEGF [97]. 

Axitinib was more than 10-fold less potent in inhibiting PDGFR and Kit in cell-based assays, 

compared to the other VEGF-TKIs [98]. 

The maximum tolerated dose of axitinib assessed in the first phase I study was 5 mg twice daily [99]. 

In a phase II trial [100], 60 pts with advanced TC, 45 with DTC (30 PTC and 15 FTC) and 11 with MTC, 

were enrolled and administered with axitinib 5 mg twice daily. SD for at least 16 weeks was achieved 

in 39% of pts (12 PTC, 7 FTC, 3 MTC), while PR in 29% of pts (8 PTC, 6 FTC, 2 MTC). The median 

PFS was 18.1 months (72.4 weeks). A negligible effect of axitinib on KIT was confirmed, as a 32%, 35%, 

13% decrease of soluble VEGFR2, 3 and soluble Kit, respectively, was evidenced, while serum VEGF 

was 2.8-fold higher [100]. 

The most frequent toxicities were fatigue (50%), diarrhea (48%), nausea (33%), anorexia (30%) and 

a drug-responsive hypertension (28%); the last one was the most common grade 3 side effect (12%). 

Three pts had grade 4 toxicity, stroke, hypertension, and reversible posterior leukoencephalopathy, 

respectively. Eight pts (13%) withdrew axitinib because of AE [100]. 

Furthermore, axitinib did not show a cumulative dose-limiting toxicity [101]. 

To evaluate the efficacy of TKIs, various biomarkers have been proposed as surrogates, as increase 

in blood pressure [102], or in erythropoietin blood levels [103]. 

In a second phase II trial [104], the efficacy and safety of axitinib were evaluated in 52 pts with 

metastatic or unresectable, locally advanced MTC or DTC, who received a starting dose of axitinib  

5 mg twice daily. The overall objective response rate was 35% (18 PR), and 18 pts had SD for ≥16 weeks. 

The median PFS was 16.1 months, and the median overall survival was 27.2 months. Quality of life was 
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maintained during treatment with axitinib. This study suggests that axitinib could be an additional treatment 

option for pts with advanced TC [104]. 

9. Cabozantinib 

Cabozantinib (XL184), an orally multiple-receptor kinase inhibitor, inhibits VEGFR1, 2, C-MET, 

RET, c-Kit, FLT3, and Tie-2 [105]. 

Kurzrock et al. conducted a phase I trial on cabozantinib in 37 pts with MTC [106,107]: ten (29%) of 

35 MTC pts with measurable disease had a confirmed PR. 

Cabanillas et al. administered cabozantinib in 15 DTC pts with 140 mg free base (equivalent to  

175 mg salt form) daily: 8/15 (53%) had a PR, while 6/15 (40%) had a SD [108]. 

Considering the abovementioned results and the data obtained also in other studies, FDA has recently 

approved cabozantinib for the treatment of MTC [109]. 

10. Gefitinib 

Gefitinib (ZD1839) is an EGFR-inhibitor firstly used in non-small-cell lung cancer [110], that 

effectively inhibits ATC proliferation, and induces apoptosis in vitro [111]. 

Pennel et al. [112] enrolled 27 pts in a phase II trial, 18 of whom with advanced and RAI-resistant 

DTC, treated with gefitinib 250 mg/day orally. The most frequent toxicities were cutaneous (rash in 52% 

of pts) and gastro-intestinal (diarrhea in 41%, anorexia 11%, nausea 9%). The most frequent side effects 

were rash (7%) and diarrhea (4%). Although no patient achieved PR, 48% of pts attained SD at 3 months, 

while 24% and 12% at 6 and 12 months, respectively. Five/15 pts (33%) with measurable serum Tg, had 

a remarkable decrease of Tg levels (<90%) for >6 months [112]. 

The inactivation of EGFR enhances the cytotoxic effect of doxorubicin and decreases its extrusion; 

for this reason, the association of gefitinib and doxorubicin has been suggested for the treatment of metastatic 

FTC, and ATC [113]. 

Recently, a case-report on a 79-year-old male with metastatic PDTC, with an EGFR mutation, who 

responded to treatment with the selective EGFR TKI erlotinib, has been reported; a PFS of more than 

11 months has been shown [44]. 

11. Pazopanib 

As motesanib, pazopanib (GW786034) is a VEGFR1, 2, 3, PDGFR and c-Kit inhibitor, approved  

for the treatment of renal cell carcinoma [114], but, contrary to sumatinib, it does not induce apoptosis 

in human renal cell carcinoma cell lines in vitro [115]. 

Pazopanib has been evaluated in 39 pts with advanced DTC in a recent phase II trial, of whom  

37 were assessed. At the dose of 800 mg/day orally, a PR was obtained in 18 pts (49%), though no CR 

was reported; 22 pts (59%) had a PD. There were no differences between PTC and FTC. Tg decreased 

by at least 30% in 28/32 pts (88%) [116]. 

The most common toxicities were fatigue (57%), cutaneous (skin/hair hypopigmentation 59%, 

alopecia 35%), nausea (51%), diarrhea (43%), vomiting (41%), altered taste (54%), anemia (35%), 

leucopenia (30%). The most frequent grade 3 toxicities were raised ALT levels (11%), lower gastrointestinal 
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hemorrhage (8%). In 23 pts (62%) TSH serum levels raised by more than two times. The median PFS 

was 11.7 months [116]. 

More recently it was reported that combining pazopanib with microtubule inhibitors (paclitaxel) 

produced synergistic antitumor effects in ATC cells and xenografts that were associated with potentiated 

mitotic catastrophe. Pazopanib potently inhibited aurora A, with pazopanib/paclitaxel synergy recapitulated 

by aurora A short hairpin RNA knockdown or by specific aurora A pharmacological inhibition. 

Pazopanib/paclitaxel synergy was reversed by aurora A knockdown. A durable benefit resulted from 

pilot clinical translation of pazopanib/paclitaxel therapy in a patient with metastatic ATC. These results 

suggested that the pazopanib/paclitaxel combination is promising in the therapeutic approach in ATC [117]. 

12. Lenvatinib 

Levantinib (E7080) is an orally active multi-targeted TKI, which acts on VEGFR1, 2, 3, PDGFR β, 

RET, c-KIT and FGFR1, 2, 3, 4. Lenvatinib does not significantly inhibit tumor cell proliferation, but it 

exerts its action on migration and invasion [118]. 

E7080 has been demonstrated to suppress lymph node and lung metastases in a mammary tumor 

model [119]. 

Sherman et al. administered lenvatinib in 58 pts with advanced DTC 24 mg/day orally in a phase II 

trial [120]. Twenty-nine pts had a PR, while median PFS was 12.6 months. The most common AE were 

hypertension (64%), fatigue (55%) and diarrhea (45%) [120]. 

13. BRAF Inhibitors 

BRAF mutations are associated with lymph node metastases, extrathyroidal extension, tumor size, 

and multifocality in PTC [121]. BRAF activation, through TGF-β and the inhibition of Pax8, leads to 

the inhibition of NIS expression [122]. 

Dabrafenib (GSK2118436) is a potent BRAF kinase inhibitor [123], able to block in vitro the growth 

of BRAFV600E positive melanoma and colon cancer human tumor xenografts [124]. 

Falchook et al. [123] enrolled 184 pts with incurable solid tumors with Val600Glu BRAF mutation 

(Table 4), 14 of them with PTC, in a phase I trial. They took 300 mg/day of dabrafenib orally. The most 

common AE were fatigue, pyrexia, skin lesions ranging from hyperkeratosis (26%) or actinic keratosis 

(10%) through kertao acanthoma or squamous-cell carcinoma (11%—low grade, well-differentiated). 

Nine/14 pts could be assessed. Three/9 achieved PR (two confirmed) [123]. 

Vemurafenib (PLX4032), an oral analogue of PLX 4720, inhibits BRAF and is already approved  

for treatment of advanced melanoma. An ongoing phase II trial is evaluating safety and efficacy of 

vemurafenib in advanced PTC [125]. 

Other BRAF inhibitors (CEP-32496) have shown in vitro a selective action against BRAF and are 

expected to be effective and favorable also in TC [126]. 

Other drugs have been developed to interfere with the downstream RAS/RAF pathway. Most of them 

act on the mitogen-activated protein kinase kinase (MEK or MAPK/ERK kinase), whose substrates are 

ERK1/2. In vitro, MEK inhibitors inhibit growth of human tumors in mouse xenografts [127]. 

Selumetinib (AZD6244, ARRY-142886) is an oral MEK1 and MEK2 potent inhibitor tested on  

57 pts with advanced solid cancers, two of which with TC. The most common toxicities were rash (74%), 
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diarrhea (56%), nausea (44%). The 50% of maximum tolerated dose (100 mg bid) was well tolerated.  

A patient with MTC achieved SD for 19 cycles [127]. 

In another paper [128], 39 pts with iodine-refractory PTC were administered with 100 mg bid of 

selumetinib in a phase II trial. One patient (3%) experienced partial disease, while 21 (54%) achieved 

SD. Median PFS was 32 weeks (BRAF V600E > BRAF wild-type). The most frequent AE were rash, 

fatigue, diarrhea and peripheral edema [128]. 

Another MEK inhibitor, PD0325901 reduces the growth of PTC cells in vitro and in xenograft murine 

models [129]. 

Table 4. Clinical trials with BRAF inhibitors in patients with thyroid cancer. 

Drug Thyroid Cancer 
Responses 

Authors 
PR SD PD PFS (months) 

Dabrafenib 14 DeTC 21% – – – Falchook et al. [123] 
Selumetinib 2 DeTC – 100% 19 cycles – – Adjei et al. [127] 
Selumetinib 39 DeTC 3% 54% 28% 8 Hayes et al. [128] 

Dedifferentiated thyroid cancer (DeTC); partial response (PR); progressive disease (PD); progression-free 

survival (PFS); stable disease (SD). 

14. mTOR Inhibitors 

The mammalian target of rapamycin, mTOR, constituted by mTORC1 and mTORC2, is the  

main downstream effector of the PI3K/Akt pathway. It is a serine/threonine kinase that, through the 

phosphorylation of a number of proteins (p70S6 kinase, 4EBP1) regulates protein synthesis, metabolism, 

cell growth and survival [130,131]. PI3K/Akt pathway is involved in the thyroid carcinogenesis [132]. 

Indeed, the initial factor eIF4E, that binds 4EBP1, is overexpressed in PTC as well as MTC cells, and 

its levels correlate with the aggressiveness of these tumors [132]. 

The mTOR inhibitor, rapamycin, decreases TC cell growth and viability in vitro [132], and the 

activation of PI3K/Akt pathway causes the inhibition of iodide uptake by NIS. As expected, PI3K/Akt 

inhibitors increase iodide uptake. 

Everolimus (RAD001) is an orally active rapalog (rapamycin analog) that inhibits mTORC1, upon 

binding FKBP12 [133,134]. It has been approved by FDA for the treatment of pts with advanced renal 

carcinoma and tested in vivo on MTC [135]. 

Fury et al. [130] administered everolimus plus cisplatin in 30 pts with advanced solid tumors  

in a recent phase I study. Seven/30 pts had TC (5 DTC, 2 MTC). One patient with PTC completed  

14 cycles and achieved SD. The most common grade 3 AE were lymphopenia (36%), fatigue (11%)  

and hyperglycemia (11%) [130]. 

The combination of another mTOR inhibitor (Temsirolimus) plus a novel MEK inhibitor (RDEA119) 

has shown a synergistic effect in vitro [136]. 

15. Histone Deacetylase Inhibitors 

Vorinostat (suberoylanilide hydroxamic acid) is an oral histone deacetylase inhibitor, already 

approved by the USA FDA for the treatment of cutaneous T-cell lymphoma [137]. Vorinostat is able to 
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arrest TC cell growth and induce apoptosis in vitro [138]. Woyach et al. tested vorinostat (starting at 200 mg 

b.i.d. (twice daily)) in 19 pts with TC (16 DTC, 3 MTC), but no patient had a response [139]. 

Romidepsin (Depsipeptide) is a bicyclic peptide isolated from Chromobacterium violaceum. 

Depsipeptide was the first histone deacetylase inhibitor reported to be effective in pts with cutaneous  

T-cell lymphoma, peripheral T-cell lymphoma, and renal cell carcinoma [140]. It is approved by the 

USA FDA for the treatment of cutaneous T-cell lymphomas [141]. It increases the expression of Tg and 

NIS in vitro [142]. 

However, a phase II trial on romidepsin in pts with DTC was closed after the first 20 pts because of 

the lack of response and a grade 5 sudden death and a grade 4 pulmonary embolus [143]. 

16. Limits and Drug Resistance 

TKIs are generally less toxic than cytotoxic chemotherapy, but actually they cause significant side 

effects, as fatigue, hypertension, cutaneous rash, mucositis, hand-and-foot syndrome, nausea, diarrhea, 

vomiting. Also thyroid dysfunction is a well-known AE of TKI [144]; severe side effects can require the 

suspension of the therapy with TKIs. 

The efficacy of TKIs in pts with DTC has given contrasting evidence in the clinical trials, probably 

due to the drug resistance, that could arise from the activation of alternate mitogenic signals [145]. TKIs 

arrest tumor growth but do not remove tumor cells, acting as antiangiogenetic drugs [34]. 

Hence, the combination of TKIs has been recently proposed [145], though possible interaction between 

those are yet to be elucidated [146]. 

The effectiveness of the treatment could be ameliorated by the possibility to test the sensitivity of 

primary TC cells from each subject to different TKIs [147,148]. 

By human tumor cells, disease orientated in vitro drug screening has some predictive value for the 

activity of clinical responses [149,150], and could be useful to prevent the administration of inactive 

chemotherapeutics to pts [151]. 

In vitro chemosensitivity tests permit to predict in vivo effectiveness in 60% of cases [152], while  

a negative chemosensitivity test in vitro is associated with a 90% of ineffectiveness of the chemotherapy 

in vivo [150], avoiding the administration of inactive drugs to these pts. 

Till nowadays, primary TC cell cultures have been obtained from surgical biopsies performed  

for therapeutic or diagnostic procedures. Recently, our studies demonstrated that fine-needle aspiration 

(FNA) cytology overcomes this problem, thanks to the possibility to obtain primary cell culture from 

FNA samples of ATC (FNA–ANA), and opens the way to the use of FNA–ANA to test the sensitivity 

to different drugs in each patient, avoiding unnecessary surgical procedures and the administration of 

inactive therapeutics [147,152–162]. 

17. Alternative Therapeutic Strategies 

Other alternative strategies are focused on NIS, that is a plasma membrane glycoprotein sited in the 

basolateral membrane of thyrocytes, that couples sodium and iodide inward transport in favor of the 

electrochemical gradient. Iodide is therefore translocated towards the follicular lumen through the apical 

membrane by pendrine, a chloride-iodide transporter [163]. In thyroid cells, TSH stimulates NIS synthesis, 
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while thiocyanate, perchlorate, estrogens, TNF-α, TNF-β, IFN-γ, IL-1α, IL-1β, IL-6, and TGF-β1  

inhibit it [164]. 

As the expression of NIS is impaired but is still maintained, it is possible to obtain thyroid remnant 

ablation and the detection of TC relapse or metastasis by RAI. Up to 30% of persistent or metastatic TC 

loose a number of markers of thyroid cell differentiation [163], as the iodide uptake ability of follicular 

cells. Even though NIS expression can be quantitatively decreased in TC cells, the loss of the ability to 

uptake iodide seems the result of a functional impairment of NIS. It has been demonstrated by 

immunohistochemical studies that NIS may be overexpressed in some cancers [165]. Indeed, recent data 

showed that: (1) NIS localization is mostly intracellular in some TC cells [165]; (2) various NIS repressor 

have been identified (NIS-repressor, pituitary tumor transforming gene binding factor) [166,167];  

(3) the loss of NIS expression could be explained by pre-transcriptional events (as methylation of  

the NIS promoter) [168]; (4) NIS may abnormally undergo several post-transcriptional and post-translational 

modifications (for instance, glycosylation), which are able to inactive it [169]; blockers of methyltransferase 

alone [170] or in combination [171,172] are able to enhance NIS expression.  

Retinoic acids (RA) are active metabolites of vitamin A able to regulate growth and differentiation 

of many cell types. RA bind to specific nuclear receptors, the retinoic acid receptors (RAR) and the 

retinoid X receptors (RXR). Recent studies have shown RA induce in vitro re-differentiation of TC cells, 

increasing expression of NIS, and cellular (131)I uptake. RA also induce anti-proliferative effects, and 

apoptosis in TC cells. Clinical studies have demonstrated that iodide uptake may be induced after RA in 

about 20%–50% of pts with DePTC, and long-term follow-up of DePTC pts showed that RA can induce 

partial tumor regression or at least tumor growth stabilisation [173,174]. 

PPARγ agonists are another exciting field for redifferentiating therapy of DePTC [10,175,176]. 

In a clinical study 20 pts with DTC were enrolled in an open-label, phase II trial of oral rosiglitazone 

treatment. Five of 20 pts had a positive radioiodine scan after rosiglitazone treatment. By RECIST criteria, 

no patient had a complete or partial response to rosiglitazone treatment at 3 months follow-up. These findings 

suggest that rosiglitazone therapy may induce radioiodine uptake in some pts with DTC but this did not 

result in clinically significant response on long-term follow-up [177]. 

Recently, targeted NIS gene transfer, by viral and nonviral vectors, followed by radionuclide ((131)I, 

(188)Re, (211)At) therapy, has been recently suggested for the treatment of advanced or DeTC. This 

intriguing approach has prompted great interest due to the specificity as well as the low toxicity [178]. 

18. Conclusions 

Much progress has been made recently in the genetic and molecular studies of DePTC, and the set of 

known PTC driver alterations was extended (to include EIF1AX, PPM1D, and CHEK2 and some gene 

fusions). A reclassification of TCs into molecular subtypes was also proposed, that could improve the 

pathological classification of PTC, helping the management of the disease. TKIs are emerging as potentially 

effective options in the treatment of advanced TC. Sorafenib seems to be a promising therapeutic option 

in patients with advanced DePTC that are not responsive to traditional therapies. However, the efficacy 

of TKIs in pts with DTC has given contrasting evidence in the clinical trials, probably due to the drug 

resistance. Furthermore, TKIs might cause significant side effects (as fatigue, hypertension, cutaneous 

rash, mucositis, hand-and-foot syndrome, nausea, diarrhea, vomiting, thyroid dysfunctions), and severe 
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side effects can require suspension. Several studies are currently under way to evaluate the long-term 

efficacy and tolerability of TKIs in DePTC, since progression of TC can be slow. The effectiveness of 

the treatment could be ameliorated by the possibility to test the sensitivity of primary DePTC cells from 

each subject to different TKIs. In fact, disease orientated in vitro drug screening permit to predict in vivo 

effectiveness in 60% of cases, while a negative chemosensitivity test in vitro is associated with a 90% 

of ineffectiveness of the chemotherapy in vivo, avoiding the administration of inactive (potentially toxic) 

drugs to these pts. Further research is needed to determine the ideal targeted therapy, based on molecular 

characterization of the tumor and of the host factors, to obtain the best response in terms of survival and 

quality of life. 
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