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A number of sentences in the first paragraph of the introduction of [28] were copied verbatim  

from [21,22,25,29]. Although [21,22,25] were cited in the text, [29] was omitted and it was not made 

sufficiently clear that direct quotations were used. The authors wish to apologize to the authors  

of [21,22,25,29] and to the readers of the journal for any inconvenience.  

The authors wish to replace the introduction of [28] with the following: 

1. Introduction 

Aromatase is a cytochrome P-450 dependent enzyme, which catalyzes the biosynthesis of estrogens 

from androgens. Aromatase inhibitors (AIs) control the level of estrogens and have been effectively 

used in the treatments of estrogen-dependent breast cancer [1–3]. AIs are classified into two types: 

steroidal aromatase inhibitors (SAIs) and non-steroidal aromatase inhibitors (NSAIs) [4]. NSAIs bind 

to the enzyme active site by competing with the substrate, and they are mostly azole type compounds 

such as anastrozole and letrozole [5]. However, SAIs are converted by the enzyme to reactive 

intermediates and bind irreversibly to the enzyme active site by simulating the natural substrate 

androstenedione, which cause to inactivation of aromatase [6]. Among SAIs, formestane was used by 

intramuscular injection during the early 1990s, which is not used nowadays. Instead of formestane, 
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exemestane is widely used because of its oral activation [7]. Though anastrazole, letrozole, and 

exemestane are used clinically, they still have some major side effects, such as heart problems, 

musculoskeletal effects, and bone toxicity [8]. For this reason, it is necessary to develop other potent 

and specific molecules with lower side effects. 

Quantitative structure-activity relationship (QSAR) methods have been widely applied to assist the 

design of new drug candidates nowadays [9–16]. Comparative molecular field analysis (CoMFA) and 

comparative molecular similarity indices analysis (CoMSIA) are two of the most widely used  

three-dimensional quantitative structure-activity relationship (3D QSAR) methodologies. At various 

intersections of a regular three-dimensional lattice, CoMFA uses Lennard-Jones and Coulomb 

potential fields to calculate the energies of steric and electrostatic interactions between the compound 

and the probe atom, respectively. The results calculated by these two potential functions can be 

represented as a three-dimensional “coefficient contour” map [17]. However, in order to avoid some 

inherent deficiencies caused by the Lennard-Jones and Coulomb potential functions, CoMSIA 

calculates the energies of interactions between the molecular atoms and the probe atom by introducing 

Gaussian function for the distance dependence. The contour maps obtained by the CoMSIA approach 

can show how steric fields, electrostatic fields, hydrophobic fields, hydrogen bond donor (HBD), and 

hydrogen bond acceptor (HBA) influence the activity of inhibitors [18]. 

Pharmacophore modeling can provide valuable insight of interactions between ligands and 

receptors. A pharmacophore model shows the ensemble of steric and electrostatic characteristics of 

different compounds. Therefore, when one class of inhibitors is found, new classes of inhibitors can be 

discovered by a pharmacophore model, and pharmacophore searching is a good way to find various 

chemical structures with the same features, which is a method of choice for the first round of 

compound selection [19–21]. 

A series of SAIs, shown in Table 1, have been reported in the recent literatures [22–27]. To 

understand the structural requirements for inhibitory activity and design more potent agents, 3D QSAR 

studies were performed for the fist time for these SAIs using CoMFA and CoMSIA. In addition, 3D 

pharmacophore models were created and the selected best model was used as a 3D query for virtual 

screening against NCI2000 database. The biological activities of hit compounds were further predicted 

by using CoMFA and CoMSIA models. 
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