
Int. J. Mol. Sci. 2015, 16, 4918-4946; doi:10.3390/ijms16034918 
 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Review 

Cancer Stratification by Molecular Imaging 

Justus Weber, Uwe Haberkorn and Walter Mier * 

Heidelberg University Hospital, Department of Nuclear Medicine, Im Neuenheimer Feld 400,  

69120 Heidelberg, Germany; E-Mails: ju.weber.ma@gmx.de (J.W.);  

uwe.haberkorn@med.uni-heidelberg.de (U.H.) 

* Author to whom correspondence should be addressed; E-Mail: walter.mier@med.uni-heidelberg.de;  

Tel.: +49-6221-567720; Fax: +49-6221-565473. 

Academic Editor: William Chi-Shing Cho 

Received: 15 October 2014 / Accepted: 17 February 2015 / Published: 4 March 2015 

 

Abstract: The lack of specificity of traditional cytotoxic drugs has triggered the development 

of anticancer agents that selectively address specific molecular targets. An intrinsic property 

of these specialized drugs is their limited applicability for specific patient subgroups. 

Consequently, the generation of information about tumor characteristics is the key to exploit 

the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene 

expression analysis and cancer proteomics, immunohistochemistry and molecular imaging.  

In order to enable the precise localization of functionally expressed targets, molecular imaging 

combines highly selective biomarkers and intense signal sources. Thus, cancer stratification 

and localization are performed simultaneously. Many cancer types are characterized by altered 

receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal 

growth factor receptor 2). Similar correlations are also known for a multitude of transporters, 

such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter), 

as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and 

CD20. This review provides a comprehensive description of the methods, targets and agents 

used in molecular imaging, to outline their application for cancer stratification. Emphasis is 

placed on radiotracers which are used to identify altered expression patterns of cancer 

associated markers. 
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1. Introduction 

Stratified medicine deploys highly specific drugs for treatment purposes. By virtue of their specificity, 

these drugs are only applicable in subgroups of patient collectives, which show expression of the required 

target structure or target isoform. In order to provide patients with the most effective treatment as  

quickly as possible, clustering of patient subgroups according to target expression patterns is of utmost 

importance (see Figure 1). The most important methods in the area of patient stratification are cancer 

proteomics, immunohistochemistry and molecular imaging [1]. Cancer proteomics mainly relies on 

monitoring serum biomarkers for diagnostic, prognostic or stratification purposes [2] and plays  

an important role in the discovery of signaling pathways [3] and gene expression profiling [4], which 

altogether can be used for cancer stratification. The emphasis of cancer proteomics is placed on 

functional analysis of deregulated cellular pathways and their role in the pathogenesis of a disease [5]. 

 

Figure 1. Cancer stratification by molecular imaging allows patients clustering according to 

the expected outcome of a therapeutic approach by visualizing an expressed biomarker. The 

resulting patient subgroups can subsequently be treated with the most promising therapy [6]. 

Molecular imaging describes in vivo imaging methods that use selective biomarkers in order to  

gain functional and anatomical information about the patient. For this purpose, many different imaging 

techniques are currently in use, the most prominent being positron emission tomography (PET) and 

single photon emission computed tomography (SPECT) [7]. Other important medical imaging methods, 

such as computed tomography (CT) and magnetic resonance imaging (MRI) require high amounts of 

contrast agents in order to derive functional information. This limits their applicability for molecular 

imaging; so far CT and MRI have not been implemented in the clinical molecular imaging routine [8,9]. 
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The basic strategy of molecular imaging is the combination of highly selective biomarkers and 

efficient signal sources. Especially the use of radioactive substances by PET and SPECT is of particular 

interest in the field of oncology. This is mainly due to the low detection limit of radioactive decays, 

which allows functional imaging at high resolution with minimal tracer quantities, compared to CT  

or MRI [6,7]. Molecular imaging shows several advantages over other stratification methods: It is  

non-invasive and allows simultaneous, real-time and in vivo cancer detection and localization by visually 

proving the presence of an expressed biomarker both in the primary tumor and in metastases throughout 

the body. As molecular imaging relies on highly affine tracer molecules, this also provides an approach 

for targeted cancer therapy: Substitution of the diagnostic signal source by a cytotoxic moiety results  

in a therapeutic compound [8]. 

2. Targets for Cancer Stratification by Molecular Imaging 

2.1. Glucose Utilization 

The cellular uptake of glucose is mediated by two distinct types of transporters: sodium-dependent 

glucose transporters (SGLT) and glucose transporters (GLUT). So far, 12 members of the SGLT family are 

known. They belong to the solute carrier 5 family (SLC5) and function as sodium/glucose symporters [10]. 

GLUTs, on the other hand, belong to the solute carrier 2 family (SLC2) and allow facilitated diffusion 

of glucose along its concentration gradient. At present, 14 members of the GLUT family are known [11]. 

They have been clustered in three different groups depending on sequence homologies [12]. 

In the absence of sufficient amounts of oxygen, the cellular glucose metabolism changes and glucose 

is no longer fully oxidized. Under anaerobic conditions, cells rely more or less exclusively on glycolysis 

for the generation of energy and on the production of lactate, in order to regenerate the amount of NAD+ 

consumed during glycolysis [13,14]. In order to generate the energy required, cells increase their glucose 

uptake. There are many organs which are known for their high glucose uptake, such as heart, liver and 

brain. In addition, inflammations also show high glucose uptake [15,16]. 

The metabolism of cancer cells differs highly from that of normal cells of the same tissue: Many 

cancer types show increased glucose uptake and utilization, even under non-hypoxic conditions [11,17]. 

Depending on the type of cancer observed, glucose uptake can be increased by about 20- to 30-fold  

when compared to normal tissue and glycolysis was also shown to be performed up to 30-times quicker 

in cancer cells [18]. Yet, increased glucose uptake is also seen under non-hypoxic conditions in  

cancer tissue [17]. Nonetheless, hypoxia in cancer correlates with parameters of increased cancer 

aggressiveness, such as chemotherapy resistance [19] and an increased risk for the formation of 

metastasis [20]. Recently, it could be shown that the reliance on glycolysis has several advantages for 

cancer cells. First of all, it allows the generation of side products by removing intermediates from  

the citric cycle [21]. Secondly, the production of lactate itself provides a powerful tool for cancer cells:  

The secretion of lactate to the surrounding tissue leads to an acidification, to which most host cells  

cannot adapt and therefore die [22,23]. Additionally, an angiogenetic effect of lactate has been shown  

recently [24]. Many cancer types show an overexpression of GLUT1 [25]. This observation correlates 

with many parameters employed to determine cancer aggressiveness, such as high potential to invade 

surrounding tissues, high risk for the generation of metastasis and chemotherapy resistance [26,27]. 
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2-Deoxy-2-(18F)fluoro-glucose ([18F]-FDG; see Figure 2) is one of the most well-known agents for 

molecular imaging. Because of its structural and chemical properties, it is taken up like unmodified glucose 

and is phosphorylated by hexokinase subsequently, leading to intracellular retention. However, it is not 

further metabolized afterwards due to the missing 2-hydroxyl-group [28]. Since glucose-6-phosphate and 

structural derivatives, such as 2-deoxy-2-(18F)fluoro-glucose-6-phosphate, have no GLUT substrate 

anymore, this leads to a tracer accumulation in tissues with high glucose uptake, such as cancer tissues, 

brain and liver [29]. This accumulation is also due to the differential regulation of other proteins of  

the glucose metabolism, such as a down-regulation of glucose-6-phophatase [30] and increased glucose 

uptake triggered by the overall up-regulation of downstream glycolytic enzymes [31]. These effects lead 

to increased glucose uptake and FDG accumulation in tissues with high enzymatic activity. FDG-PET 

imaging subsequently allows the detection of tissues showing high glucose accumulation, by monitoring 

the incorporated β+ emitting 18F. 

 

Figure 2. Chemical structure of 2-Deoxy-2-(18F)fluoro-glucose ([18F]-FDG). [18F]-FDG is 

taken up by the glucose transport system. As many cancer types show higher metabolic 

glucose turnover, [18F]-FDG uptake is increased, leading to its accumulation in cancer tissue. 

Subsequently, imaging with positron emission tomography (PET) is possible due to the  

β+ emitting radionuclide 18F. 

[18F]-FDG-PET has been successfully used for detection and tumor staging of different cancer types 

over the last 20 years, such as lung cancer [32], breast cancer [33], renal cell carcinomas [34] and many 

others, as reviewed by Gallamini et al. [35] and Hawkins et al. [36]. 

2.2. Amino Acid Utilization 

Due to their charge, amino acids are unable to permeate cell membranes. The carriers responsible for 

amino acid uptake belong to the solute carrier families SLC3 and SLC7 [37]. SLC7 carriers can be 

divided into two groups: cationic amino acid transporter (CAT) and L-type amino acid transporters 

(LAT). CATs perform sodium independent L-type amino acid uptake by facilitated diffusion [38–40]. 

LATs, on the other hand, mainly work as amino acid antiporters, by exporting non-essential amino acids 

in exchange for essential amino acids [37,41,42]. 

LATs always occur as heterodimers with members of the SLC3 family. The heterodimeric construct 

is then called HAT (heterodimeric amino acid transporter). There are only two known members  

of the SLC3 family: 4F2hc and rBAt, which belong to the group of type II transmembrane  

N-glycoproteins [43]. The SLC3 members are responsible for the cellular trafficking of the receptor 

towards the plasma membrane [44]. The substrate specificity of HATs mainly depends on the LAT 

incorporated in the heterodimer [37]. 

4F2hc/LAT1(L-type amino acid transporter 1) is overexpressed in many kinds of tumors,  

such as cervical carcinoma [45], gastric carcinoma [46] and different forms of leukemia—to name only  
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a few [41,47]. High LAT1 expression is associated with parameters of high cancer aggressiveness, such 

as lymph node metastasis and angiogenesis [48,49]. Another amino acid transporter that is often 

overexpressed in cancer is ASCT2 (ASC amino-acid transporter 2), which is responsible for the sodium 

dependent uptake of neutral amino acids [50,51]. It is overexpressed in prostate cancer and 

hepatocellular cancer and is also associated with high cancer aggressiveness [52]. 

Similar to the imaging with [18F]-FDG, radiolabeled amino acids can be used to image tissues with 

increased amino acid throughput. This is especially the case for cancer cells, which usually replicate 

very quickly and therefore require higher amount of amino acids [51]. 

The main application of amino acid radiotracers is the detection of tumors characterized by varying 

glucose uptake, which makes them impossible to monitor reliably and reproducibly with [18F]-FDG.  

One such example is neuroendocrine tumors [53,54]. 

As amino acid transporters are ubiquitously expressed, a high selectivity of the tracer molecule is of 

major importance. In the last years a huge amount of amino acid radiotracers has been developed for 

PET or SPECT [55]. Here, we only focus on a few selected tracer molecules. 

A few years ago, it could be shown that the SPECT tracer L-3-[123I]-iodo-α-methyl-tyrosine shows 

high LAT1 specificity, compared to other uptake mechanisms [56]. The major disadvantage of this tracer 

is that it has to be monitored with SPECT, which has a significantly lower resolution than PET. Thus,  
18F-labeled compounds, such as L-[3-18F]-α-methyl-tyrosine ([18F]-FAMT) have been developed  

(see Figure 3), in order to benefit from the high PET resolution [57]. This development only became 

possible upon the discovery that the α-methyl group is responsible for LAT1 specificity [58].  

[18F]-FAMT is currently one of the most specific and most often used PET tracers for the imaging of 

cancers with low glucose uptake rates [59,60]. 

 

Figure 3. Chemical structure of L-[3-18F]-α-methyl-tyrosine, a PET tracer specifically taken 

up via amino acid transporters, which are overexpressed in many types of cancer. 

2.3. Somatostatin Receptors 

Somatostatin receptors (SSTRs) play an important role in the inhibition of growth hormone  

secretion [61], as well as the production and secretion of gastrointestinal hormones, such as gastrin, 

renin, glucagon and insulin [62]. SSTRs are known to internalize upon ligand binding [63]. The ligand, 

somatostatin, is a peptide hormone that is secreted by different tissues of the gastrointestinal tract and 

stomach. Somatostatin is activated by protease cleavage and occurs in two versions—somatostatin-14 

and somatostatin-28 [64]. 

SSTR2 is the most abundant receptor isoform and is overexpressed in many tumors; especially in 

neuroendocrine tumors [65]. Additionally, it shows the highest SSTR internalization rate, which makes 

it a valuable target for molecular imaging and targeted therapy [63,66]. As somatostatin has a short 
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biological half-life (about 3 min) [67], more stable synthetic versions have been developed for clinical 

applications [64,68]. In 1978, Vale et al. published a comparative analysis of a series of somatostatin 

analogues, which have been improved further since then [69]. Currently, octreotide is one of the most 

often used somatostatin analogues. It shows high binding affinity to SSTR2 [65] and exhibits a 19-fold 

stronger inhibitory effect on the growth hormone secretion than native somatostatin [70]. 

One of the most well-known octreotide derivatives for therapeutic and imaging purposes is 

DOTATOC (DOTA(0)-Phe(1)-Tyr(3))octreotide) (see Figure 4). Chemically, it consists of  

the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) which is linked to octreotide 

via a peptide bond. The octreotide employed was further modified by substituting phenylalanine at position 

three with tyrosine, in order to increase the stability of the compound [71]. DOTA is able to chelate 

many different radionuclides, such as 68Ga, 111In or 90Y. While 68Ga and 111In are used for molecular 

imaging and cancer stratification via PET and SPECT, 90Y can be used to subsequently treat patients 

with SSTR-overexpressing cancers [72]. 

 

Figure 4. Chemical structure of [68Ga]-DOTATOC (DOTA(0)-Phe(1)-Tyr(3))octreotide). 

It shows high affinity to SSTR2 (Somatostatin Receptor 2)—a receptor overexpressed in 

neuroendocrine tumors. The blue portion of the molecule is responsible for the SSTR2 

specificity, whereas the radionuclide 68Ga contained in the chelator DOTA (red) acts as the 

signal source for PET imaging. For reasons of clarity, chelation bonds are omitted. 

In a comparative study, it could be shown recently that the radionuclide incorporated in the tracer has 

a considerable influence on the target specificity. Gallium chelated octreotide derivatives showed  

an increased SSTR2 specificity by up to factor five, when compared to the same tracer carrying 111In. 

Additionally the tumor uptake was 2.5-times higher for gallium carrying tracer molecules. Kidney 

uptake was also shown to be decreased compared to 111In-octreotide tracers [73,74]. 

Recently, a next-generation somatostatin analogue (SOM230, Signifor®, Novartis, Switzerland) has 

been developed for therapeutic purposes. Signifor® was granted an orphan drug status for therapy of  

the Cushing’s disease by both EMA in 2009 and FDA in 2012. SOM230 distinguishes from its 

predecessors through its high affinity to all five SSTRs. Moreover, its potency is 3- to 4-fold higher than 

that of octreotide and elimination from the circulation is prolonged about 10-times to a physical half-life 

of 23 h [75]. So far, SOM230 is not used as a radiotracer for molecular imaging. Nonetheless, this 

application could play an important role in the future, due to the high importance of octreotide  
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based tracers for the clinical molecular imaging routine and the improved performance of SOM230 as 

compared to other SSTR-tracers. 

2.4. Integrins 

Integrins are a family of heterodimeric receptors and play an important role in cell adhesion and cell 

signaling. So far, 19 α- and 8 β-integrin-subunits are known, which occur in 24 different arrangements 

in most vertebrates [76,77]. Receptor specificity mainly depends upon the α-subunit incorporated in  

the receptor [78]. The 24 members of the vertebrate integrin family are able to interact with several 

different molecules, such as collagen, laminin and RGD-motif (Arg-Gly-Asp) containing molecules,  

e.g., fibronectin and vitronectin [79]. Upon ligand binding, integrins induce different intracellular signaling 

pathways [80]. They play an important role in a multitude of processes that are crucial for tumor progression 

such as up-regulation and recruitment of tissue-metalloproteases, migration and angiogenesis [81,82].  

The most common and well-studied integrins playing an important role in cancer, especially in 

promoting angiogenesis, are those containing an αv-subunit. [83]. Overexpression of intergin αvβ3 is 

most often seen in glioblastomas and melanomas [84,85]. Since the α-subunit mainly determines  

the receptor specificity, most αv containing integrins can be targeted with similar tracers containing  

an RGD-motif. 

The first linear RGD-tracers were developed in 2001 [86] and later on modified by developing more  

stable cyclic RGD-tracers. In order to decrease protease digestibility of the compound, D-amino acids have 

been incorporated. There are numerous different RGD-tracers nowadays, as reviewed by Cai et al. [87]. 

Cyclic RGDfV (Cyclo [Arg-Gly-Asp-D-Phe-Val]) is the most prominent lead structure to target integrin 

αvβ3 [88,89]. In order to generate a theranostic compound, radiolabeling with both diagnostic and 

therapeutic radionuclides has to be possible. For this purpose, coupling of chelators is very useful, 

because they allow quick and variable radionuclide usage (see Figure 5). 

 

Figure 5. Chemical structure of [68Ga]-NOTA-c(RGDyK) (NOTA-Cyclo [Arg-Gly-Asp-D-

Tyr-Lys]), which is used for the molecular imaging of αvβ3 integrin overexpressing tumors. 
68Ga functions as the signal source for molecular imaging and is chelated to NOTA (red) to 

prevent displacement of the imaging moiety. The RGD-motif (Arg-Gyl-Asp, blue) is 

responsible for the integrin interaction. Insertion of D-tyrosine and cyclization reduce the 

protease digestibility of the compound, while lysine enables the correct positioning of the 

imaging moiety. For reasons of clarity, chelation bonds are omitted. 
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Recently, it was observed that Ga3+ ions are too small to perfectly fit into DOTA [90]. Additionally, 

DOTA-conjugated RGD-tracers showed high blood pool activity due to unspecific interactions with 

plasma proteins. Thus, smaller chelators, such as NOTA (1,4,7-triazacyclononane-triacetic acid) became 

more important. However, coupling of chelators to c(RGDfV) was not possible, because all chemically 

addressable groups could not be modified without influencing the pharmacophore. For this reason, valine 

was substituted by lysine in order to incorporate an addressable amino functionality. Additional 

modifications, such as other D-amino acids, were mainly introduced in order to influence pharmacokinetic 

parameters and increase the serum stability by preventing protease cleavage [89,91]. NOTA-c(RGDyK) 

showed high integrin αvβ3 affinity (Ki = 3.6 nM) and decreased blood pool activity [92]. 

2.5. Folate Receptors 

Folic acid (pteroylmono-glutamic acid) plays an important role in the biosynthesis of amino acids, 

purines and thymidylates by acting as a C1-group donor [93]. Mammals are unable to synthesize folate 

and therefore rely on their diet to keep their folate levels constant [94]. 

So far, three different folate uptake mechanisms are known: reduced folate carriers, proton coupled 

folate transporters and folate receptors (FR). Reduced folate carriers are bidirectional antiporters that 

import folate in exchange for negatively charged biomolecules, such as adenosine phosphates [95]. 

Proton coupled folate transporters, on the other hand, are proton/folate symporters that deploy energy 

derived from the transmembrane proton gradient to import folate against its concentration gradient into 

the cell [96]. Both of the previously mentioned transport mechanisms show low folate binding affinity 

in comparison to the FR (KD ≈ 10−10 M) [97]. The FR exists in three different isoforms (FRα, FRβ and 

FRγ) and leads to folate internalization by receptor mediated endocytosis [98]. FR overexpression  

has been detected in different tumor entities, mainly arising from epithelial tissue, as summarized in  

Table 1. Additionally FR overexpression correlates with poor prognosis, due to high cancer aggressiveness 

and chemotherapy resistance [99]. 

Table 1. Folate receptor overexpression in different cancer types [100]. FR, folate receptors. 

Cancer Type Rate of FR Overexpression

Ovarian 93% 
Endometrial 90% 

Renal 50% 
Lung 33% 

Colorectal 22% 
Breast 21% 

One of the most promising approaches in targeting FR overexpressing tumors is the utilization of 

folate derivatives, which feature high binding affinities and clear, thus patentable, structures [101]. 

Vintafolide/etarfolatide, two compounds developed by Endocyte Inc. (West Lafayette, IN, USA) and 

Merck & Co (Kenilworth, NJ, USA), provide an example for this group of compounds. As shown in 

Figure 6, both compounds consist of folic acid, which is responsible for the targeting, and either a 

diagnostic or a therapeutic moiety. The therapeutic component, vintafolide, contains a hydrophilic peptide 

spacer, a cleavable disulfide-linker and the therapeutic agent deacetylvinblastine monohydrazide, which is a 
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microtubule inhibiting agent [102]. Etarfolatide, on the other hand, contains a non-cleavable peptide bond to 

prevent displacement of the chelator together with the imaging compound 99mTc [103–105]. Early clinical 

trials proved good results for vintafolide and etarfolatide, however, both compounds have been 

withdrawn from the European market for the indication of “FR-positive, platinum-resistant ovarian 

cancer in adult women”, since no significant improvement compared to the current therapy could be 

shown. Nonetheless, vintafolide is still in clinical trials for its application in “FR-positive, recurrent  

non-small cellular lung carcinoma”. Most recently, it could be shown that combination therapy with 

docetaxel leads to increased overall survival rates [106]. 

 

Figure 6. (a) Chemical structure of etarfolatide. It is used to image folate receptor positive 

cancers with SPECT. It contains folate (blue) to target the compound to the FR and chelated 
99mTc in order to allow imaging (red); (b) Chemical structure of vintafolide, which is used 

to treat folate receptor positive ovarian cancer. It also contains folate as targeting moiety 

(blue). Additionally, a hydrophilic peptide linker with a cleavable disulfide bond (green) is 

incorporated to allow the release of deacetylvinblastine monohydrazide (red), which exhibits 

the cytotoxic effect. For reasons of clarity, chelation bonds are omitted. 

2.6. CD20 

CD20 is an integral membrane protein exclusively expressed on B cells, with the exception of fully 

differentiated plasma cells, and may thus be used as a B-cell marker [107,108]. It plays an important role in 

B-cell differentiation and activation [109], cell cycle progression [110] and Ca2+ uptake [111,112]. 
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Additionally, CD20 is significantly involved in altering gene expression patterns [113] by activating 

down-stream signaling cascades, such as the c-Myc pathway [114]. 

The natural ligand of CD20 is not known so far [115,116]. CD20 is expressed on the surface of  

most malignant B-cells, even though expression levels may vary significantly [108]. Aggressive B-cell 

lymphomas very often show high expression levels, correlating with the cancer associated tissue 

dedifferentiation, which leads to CD20 up-regulation [117]. 

Zevalin® (ibritumomab-tiuxetan, Bayer Healthcare, Leverkusen, Germany) is a monoclonal  

anti-human-CD20 antibody that is covalently coupled to the chelator molecule tiuxetan (see Figure 7). 

In combination with the radionuclides 90Y (therapeutic nuclide) and 111In (diagnostic nuclide) it is 

approved for the treatment of “relapsed or refractory low-grade, follicular or transformed B-cell  

non-Hodgkin’s lymphoma”. 

 

Figure 7. 111In-ibritumomab-tiuxetan (Zevalin®). The monoclonal antibody ibritumomab 

(grey) is highly specific for CD20, which is overexpressed by many different lymphomas.  

The chelator tiuxetan (red) is able to bind 111In, as well as 90Y. This allows molecular  

imaging and the subsequent therapy of CD20 positive lymphomas. For reasons of clarity, 

chelation bonds are omitted. 

In the US, molecular imaging using SPECT with 111In-ibritumomab-tiuxetan is mandatory in order 

to verify the presence of CD20 prior to applying the therapeutic antibody. Additionally, correct 

biodistribution of the therapeutic compound can be confirmed by post-therapeutic imaging [118]. 

After having blocked CD20 on non-cancerous B-cells using 250 mg/m2 unlabeled rituximab,  

185 MBq of 111In-Zevalin® is applied four hours later, followed by subsequent SPECT imaging. 

In a comparative study the overall response rate (ORR) of therapeutic Zevalin® was 80% while the 

non-radiolabeled Rituximab only showed an ORR of 56%. The total time to progression was greater 

than 12 months in 37% of patients treated with Zevalin® [119,120]. It is very likely that this increase is, 

at least in part, also due to the previous cancer stratification by molecular imaging. Thus, only patients 

with an expected positive outcome are treated. 
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2.7. Her2 

Her2 (human epidermal growth factor receptor 2) is a transmembrane glycoprotein belonging to  

the epidermal growth factor receptor family [121]. Members of this family are receptor tyrosine kinases: 

receptor dimers are formed upon ligand binding, which induces intracellular tyrosine side chain 

phosphorylation and leads to downstream signaling. Epidermal growth factor receptors play an important 

role in cell growth, cell differentiation and cell survival [122]. 

In contrast to other epidermal growth factor receptors, Her2 is constitutively activated and thus leads 

to permanent intracellular signaling. Her2 is overexpressed in many different cancer types, such as 

gastric cancer, ovarian cancer or non-small-cellular lung carcinomas [123]. It is also overexpressed in  

a significant portion (about 20%) of breast cancers. Her2 overexpression is associated with increased 

cell proliferation rates and chemotherapy resistance [124]. 

Her2 positive breast cancer is commonly treated by administration of the monoclonal antibody 

trastuzumab (Herceptin®, Genentech, San Francisco, CA, USA) or the antibody-drug-conjugate  

ado-trastuzumab emtansine (Kadcyla®, Roche, Basel, Switzerland) [125]. Ado-trastuzumab emtansine 

contains on average 3.5 covalently coupled DM1 molecules per antibody. DM1 induces cell death by 

tubuline inhibition [126]. 

In order to ensure a therapeutic effect, tumor staging is inevitable. Currently, radiotracers for  

in vivo imaging are being developed, in order to facilitate diagnosis and stratification as compared to  

the currently applied ex vivo assays, such as immunohistochemistry or fluorescence in situ hybridization. 

Due to their high affinity, many Her2 antibodies serve as pharmaceutical leads for the development of 

new Her2 tracer molecules, which holds one major disadvantage, though: having very long physical  

half-lives, antibodies impede the performance of molecular imaging using common radionuclides. [125]. 

Current approaches rely on the incorporation of long-lived radionuclides, such as 89Zr which is characterized 

by its long physical half-life and its biologic inertness [127]. Nonetheless, 89Zr leads to a disadvantageous  

2.5-fold higher radiation exposure when compared to conventional FDG-PET [128,129]. 

In order to decrease the radiation dose, alternative systems have been developed, such as  

[64Cu]-DOTA-trastuzumab. The utilization of 64Cu leads to significantly lower radiation doses, as 

compared to 89Zr. Yet, high blood pool activity was observed, making it impossible to detect tumors or 

metastasis localized next to organs with high blood perfusion, such as heart and liver [130]. 

Another approach to reduce the radiation exposure is the utilization of alternative binders, such as 

affibodies [131]. Affibody molecules are small (6.5 kDa) single domain proteins derived from an 

engineered B-domain of the Staphylococcus aureus protein A, which is then called Z-domain [132,133]. 

It is characterized by high thermal and chemical stability, rapid folding and high solubility [134]. 

Affibody scaffolds do not contain any cysteine. The introduction of a single cysteine therefore enables 

site-specific modifications [135]. 

In 2010, the first Her2-specific Affibody molecule, ZHer2:342-pep2 (ABY-002, Affibody AB, Solna, 

Sweden), was tested in human beings. Two differently radiolabeled variants ([111In]-ABY-002 and 

[68Ga]-ABY-002) were applied. Both compounds showed specific tumor uptake and allowed for high 

contrast imaging of Her2-positive tissue [136]. Nonetheless, a comparative mouse study revealed that 

[111In]-ABY-002 shows high blood pool activity, as well as lung and spleen accumulation [137]. 
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In the last years, the Affibody scaffold of ABY-002 was further modified, in order to increase 

specificity, stability and to allow site-specific modifications. One of the most promising variants is  

ABY-025 (maleimide-monamide-DOTA-Cys61-ZHer2:2891-Cys) [134]. In preclinical animal studies, 

[111In]-ABY-025 could be shown to be neither toxic nor immunogenic [138]. Additionally, it showed 

high Her2-specificity and affinity (KD ≈ 76 pM) [134]. First in-human studies revealed high tolerability 

of the compound and specific uptake in Her2-positive cancer tissues. High background-uptake was 

observed for kidneys, liver and spleen [139]. 

2.8. hNIS 

The human sodium iodide symporter (hNIS) is responsible for cellular iodide uptake deploying the 

physiological sodium gradient. This leads to an intracellular iodide accumulation with concentrations 

that are 20- to 40-fold higher than in the physiological extracellular environment [140]. 

hNIS belongs to the group of sodium/solute symporters of the solute carrier 5 family [141,142]. It is 

mainly expressed in the thyroid, where it imports iodide for the synthesis of the thyroid hormones  

tri-iodothyronine (T3) and thyroxine (T4). Among other effects, these hormones play an important role 

in the development of the nervous system and the lungs as well as the skeleton and the muscles [142]. 

High expression levels of hNIS are also seen in the breast tissue of pregnant and lactating women, 

especially in the lactating mammary gland. The physiological function of hNIS therin is to secrete iodide 

into the milk, in order to supply the newborn with sufficient amounts of iodide for the synthesis of 

thyroid hormones [143,144]. In accordance with these findings, hNIS was also found in the placenta, 

where it ensures the iodide supply of the unborn [145]. Lower, yet detectable, expression levels  

of hNIS can be found in various tissues, such as the salivary gland [146,147], the testis [148] and  

the intestines [149]. 

hNIS is mainly overexpressed in thyroid cancer [150] and estrogen receptor positive breast  

cancer [151]. Yet, it must be stated that changes in the intracellular trafficking lead to accumulation of 

hNIS in the cytosol [152]. Thus, neither thyroid cancer nor breast cancer show higher extracellular 

presence of hNIS when compared to non-cancerous tissue of the same origin. Nonetheless, radioiodine 

therapy is a powerful tool to reduce hNIS positive diffuse or metastatic thyroid cancer tissue [153]. 

Additionally, non-cancerous breast tissue is rarely affected by radioiodine therapy or imaging, because 

hNIS in the breast is only expressed during pregnancy and lactation [154]. In this period of time, 

radiotherapy is not in compliance with current health care standards [153]. 

Radioiodine therapy relies on 131I in order to generate a therapeutic effect. It is applied in the form of 

sodium iodide [155]. SPECT imaging of hNIS overexpressing tissues is possible by using 123I, instead 

of the therapeutic radionuclide. 123I imaging is mainly applied for whole body imaging of thyroid  

cancers [156,157]. Recently, the superiority of 123I over 131I for SPECT imaging of the thyroid could 

also be shown [158]. Another approach for the imaging of hNIS overexpressing tissues in thyroid  

and breast relies on the utilization of 99mTc-pertechnetate, which also functions as a substrate  

of hNIS [159,160]. 
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2.9. Prostate Specific Membrane Antigen 

The prostate specific membrane antigen (PSMA) is a type II transmembrane glycoprotein and zinc 

metalloprotease with glutamate-carboxypeptidase functionality, which cleaves the glutamine fraction of 

folate [161]. PSMA is expressed in low levels on the surface of most prostate cells. Prostate cancer often 

shows PSMA overexpression [162–164]. PSMA expression is inversely correlated to androgen levels 

and overexpression is thus seen most often in androgen independent prostate cancer [165,166]. 

Additionally, PSMA is expressed on the vascular epithelium of different cancer types [167,168]. 

The exact function of PSMA is yet unknown, but it is thought to play an important role in cell 

signaling and nutrient uptake [169]. It is also known that PSMA internalizes upon ligand binding via 

clathrin-dependent endocytosis, which makes it a favorable target for imaging and therapy [170,171]. 

In the beginning, PSMA was visualized in biopsy and tissue samples by the antibody 111In-capromab 

pendetide (ProstaScint®, Cytogen, Princeton, NJ, USA) [172]. In vivo imaging using radiolabeled 

ProstaScint® is not possible, because it recognizes an epitope that is localized intracellularly in living 

cells [173]. Additionally, antibodies are more difficult to handle for in vivo imaging purposes, because 

they show high blood circulation times compared to small molecules. This long physical half-life 

prolongs the circulation time of the radioisotopes, which thereby damage untargeted tissue [125]. 

Molecular imaging and targeted therapy finally became possible upon the discovery of  

structural and, later on, functional correlations of PSMA and the N-acetylaspartylglutamat peptidase 

NAALADASE [174,175]. This led to the development of PSMA tracers derived from inhibitors  

of NAALADASE [176,177]. Currently, most tracer molecules contain the targeting sequence  

Glu-urea-Lys, where the ε-amino group of lysine can be used for site specific modifications. 

Recently, a new PSMA tracer was published by Eder et al. [178], carrying the acyclic chelator  

HBED-CC via an aminocaproic acid linker, which ensures reduced interaction between the chelator and 

the binding pocket of PSMA (see Figure 8). The utilization of HBED-CC has several benefits over other 

gallium chelators: firstly, it allows quick and stable chelation with 68Ga at low temperatures [179] and 

secondly, it adds an aromatic moiety to the tracer, which is useful for strong PSMA-tracer interactions 

and internalization [180]. This property makes PSMA-HBED-CC a valuable tracer for molecular 

imaging of PSMA-overexpressing cancers. 

 

Figure 8. Chemical structure of [68Ga]-PSMA-HBED-CC. The Glu-urea-Lys sequence 

(blue) is responsible for the targeting properties of the tracer. It is linked to the  
68Ga-labeledchelator HBED-CC (red) via an aminocaproic acid linker (green). For reasons 

of clarity, chelation bonds are omitted. 
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3. Methods for Molecular Imaging—An Overview 

3.1. Computed Tomography (CT) 

CT is used to gain information about anatomical structures by monitoring X-ray absorption.  

The observed differences of intensity depend on the interaction between electromagnetic radiation and 

solid matter [181]. Additionally, photoelectric absorption correlates with increasing ordinal numbers, 

which requires the application of contrast agents containing heavy atoms. The most prominent examples are 

iodine containing CT contrast agents, such as iodixanol (Visipaque®, GE Healthcare, Buckinghamshire, 

UK) [182]. In order to generate functional information deploying CT, high amounts of contrast agents 

have to be applied, which commonly increases side effects [183]. In consequence, CT is currently not 

considered to become an imaging technique for molecular imaging purposes (see Table 2). 

Table 2. Methods used for molecular imaging in oncology [8,184,185]. 

Method 
Spatial 

Resolution 
Temporal 
Resolution 

Sensitivity 
[mol/L] 

Costs Advantages Drawbacks 

CT 50–200 µm Minute – Low 
Generation of  

anatomical images 

It is difficult  
to generate 
functional,  

non-quantitative 

MRI 25–100 µm 
Minute to 

hour 
10−3–10−5 

Very 
high 

High spatial resolution,  
non-radioactive tracers 

Low sensitivity  

PET 2–5 mm 
Second to 

minute 
10−11–10−12 

Very 
high 

The most sensitive 
imaging method, 

quantitative method, 
allows to use 

biologically relevant 
radionuclides 

Imaging of  
large areas  

is expensive,  
low spatial 
resolution 

SPECT 7.5–10 mm Minute 10−10–10−11 High 
Simultaneous  

multi-probe imaging  
is possible 

Low spatial 
resolution 

CT: Computed Tomography; MRI: Magnetic Resonance Imaging; PET: Positron Emission Tomography; 

SPECT: Single Photon Emission Computed Tomography. 

3.2. Magnetic Resonance Imaging (MRI) 

MRI represents an additional imaging technique for the visualization of anatomical structures, 

utilizing the proton density and the respective chemical environment of an object [186,187]. Imaging 

contrast can be increased by using contrast agents carrying paramagnetic or super-paramagnetic 

substances, which influence the T1 relaxation (transversal relaxation) or the T2 relaxation (longitudinal 

relaxation) respectively. The most commonly used MRI contrast agents contain gadolinium [188], 

manganese (both paramagnetic substances) [189], or iron oxide crystals (super-paramagnetic contrast 

agents) [190]. As in CT, MRI usually requires high amounts of contrast agents in order to gain functional 

information. This again limits its applicability for molecular imaging purposes [183] (see Table 2). 
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3.3. Positron Emission Tomography (PET) 

PET is the most important method for molecular imaging in oncology [191]. It depends on the 

detection of gamma rays in order to gain anatomical, as well as functional, information. PET tracers are 

labeled with radionuclides undergoing β+ decay and thereby emitting positrons, passing the surrounding  

tissue for a characteristic distance. Interaction with existent electrons leads to annihilation, resulting in 

the emission of two collinear γ photons traveling in opposite directions. Thus, the detection of two 

separate signals at different detectors localized opposite one another is enabled within a very small 

timeframe. Only such coincident events at opposite positions are monitored and allow the determination 

of the trajectory on which the annihilation occurred. Monitoring many of these coincident events allows 

to determine the spatial distribution of the tracer molecule [7]. 

Additionally, modern PET instruments monitor the time difference between the detected events. This 

time of flight analysis facilitates a more precise localization of the site of decay [192]. In the last years, 

multimodality imaging, such as PET/CT became increasingly important, because of their high sensitivity 

and the possibility to simultaneously generate functional and anatomical data [193,194]. Positron 

emission is triggered in vivo by using tracers containing β+ emitting radionuclides. Common 

representatives are 11C, 13N, 15O, 18F, 68Ga and 124I [8,184] (see Table 2). 

3.4. Single Photon Emission Computed Tomography (SPECT) 

SPECT is a method for molecular imaging that relies on monitoring low energy γ-rays by gamma 

cameras in order to collect anatomical and functional information. There are three main differences 

between PET and SPECT: Firstly, PET and SPECT rely on different radionuclides for imaging due to 

their different imaging processes. In comparison to positron emission tomography, the radiation energy 

emitted during SPECT is substantially lower (see Table 3). Moreover the emission is measured directly 

by using single photon emitting radionuclides such as 99mTc and 111In; whereas PET scanners detect 

coincident events driven by photon pairs [8]. Secondly, PET and SPECT differ in their maximum 

resolutions, and thirdly in the area they are able to monitor simultaneously [184,195] (see Table 2). 

Table 3. Radionuclides used in oncology. 

Radionuclide Decay Half-Life Energy Application Source 
11C β+ 20 min 511 keV Diagnosis (PET) [7] 
13N β+ 10 min 511 keV Diagnosis (PET) [7] 
18F β+ 110 min 511 keV Diagnosis (PET) [7] 

64Cu β+ 12.7 h 511 keV Diagnosis (PET) [7] 
67Ga γ 78 h 93 keV Diagnosis (SPECT) [196] 
68Ga β+ 68 min 511 keV Diagnosis (PET) [7] 
86Y β+ 14.7 h 511 keV Diagnosis (PET) [197] 
89Zr β+ 3.3 days 511 keV Diagnosis (PET) [127] 
90Y β− 2.7 days 2.28 MeV Therapy [198] 

99mTc γ 6 h 141 keV Diagnosis (SPECT) [199] 
111In γ 2.8 days 171 keV Diagnosis (SPECT) [199] 
123I γ 13.2 h 159 keV Diagnosis (SPECT) [200] 
124I β+ 4.18 days 511 keV Diagnosis (PET) [7] 
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Table 3. Cont. 

Radionuclide Decay Half-Life Energy Application Source 
131I β− 8 days 0.61 MeV Therapy [201] 

177Lu β− 6.7 days 0.5 MeV Therapy [198] 
201Tl γ 73 h 80 keV Diagnosis (SPECT) [202] 

4. Conclusions 

This article provides an overview of current and future applications of molecular imaging in oncology 

for the purpose of cancer stratification. Molecular imaging enables non-invasive, simultaneous cancer 

stratification and localization in the patient. Consequently, its potential differs fundamentally from 

alternative stratification modalities, such as cancer proteomics and immunohistochemistry. Molecular 

imaging enables to visually prove the presence of target structures that can be deployed for treatment 

with highly specific drugs. As radioactive decays can be detected with high sensitivity and accuracy, 

radiotracers are the most important imaging compounds in modern oncology. 

Based on the description of the most commonly used imaging methods in oncology (CT, MRI, PET 

and SPECT), tumor specific cellular structures and cancer phenotypes are elucidated. For each of these 

structures, the physiological role, the mode of action, as well as the specific role in cancer development 

and progression is given to outline their respective prognostic value. Subsequently, specific tracer 

molecules that target or employ the aforementioned structures are introduced. 

A multitude of tracers are already in use for diverse target structures, such as receptors (e.g., somatostatin 

receptors, folate receptors or Her2), transporters (e.g., glucose transporters, amino acid transporters  

or hNIS), and cell specific target structures (e.g., PSMA, integrins, and CD20). Moreover, molecular 

imaging provides information on the functional expression of specific targets which is the basis for  

the application of theranostics. Examples are Zevalin®, DOTATOC or the radiotracer-therapeutic pair 

etarfolatide/vintafolide. In conclusion, molecular imaging plays a steadily increasing role in cancer 

stratification and contributes significantly to the current development of personalized medicine in  

cancer therapy. 
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