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Abstract: Proteins regulate many cellular functions and analyzing the presence and 

abundance of proteins in biological samples are central focuses in proteomics. The discovery 

and validation of biomarkers, pathways, and drug targets for various diseases can be 

accomplished using mass spectrometry-based proteomics. However, with mass-limited 

samples like tumor biopsies, it can be challenging to obtain sufficient amounts of proteins  

to generate high-quality mass spectrometric data. Techniques developed for macroscale 

quantities recover sufficient amounts of protein from milligram quantities of starting 

material, but sample losses become crippling with these techniques when only microgram 

amounts of material are available. To combat this challenge, proteomicists have developed 

micro-scale techniques that are compatible with decreased sample size (100 μg or lower)  

and still enable excellent proteome coverage. Extraction, contaminant removal, protein 

quantitation, and sample handling techniques for the microgram protein range are reviewed 

here, with an emphasis on liquid chromatography and bottom-up mass spectrometry-compatible 

techniques. Also, a range of biological specimens, including mammalian tissues and model 

cell culture systems, are discussed. 
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1. Introduction 

Proteins are essential cellular machinery, performing and enabling tasks within biological systems. 

The variety of proteins is extensive, and the role they occupy in biology is deep and complex; life 

depends on proteins. Each step of cellular generation, from replication of genetic material to cell 

senescence and death, relies on the correct function of several distinct proteins. The precision of cellular 

machinery can be disrupted, however, resulting in disease. Because much of the machinery essential to cell 

health and survival remains unknown, studying proteins is of great interest and importance. The field of 

proteomics is the large-scale study of proteins and the proteome and encompasses many techniques, such 

as immunoassays [1] and two-dimensional differential gel electrophoresis (2-D DIGE) [2,3]. Another 

group of methodologies that are growing in popularity for protein discovery and analyses are mass 

spectrometry-based approaches. 

There are two main approaches for mass spectrometry-based proteomics, top–down and bottom–up 

analyses. Top–down methods analyze whole proteins; bottom–up approaches investigate the peptides 

from digested proteins. There are unique methods of analysis that each group has developed, but they 

share in common their mode of analysis. In mass spectrometric analysis, the mass-to-charge ratios (m/z) 

of molecular species are determined. By collecting this data, compounds in the sample can be identified 

by comparing against standard databases of compounds and molecules with known masses. From  

whole protein analysis in top–down proteomics, to peptide analysis in bottom–up proteomics, each 

particle measured has an m/z signature detectable by the mass spectrometer. By pairing mass analyzers 

and detectors, adding equipment in different configurations, and coupling separations and mass 

spectrometers together, there are virtually limitless possibilities, functionalities, and speeds of data 

acquisition for mass spectrometry-based proteomic analysis. 

Mass spectrometry-based proteomics has advanced rapidly since the advent of “soft” ionization 

techniques, namely electrospray ionization (ESI) and matrix-assisted laser desorption ionization 

(MALDI) [4–6] in the late 1980’s. Methods of detection previously used for organic chemicals and other 

sample identifications were adapted for proteomics. Several combinations of ionization sources and 

mass analyzers are available commercially, each with merits for specific applications. Time-of-flight 

(TOF) instruments are often coupled with MALDI instruments [7,8]. ESI-TOF instruments can  

provide high-speed, continuous measurements without compromising resolution. High-resolution 

Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometers are costly, but provide 

unsurpassed data collection power using both electrospray and MALDI ion sources [9]. The invention 

and commercial distribution of the Orbitrap mass analyzer by Makarov and Thermo greatly increased 

the proteomic capabilities of mass spectrometry, combining higher sensitivity and improved mass 

resolution with lightweight benchtop instruments [10]. The high-field compact Orbitrap, introduced in 

2011, provided a high mass resolution instrument at a lower cost than Fourier Transform Ion Cyclotron 

Resonance (FT-ICR) [11]. The most current Orbitrap instrument, the Orbitrap Fusion, has shown 

promising results in sensitivity and scan speed [12]. With high mass accuracy and specificity, combined 

with the selectivity of ion traps and quadrupoles, analysis of complex samples, even in small quantities, 

can be completed with increasing ease and confidence. 

Many mass spectrometry methods are used to analyze proteins. Some methods are discovery-based, 

where samples are analyzed to determine what proteins are present in the sample. Often a high-resolution 
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mass spectrometer is used for this purpose, as the false-discovery rate of protein identifications from 

peptides rely on highly accurate mass-to-charge measurements [13]. Some methods are targeted, 

focusing on single proteins of interest and quantifying them in different samples or sample fractions. 

Highly selective methods using ion traps and quadrupoles are ideal for targeted analysis [14–16]. 

Proteins and peptides can be fragmented in the mass spectrometer for tandem mass spectrometry in  

a variety of ways, and those fragments are analyzed for de novo peptide sequencing [17,18] or peptide 

mass fingerprinting [19–22]. The vast majority of peptide identifications are accomplished with 

fragmentation followed by protein database searches of the resulting fragments. Electron capture 

dissociation (ECD) [23], electron transfer dissociation (ETD) [24,25], higher energy collisional 

dissociation (HCD) [26,27], collision-induced dissociation (CID) [9,28,29], and a host of other 

fragmentation methods are available [30–32], each with recommended applications [33]. Furthermore, 

mass spectrometry methods are often customized within software. 

The mass spectrometer is a critical aspect in proteomic experiments; however, the results obtained 

from the mass spectrometer are limited by the sample. Regardless of the analysis approach used, a high 

quality sample is critical for a successful experiment. Proteomic analyses depend on the sample 

containing proteins to analyze. Sample preparation approaches that are time-consuming, or worse, incur 

massive sample losses, are intolerable. This review will focus on sample preparation strategies for 

bottom–up mass spectrometry-based proteomics, with brief focus on obtaining samples for analysis. 

2. Macroscale versus Microscale Techniques 

Sample preparation for mass spectrometry-based proteomics has many options available when the 

sample is not limited. To grasp the need for microproteomics, an understanding of large-scale sample 

preparation is necessary. By understanding macroscale techniques, proteomicists can adapt their 

methods to suit microscale techniques. All of the macroscale techniques described here involve 

quantities of sample in the milligram to 100 microgram range, which do not necessitate as much care and 

precision as microscale samples, generally defined as samples less than 100 μg. Sample loss in the 

macroscale is not as pressing, for several reasons. The concentration of the sample is easier to maintain 

with larger quantities, leading to fewer losses in the processing steps. The overall percentage of lost 

volumes is lower, because milligram quantities of sample require larger volumes to fully solubilize. 

Milligram quantities can also be divided more easily while maintaining the majority of protein in the 

sample, including low-abundance species. Large quantities of protein from complex samples are also 

generally more diverse in their protein composition [8]. 

2.1. Obtaining a Sample for Proteomic Analysis 

In order to obtain protein from a biological specimen, the sample must first be harvested from the 

organism, culture, or patient. Samples can be obtained by several methods. Traditional dissection from 

animal species, biopsies, blood draws, and additional methods can deliver adequate protein for analysis. 

The ethics of obtaining samples are not reviewed here, but guidelines are in place for human, animal,  

and cell culture procedures [34–36]. 

The proteins in the sample must be made readily accessible via lysis and extraction from the cells in 

the sample. There are numerous methods for lysis and extraction; lysis buffers and mechanical 
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disruption strategies have been reviewed in the past [37,38]. Most common methods involve a chemical 

lysis and extraction agent, along with some mechanical stimulus that physically breaks apart the cell, 

allowing the chemical agent to solubilize the available protein [39]. A list of common detergents, 

including critical micellar concentration (CMC), can be found in Table 1 [40,41]. 

Table 1. Common detergents for mass spectrometry and cell lysis, organized by type. 

Adapted from Swiderek et al. [41] and Thermo-Pierce documentation. 

Detergent Name Type Molecular Weight CMC, mM Mol. Weight (Micelle) Suggested Removal 

Triton X-100 Nonionic 647 0.24 90,000 TCA/Acetone 

NP-40 Nonionic 617 0.29 90,000 Acetone 

Tween 20 Nonionic 1228 0.06  Acetone 

Tween 80 Nonionic 1310 0.01 76,000 Acetone 

Octyl Glucoside Nonionic 292 23–24 8000 Ethyl acetate 

Octyl thioglucoside Nonionic 308 9  Ethyl Acetate 

Big CHAP Nonionic 878 3–4 8781 Filtration 

Deoxycholate Anionic 415 2–6 2000 Acetone, TCA 

Sodium Dodecyl 

Sulfate 
Anionic 288 6–8 17,887 Filtration/FASP 

CHAPS Zwitterionic 615 8–10 6149 Filtration 

CHAPSO Zwitterionic 631 8–10 7000 Filtration 

Highly efficient lysis and extraction has been achieved using several lysis buffer formulations, with 

mechanical perturbations ranging from gentle rocking or cell scraping to sonication or French pressing. 

The choice of lysis buffer and mechanical disruption depends on the protein target of extraction, 

sample size, and experience in preparation methods. 

Lysis buffers can differ in critical micelle concentration (CMC). The CMC is the concentration at 

which the detergent forms micelles spontaneously, which can affect their efficacy and removal in 

different environments. Above this point, the detergent forms micelles, and detergent added will move 

directly into micelles. Higher CMC values are associated with weaker hydrophobic binding to 

monomers. Thus, higher CMC detergents tend to be more easily removed by buffer exchange and 

dialysis. Solutions with lower CMC values form micelles more easily, and generally require less 

detergent to effectively solubilize protein. Another factor that can affect a lysis buffer is the micelle 

molecular weight (MMW). Lower-weight micelles are more easily removed than higher-weight 

micelles. Making use of CMC and MMW, one can more easily determine the best course for the 

experiment. Choosing a lysis buffer depends greatly on these detergent factors. Most of the detergents 

listed are incompatible with downstream mass spectrometry analysis, and must be removed. There is no 

absolute “best way” to lyse a sample, as illustrated by the number of lysis and extraction protocols that 

exist in the literature; however, advantage lies with speed, sample retention, and cleanliness of preparation. 

Lysis, extraction, and denaturation of protein can occur in the same step with certain procedures, such 

as with sodium dodecyl sulfate SDS while boiling and agitating the sample. Gutstein, et al. published  

an excellent review on microproteomic techniques describing methods for harvesting and lysis [8]. 

Bodzon-Kulakowska [42], Visser [43], and Hilbrig [44] published comprehensive reviews on sample 

preparation techniques with methods of cell disruption; Bodzon-Kulakowska has the most recent, 
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large-scale review containing detailed analyses on the extraction of protein and subsequent removal of 

nearly all types of contaminants [42]. Visser includes classification of different techniques into “hard” 

conditions, which differ significantly from physiological conditions, and “soft” lysis, which are often 

used when the biological activity of the analyte needs preservation [43]. Hilbrig focuses on affinity 

precipitation of proteins [44]. 

Macroscale proteomic lysis techniques can efficiently extract protein from large amounts of sample. 

The issue with broadly applying a certain technique to a microscale sample is the removal of detergents 

and contaminants present in the lysate, which interfere with later steps. Catastrophic losses can occur 

from indiscriminate application of lysis techniques without proper planning and care. Microproteomic 

techniques focus on the efficient lysis of sample and removal of contaminants while retaining maximum 

sample. For example, the French Press has a large surface area where proteins can adsorb and be lost. 

This mode of lysis is not ideal with microgram quantities of sample. Instead, sonication in 

microcentrifuge tubes is be a better choice, so as to efficiently lyse cells, maximize sample concentration 

of protein, and thus minimize loss to surfaces. 

2.2. Contaminant Removal 

Once protein is extracted, removal of contaminants and detergents is necessary. Some detergents  

will interfere with enzymatic digestion, and most will interfere with reverse-phase separations and  

mass spectrometry, sometimes damaging instruments and irreversibly ruining columns [45]. Removal  

of unwanted cellular material, such as lipids and genomic DNA, prevents signal suppression, 

chromatographic interference, and presents a much cleaner, clearer spectrum from which to obtain 

protein identification data. One common approach for contaminant removal is precipitation. The uses of 

precipitations vary based on three main factors: The detergent or contaminants for removal; whether the 

proteins must be kept in a native or denatured state; and the post-processing analysis. Here, the focus is 

on bottom–up mass spectrometry-based proteomics; thus, detergent removal is a must, and the 

denaturation of the protein has little to no bearing. The post-processing analysis is singular, but there  

are numerous added steps to consider. Some common detergents can be removed using acetone 

precipitation, the classic precipitation technique in many proteomics and biochemical procedures [46]. 

Others can be removed using trichloroacetic acid precipitation [47–49]; chloroform-methanol  

mixture [50] or ethyl acetate [51,52] can remove contaminants with high yield, and most interferents can 

be eliminated using molecular weight cutoff filters to capture the protein in the sample. There are various 

other precipitation techniques that have been developed and compared for recovery and post-precipitation 

analysis in gels or for in-solution digestion (Table 2) [53–55]. TCA, chloroform-methanol, ethyl acetate, 

and acetone precipitation have similar efficiency for a wide variety of samples; chloroform-methanol 

has been found to work better for membrane proteins [49,56], while acetone precipitation sequesters 

mostly water-soluble proteins. 
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Table 2. Approaches for contaminant and detergent removal in proteomic samples. 

Approach Description Reference 

“Salting out” 

Precipitation uses saturation of salt to precipitate protein from 

solution. Most commonly an ammonium sulfate precipitation, 

but also uses sodium sulfate. 

[57–59] 

Ultrafiltration 

Centrifugation at high speed using molecular weight cutoff filter 

to remove contaminants; prominent in Filter-Aided Sample 

Preparation (FASP). 

[57,60] 

Polyethyleneimine (PEI) 

Cationic polymer precipitates nucleic acids in 1 M NaCl, 

leaving proteins in the supernatant. PEI must be removed before 

further analysis. 

[57,58,61,62] 

Isoelectric Point (PI) 

The pH of solution is adjusted with mineral acid to the 

isoelectric point of most proteins (pH 4–6). Neutral proteins will 

aggregate and precipitate. 

[57,63,64] 

Thermal 
Cell extracts are denatured using heat; denatured proteins 

aggregate and precipitate, but stability is enhanced. 
[57,65,66] 

Nonionic polymer 

Polyethylene glycol (PEG) 

Concentration of PEG unique to the protein mixture is added. 

Proteins precipitate based on an excluded volume principle. 

Centrifugation pellets the precipitated protein. PEG must be 

removed before mass spectrometry analysis. 

[57,67–69] 

Acetone precipitation is simple to perform. The standard procedure for acetone precipitation 

involves the addition of cold (0 to −20 °C) acetone to aqueous sample mixtures to a composition of 

80%. Crowell, et al. examined the varying reports for acetone precipitation efficiency [70], which 

ranged from 50% to 100% in the literature [71–75]. After observing that removal of SDS from a 

protein solution of bovine serum albumin (BSA) caused a precipitous drop in efficiency, despite 

increasing concentration of BSA, acetone, and non-ionic detergent, they optimized conditions to 

improve yields from acetone precipitation (Figure 1). They found that the initial concentration of 

protein obtained during cell lysis is a major factor, as well as the percentage of acetone used and the 

ionic strength of the pre-precipitation solution. The ionic strength correlated with protein charge and 

dielectric conditions in the protein sample. Ideal conditions for near-quantitative to quantitative yield 

of protein were established to include addition of 80% acetone to nearly any protein mixture 

containing 1 to 100 mM of NaCl or similar salt. The salt concentration necessary for complex mixtures 

can vary widely, requiring some optimization for particular cell lysates. 

Another mature precipitation technique is the methanol-chloroform precipitation. Wessel and 

Flugge introduced this efficient method of precipitation and concentration for dilute samples, 

especially those containing membrane proteins. They describe the procedure using a 4:1:3 ratio of 

methanol:chloroform:water, with an additional three volumes of methanol added to pellet the protein. 

Proteins that are only slightly soluble in methanol-chloroform collect on the water-organic interface, 

and are then pelleted by the additional methanol and centrifugation. The efficiency of this procedure 

approaches 100% for a variety of protein concentrations and detergent solutions. Methanol-chloroform 

precipitation has uses for bottom–up and top–down proteomics [58]. Ideally, precipitation would be 

avoided in microproteomics, because of the possibility of total sample loss. However, several factors 
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discussed above that govern precipitation efficiency can be altered to produce successful 

precipitations, even in the microscale. These manipulations, especially as they relate to protein 

concentration, will be discussed in detail later in this manuscript. 

 

Figure 1. Acetone precipitation efficiency varies with salt concentration. The protein yield 

from an acetone precipitation in a complex mixture correlates with protein concentration, 

dielectric strength of the solution, and intrinsic protein charge. The overall model proposed 

is an ion-pairing model for organic solvents. With this protocol, efficiencies of 100% can be 

achieved for acetone precipitation. Figure adapted from Crowell, et al. (2013) [70]. 

Dissolving precipitated samples can be a challenge; as the protein precipitate is usually compacted 

into a pellet by centrifugation steps and the pellet is often dried to some extent. Exposure of the whole 

pellet to the dissolution buffer is necessary. Part of the precipitate can easily be left behind if thorough 

examination of the solution and container is not performed [76,77]. Strategies for fully suspending the 

pellet in any lysis buffer of choice include vigorous vortexing [58,59,78], sonication [58,79], shaking, 

and even two-step, on-pellet trypsin digestion [80]. In microscale, it is best to avoid vigorous agitation, 

because adsorption and loss occurs with increased exposure to surfaces; sonication avoids much of the 

splash-up that vortexing or shaking involves, but efficiently exposes the pellet to buffer. 

2.3. Digestion Strategies 

In-solution and in-gel digestion are two well-used approaches to prepare a bottom–up proteomic 

sample. In-solution digestion is the one of simplest and most powerful of the macroscale techniques in 

shotgun proteomics to perform. In-solution digestion involves denaturing, reducing, alkylating, and 

digesting the protein sample in the liquid phase, as opposed to in a gel or on a filter. In-solution digestion 

is extremely common and has been used with a variety of samples [81–84]. In-solution digestion can be 

performed using single-tube approaches, eliminating much of the sample loss that occurs during solution 

transfer between different vessels. Generally in-solution digests are fractionated after digestion, but 

fractionation can be performed previous to digestion using different forms of chromatography, including, 

but not limited to, strong and weak ion exchange, reverse-phase, and size exclusion chromatography. 

Gel-based mass spectrometry analysis is widely used [85–87] as a first method of separation prior to 

LC–MS/MS analysis. Different methods of gel electrophoresis have been discussed in several reviews 

by Herbert [88], Lilley [3], Görg [89], Rabilloud [90,91], and others. Before the digestion, separation of 
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the protein is performed using a gel. Basic overviews of gel-based mass spectrometry protocols can be 

seen in Figure 2 [9]. In one of the most common proteomic sample preparation strategies, a denaturing 

gel (sodium dodecyl sulfate in a polyacrylamide gel, SDS-PAGE) is used for bottom–up proteomics, as 

the protein will be cleaved into peptides in later steps [9,92]. 

 

Figure 2. Typical workflow for gel-based mass spectrometry analysis. The gel is used to 

separate whole protein in one or two dimensions. After destaining, the proteins are excised 

from the gel and subjected to enzymatic proteolysis. Peptides can then be analyzed via mass 

spectrometry. Figure adapted from Aebersold et al. (2003) [9]. 

The stained gel pieces are then excised from the gel, destained, and the protein within the gel piece is 

subjected to digestion. Several strategies are commonly used before eventual in-gel digestion, and there 

are many variations on one- and two-dimensional gel separations. One-dimensional gels are excellent 

for simple fractionation; proteins often have specific molecular weights, allowing for a semi-targeted 

approach. Less interference is involved in this approach, as the sample is dramatically simplified, so that 

only isobaric proteins will exist in the digest. SDS-PAGE is possibly the most widely used proteomic 

technique today [93], owing to the ability to separate thousands of proteins in a single sample from a 

complex mixture [94]. SDS-PAGE is also a relatively simple procedure, and the gel provides a good 

vehicle for the safe storage of proteins for future analyses [93]. 

Two-dimensional (2D) gels add time to the protocol, but increase the selectivity of the process.  

2D gels can use more than one orthogonal property of the protein for separation purposes; for example, 

isoelectric point (PI) and molecular weight. One of the main differences between 1D and 2D gels is  

the fact that separation by PI requires non-denaturing conditions. This condition means that common 

solubilization procedures using SDS, as well as use of other charge-coating detergents and running 

buffers, cannot be used in a first dimension isoelectric point focusing. Sample preparation then requires 

more thought and care. Rabilloud and Lelong have published a tutorial on 2D gel electrophoresis [95], 

covering the process, limitations, and advantages of the technique. 2D gels are run with different, 
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orthogonal linear coordinates; the gel axes of the first dimension are rotated 90°, so that the proteins 

migrate on what was previously the horizontal axis, onto a second gel. 2D gel electrophoresis has been 

used for the fractionation and identification of many thousands of proteins in milligram sample amounts, 

as well as in the analysis of laser capture microdissection (LCM) samples [94,96]. 

In-gel digestion has several advantages over in-solution digestion. Using a gel, samples of greater 

complexity can be analyzed via mass spectrometry, because fractionation, and thus simplification, of the 

sample occurs on the gel. In-solution digests do not reduce the complexity of the sample without further 

pre-fractionation. Rabilloud and Lelong generated a cost-benefit comparison of gels versus mass 

spectrometry time [95]. Normal shotgun analysis on a mass spectrometer has a limited dynamic range 

and can only handle so much complexity, requiring more injections and mass spectrometry time to 

identify proteins of interest. Gels, used as a pre-fractionation procedure, can decrease the amount of 

mass spectrometry time needed to obtain the same or better information. Time on the mass spectrometer 

is generally more costly than even a 2D gel set-up. Gels are also useful for easing the removal of 

contaminants from the sample that may interfere with mass spectrometry analysis [97]. 

In-solution digests have the advantage of simplicity; fewer things can go wrong in the straightforward 

methods of in-solution digests. In-solution digests require less protein, because sample loss is often more 

severe for gel-based analysis. Sample recovery for gel-based procedures is estimated to be 70%–80% by 

Granvogl et al. [92]; Speicher et al. have a similar estimate [98]; extraction of peptides from a gel is 

inherently less efficient than an in-solution digestion [99], with estimates of 70%–80% of in-solution 

digest efficiency [93]. Sample complexity can be compensated using pre- or post-digestion fractionation 

for in-solution digests. Contaminants can be removed, at the expense of some sample loss. 

Concentration can be roughly controlled in solution, while the quantitative amount of protein from a gel 

is more difficult to ascertain; a rough estimate is possible based on staining [100]. 

The advantages of in-solution digestion and in-gel digestion have been combined in the form of spin-filter 

aided digestion protocols. Filter-aided digestion was originally developed by Manza, et al. [101,102]  

in 2005, and the acronym FASP (for Filter-Aided Sample Preparation) was coined by the Mann group  

in 2009 [103]. The process has now been widely derivatized for many mass spectrometry protocols and 

sample compositions [104–106]. As discussed by Wiśniewski and colleagues, the proteins in the sample 

are trapped in a high-molecular weight cutoff filter. Salts and low-molecular weight compounds flow 

through the filter and can be discarded. One key feature of FASP is the effective removal of detergents 

and contaminants from samples. The use of urea buffer enables the removal of nearly all (≥99.9%) of 

SDS from the sample; this is one of the unique identifiers separating Wiśniewski’s FASP from Manza’s 

spin-filter protocol [107]. After carboamidomethylation of the proteins, trypsin is added directly to  

the filter. The filter acts as a reactor for the trypsin digestion. Once on-filter trypsin digestion is 

accomplished, the peptides can be eluted in whatever volume of buffer necessary, and the filter retains 

any high-molecular weight interferents. FASP is a single-tube protocol, substituting aqueous- or 

organic-phase digestion for a solid-phase, reactor-based protocol. Sample losses have been variably 

reported [101,102,108,109]; however, whether these are technical variations or downfalls in the protocol 

are unknown. Nevertheless, the FASP protocol has been improved upon in recent years, with evidence 

of efficient low-microgram sample analysis [110]. In a comparison of bottom–up approaches  

by Weston et al., FASP outperformed in-solution digestion techniques with a 66.2% identification rate, 

as opposed to 47.8% for the in-solution digest [111]. In our experience, individual protein bands become 
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difficult to visualize and excise with traditional Coomassie Blue staining, especially with sample 

amounts less than forty micrograms of complex protein mixture. Silver staining methods have arisen that 

alleviate this problem [95]. The peptide recovery of in-gel digestion also affects its use in microscale, 

versus the higher recovery efficiency of FASP or in-solution digests. 

2.4. Fractionation and Separation of Proteomic Mixtures 

Various mass spectrometry and fractionation combinations have been developed or refined with the 

intent of delving deeply into the proteome of organisms and model systems. For the yeast proteome, the 

multi-dimensional protein identification technology was developed by the Yates research group [112]. 

Accurate mass tags (AMT) were developed in order to decrease the need for tandem mass spectrometry 

while providing more sensitive measurements and greater dynamic range [113]. High-performance 

liquid chromatography (HPLC) is a very common separation technique with a wide variety of stationary 

phases. With the advent of ultra-performance liquid chromatography (UPLC), chromatographic 

separations have increased both in resolving power and speed of separation. HPLC and UPLC function 

on the same principles. UPLC columns generally offer smaller particle sizes, resulting in decreased analyte 

path length and higher column pressures (10,000 pounds per square inch (PSI) or greater in maximum). 

Liquid Chromatography is often coupled with electrospray ionization and tandem mass spectrometers  

for both top–down and bottom–up proteomic studies. LC has been used for a staggering number  

of analyses [114,115]; LC–MS is a proteomic workhorse [116]. Liquid chromatography is robust, 

customizable based on the functionality of the stationary particles in the separation column. 

For bottom–up proteomic analysis, the most common HPLC/UPLC stationary phase is the C18 

reverse-phase column. The reverse-phase column uses the hydrophobicity of peptides for separation, 

utilizing a gradient from low to high organic-phase solvent. Acidified methanol and acetonitrile are 

commonly used as organic-phase, also known as “B” or “strong” solvents because of their miscibility 

with aqueous solutions. Acidified water is most often the “weak” solvent, also known as “A”. Both 

buffers are acidified with the same acid, generally with formic acid or trifluoroacetic acid (TFA) at 0.1% 

or 0.01%, respectively. Formic acid is preferred over TFA, as TFA tends to form adducts and suppress 

signal [117,118]. While reverse-phase columns are very popular, many stationary phases are in use for 

proteomic work in both one- and two-dimensional separations, online and off-line. A separation strategy 

known as electrostatic repulsion hydrophilic interaction chromatography (ERLIC) has gained popularity 

for phosphoproteomic work, using adjustments in pH and volatile salts for gradient separations. As the 

name suggests, ERLIC uses the charge and hydrophilicity of peptides as a basis for separation. Typically 

ERLIC begins with a low-organic, high-pH gradient, moving to high organic and low-pH as the separation 

moves on. In this way, ERLIC elutes peptides in order of increasing hydrophobicity and acidity. ERLIC 

has proven effective at separating and identifying modified and unmodified proteins [119–122]. 

Smaller-diameter columns with lower loading capacities and smaller stationary phase particles offer an 

advantage in microproteomics. By increasing the local concentration of peptide and decreasing eddy 

diffusion, sample loading amounts can be minimized and still provide adequate peptide signal; the 

chromatographic resolution necessary for complex sample separation is not compromised. 
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3. Microproteomics 

Sample size and complexity are challenges in mass spectrometry. The sub-field of microproteomics 

focuses on improved analysis of microgram-quantities of samples through careful sample handling and 

increasing efficiency of processing. Depending on extraction techniques, tissue type, and cell density,  

1 to 100 micrograms of protein can be obtained, processed with microproteomic techniques, and analyzed, 

with tissue remaining for use in other techniques. Alternatively, laser capture microdissection can be 

used to obtain samples for microproteomics post-microscopy analysis, providing thousands of cells for 

diagnostic analysis [94,96,123–125]. Complex samples are processed in a different manner than simple 

protein mixtures. Cells and tissue have a vast range of protein amounts, from 100 or less copies per cell 

to 106 copies for yeast [126]; it is conceivable that the dynamic range is greater in mammals [127,128]. 

Complex mixtures require fractionation prior to mass spectrometry analysis, while simple protein 

mixtures can be separated in line with the mass spectrometer. With micrograms of sample available, 

fractionation becomes a greater challenge. Successive sample losses can be crippling; dilution of sample 

in complex mixtures can mean losing low-abundance protein species below signal-to-noise cutoffs. 

Microproteomics techniques help ensure the maximum amount of sample possible, hopefully allowing 

for detection and identification of even low-abundance proteins in the sample. 

As with macroscale analyses, obtaining sample is the first defining step of microproteomics analysis. 

Microproteomic techniques often rely on precise excision of tissue as much as preparing the sample with 

care from start to finish. Laser capture microdissection allows for the precise removal of several 

thousand cells or less from a fixed, microscopy sample. Other methods for obtaining sample are also 

viable. Wang et al. used flow cytometry to obtain 500 to 5000 cancer cells in their circulating tumor cell 

simulation [129]. Sun et al. used Xenopus embryos and ova, measuring roughly 1.2 mm in diameter [130]. 

Smaller organisms or parts of organisms can be homogenized or dissected to provide microproteomic 

samples as well. The lower limit on complex proteomic sample sizes has not been firmly established; 

descriptions of nanogram analyses have been reported [94,123,129]. 

3.1. Sensitivity and Microscale Analysis 

Advances in instrumentation benefit the field of microproteomics, lowering the threshold of detection 

for less abundant proteins in samples, which would normally be lost with less sensitive instrumentation. 

Although Fourier Transform Ion Cyclotron Resonance (FT-ICR) instruments, which provide unmatched 

mass resolution and mass accuracy, are powerful tools, they are not ideal for microproteomics. These 

instruments are expensive and compromise scan speed as mass resolution is increased; the hybrid 

Orbitrap family is more routinely used [131]. The advent of the Orbitrap mass analyzer provided  

a sensitive benchtop alternative with speed and selectivity, furthering the utility of microproteomics and 

decreasing sample size requirements, in some cases down to single cell measurements [9]. Comparisons 

between the LTQ Orbitrap Velos, a linear ion trap-Orbitrap hybrid mass spectrometer, and the 

Q-Exactive, a hybrid quadrupole-Orbitrap system, show increases in protein identification and the 

superiority of each instrument in different modes of fragmentation on a reasonably complex proteomic 

sample. Sun et al. determined that the Q-Exactive outperformed the Orbitrap Velos over a range of 

loading amounts from 1000 to 1 ng on a Waters NanoAcquity UPLC system. For this system, it is also 
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notable that the CID fragmentation mode was out-performed by HCD fragmentation on the Orbitrap 

Velos [132]. 

Increases in sensitivity are not always due to advances in technology. Meyer et al. reported an 

increase in electrospray sensitivity with the addition of low percentages (~5%) of dimethyl sulfoxide 

(DMSO) to separation buffer systems [133]. Upon investigation with an Orbitrap Elite system, Hahne et al. 

determined that an increase in electrospray efficiency and charge state reduction, due in part to the high 

proton affinity of DMSO in the gas phase, were major factors. With a charge-state reduction experiment, 

DMSO strips multiply charged species of protons, leaving more doubly charged peptides for detection, 

thus increasing signal and decreasing ion injection times [134]. While appealing, there are conflicting 

views on the use of DMSO in mass spectrometry [133–136], possibly due to conjugation product that 

form when DMSO sits for long periods of time, as well as the high boiling point of DMSO itself  

(189 °C). One adduct, dimethylsulfone, has a very high boiling point (238 °C) and thus does not ionize  

to gas phase in electrospray ionization. Accumulation of dimethyl sulfone as a jelly-like substance will 

damage a mass spectrometer or column, so freshly distilled DMSO or no DMSO may be preferable, 

despite possible gains. 

3.2. Clean Sample Preparation 

Microproteomics focuses on the separation, preparation and analysis of protein samples under  

100 micrograms, which are very sensitive to losses in the proteomic workflow. With each transfer and 

processing step, protein can be lost. Reproducibility of sample preparation is key for reducing and 

troubleshooting sample loss in microproteomics. The concentration of protein plays a large role in 

sample loss. More concentrated samples tend to have less catastrophic losses in precipitation, desalting, 

and resuspension, due to the concentration-dependent adsorption maxima of many proteins. Select 

proteins in the sample will adsorb less to surfaces, such as beads, at higher concentrations compared  

to lower concentrations [137,138]. Higher concentration minimizes catastrophic sample loss by 

surpassing the adsorption maxima of proteins in the sample. Microproteomic techniques help ensure 

minimal sample loss before analysis, and maximal identification of peptides and protein groups during 

analysis, all while adhering to the strict purity standards necessary for mass spectrometric analysis.  

For example, some techniques use detergent-free methods of digestion, which lessens the cleanup steps 

involved in the protocol [139–141]. Acetonitrile, ammonium bicarbonate, and Rapigest© have 

successfully been used in digestion protocols with microgram quantities of protein. Others have 

developed removal methods that eliminate the protein from solution without precipitation steps, such as 

the Filter-Aided Sample Preparation protocol. Although many microproteomicists prefer not to precipitate 

low quantities of samples due to risk of total loss, precipitation remains a viable and effective 

microproteomics technique. 

Because precipitation does not provide 100% recovery in most cases, two main types of precipitations 

are favored for their ease of use and high recovery: Acetone precipitation and trichloroacetic acid (TCA) 

precipitation in deoxycholate. Acetone precipitation is a concentration-based procedure; higher 

concentrations of protein in the original solution result in higher recovery [142]. In an acetone 

precipitation, efficiency ranges from 50% to 100% recovery, with dependency on ionic strength of  

the solution as well as initial protein concentration. If acetone precipitation is to be used for 
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microproteomics, it is ideal with lysis reagents, such as Nonidet P-40 (NP-40), which obtain good 

protein yields during extraction [40,129]. Even nanoscale analyses can be performed using acetone 

precipitation. Wang, et al. analyzed the proteome of 500 to 5000 cancer cells using NP-40 lysis buffer 

and acetone precipitation [129]. Using a commercial reverse-phase liquid chromatography separation, 

electrospray ionization, and quadrupole-time-of-flight (Q-TOF) mass spectrometer, an average of  

619 ± 59 proteins were identified from 1.4 μg peptides obtained from 5000 cells; an average of  

167 ± 21 proteins were identified from an estimated 140 ng peptides obtained from 500 cells. The 

interference from NP-40’s polyethylene glycol units was not observed. Although protein losses  

occurred during the precipitation, significant numbers of proteins were identified from even the smallest  

sample amount. With the advances in sensitivity and throughput from newer mass spectrometers, these 

numbers could improve. Acetone precipitation also works relatively well for SDS removal, with about 

100-fold removal [143]. Care must be taken, however, to remove enough SDS to prevent problems with 

chromatography, as small amounts of SDS can interfere chromatographically with reverse-phase 

separations [144]. This can be especially troublesome with low-quantity samples. 

Quantitative protein precipitation using TCA is specific to deoxycholate and certain other detergents 

in solution; TCA can be used alone for precipitation, but the pellet is not readily dissolved, causing 

sample losses [59,145]. In a typical TCA-deoxycholate (DOC) precipitation, the protein solution is mixed 

with a dilute sodium deoxycholate buffer. The protein is intercalated by deoxycholate and then precipitated 

from solution with TCA. Acidification of the deoxycholate can cause a change in solubility [49,146], 

causing aggregation and precipitation. The deoxycholate can then be preferentially removed using 

acetone, leaving near-pure protein behind [47,48]. TCA-DOC precipitation is remarkably efficient, even 

in dilute samples, with recovery values from 90% to 100% of total protein [48]. 

Both the TCA-DOC and acetone precipitation methods have been adapted to the microscale and can 

recover the majority of protein input. Acetone precipitation is inherently more difficult to perform  

in the microscale compared to the macroscale, due to the dependence of its efficiency on protein  

concentration [70]. In either case, the protein is denatured and also separated from materials that 

interfere with liquid chromatography-mass spectrometry analysis, such as lipids, cellular debris, and 

non-compatible detergents. The pellet left behind can be dissolved in a buffer of choice. Care must be 

taken in dissolving precipitated samples, particularly when using TCA, as these pellets can be extremely 

difficult to re-suspend if over-dried, or if the proteins have limited solubility in the buffer of choice. 

Often dissolution is performed in a denaturing buffer or chaotropic agent compatible with mass 

spectrometry, or an agent easily diluted in the sample for the prevention of interference. An 8 M urea or 

6 M urea with 2 M thiourea mixture, Rapigest©, ammonium bicarbonate, and 80% acetonitrile are 

common buffers for resuspension. Usually resuspension of a microproteomic sample is performed in 

small volumes, to keep protein concentration high and prevent losses, so resuspension techniques such 

as shaking or vortexing are discouraged in plastic tubes. The exposure of protein to the plastic walls may 

result in irreversible loss. Thus, sonication or on-pellet digestion are better approaches for dissolving 

precipitation pellets. 

Filter-aided sample preparation (FASP) has also been adapted to microscale analysis. Sample 

preparation is similar to the macroscale techniques described. FASP is considered efficient for a wide 

range of proteins and preparations, and shows great efficacy for removal of detergents and contaminants 

without sample losses. FASP has been used for small numbers of cells (3000 and under) from 
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formalin-fixed paraffin-embedded samples with LCM. Wisenewski et al. reported 2055 protein 

identifications from 3000 cells, containing nanograms worth of protein, with no interference from formalin 

or paraffin [110]. Protein can also be concentrated and desalted in few steps. FASP can be combined  

with other methods, such as with isobaric tags for relative and absolute quantitation (iTRAQ) [147],  

a multiplexed approach to protein quantitation, and antibody affinity selection [148]. 

FASP adapts well to the microscale due to the increase in local concentration of protein in relation to 

sample volume. Because the filter traps the proteins, it artificially increases the concentration. Recent 

advances by Erde, et al. suggests that the addition of a carrier such as Tween-20 to the molecular-weight 

cutoff filter before protein addition reduces losses 300-fold [104] (Figure 3). Also, instead of loading 

urea-solubilized peptides onto the filter unit, 0.2% deoxycholic acid can be used. This technique 

increases trypsin digestion efficiency, but necessitates cleanup by an additional method; the use of 

TCA-DOC precipitation post-FASP could be implemented for this use. 

 

Figure 3. Enhanced filter-aided sample preparation (FASP) workflow. Samples are 

prepared in 4% sodium dodecyl sulfate (SDS) and diluted in 8 M urea to dissociate SDS 

from the proteins. Filter units are passivated overnight with 5% Tween-20, followed by 

thorough washing in MS-grade water. Diluted samples are applied to the filter units for 

buffer exchanges, eliminating contaminants. Proteins are alkylated with urea present, 

followed by successive buffer exchanges. Proteins are digested with surfactants present, 

then liberated with centrifugation. Extraction with organic solvent leaves behind pure 

peptides for LC–MS analysis. This procedure reduces losses about 300-fold. Figure adapted 

from Erde et al. (2014) [104]. 

3.3. Microproteomic Fractionation and Separation 

Loss of peptides due to lower peptide extraction efficiency can discourage the use of gel 

electrophoresis in microproteomic preparations, despite the raw power of the strategy. However, with 

stringent sample preparation strategies, gel electrophoresis can be used in microproteomics. Cha et al. 

describe the use of SDS-PAGE for the analysis of 60,000 breast cancer cells per specimen, obtained  

by laser capture microdissection [149]. After lysis with lithium dodecyl sulfate, proteins were separated 

by 1D SDS-PAGE. The gel lanes were divided into three sections based on molecular weight and 
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subjected to in-gel digestion. This procedure provided three fractions per sample. Eighteen different 

samples, nine breast tumors and nine normal tissues, were analyzed. Overall, Cha et al. identified  

2588 unique protein groups from the 18 samples, with only 3% of unique protein identifications, and 

about 78 protein groups, found in more than one sample. This study illustrates that, while loss is a real 

concern for in-gel digestion, useful information can be obtained from small sample amounts using 1D 

gel fractionation. Gel electrophoresis can be an excellent choice for microgram quantities of sample. 

Other electrophoresis techniques exist that are compatible with microproteomics. Jorgenson and 

Lukacs introduced the concept of zone electrophoresis in silica capillaries [150]. Capillary zone 

electrophoresis (CZE) is perhaps best known for its use in the Human Genome Project [151]; the 

technique has grown on the fringe of proteomics [152] but is now gaining wider appeal and has been 

applied to proteomic separations with excellent results. Li et al. demonstrated the use of CZE with  

a sheath-flow interface for analysis of a moderately complex bacterial proteome [153]. This work has 

been further advanced by Sun et al. for more complex proteomes [154] and quantitation by multiple 

reaction monitoring on a human cell line, the first analysis of its kind [155]. Zhu et al. automated the 

process using a PrinCE autosampler for Escherichia coli digests [156]. Most impressively, Zhu et al. 

demonstrated the use of CZE for the analysis of single nanograms of material for proteomic analysis, 

identifying more peptides than an UPLC–ESI-MS/MS system [157]. The advantages of CZE lie in its 

speed and sensitivity, as compared to UPLC; a single separation consisted of 50 min of mass 

spectrometry time for a 60 centimeter capillary. Similar amounts of time were used for UPLC in this 

case, but most of the peptides for CZE had eluted by ~30 min for each loading amount. CZE showed 

much better sensitivity, resolving peptides at the 1 ng amount, where the UPLC showed little to no signal 

above background. The weakness of CZE is its low loading amount, due in part to the small volume of 

the 50 μm inner diameter (ID) capillary and zero peptide retention on the stationary phase. This analysis 

shows that CZE is a viable micro- to nano-proteomic separation technique, lowering sample 

requirements while retaining sensitivity and providing numerous peptide and protein identifications, 

albeit complementary to UPLC. CZE has also been applied to top-down proteomics as demonstrated by 

Li et al. [158] and Zhao et al. [159]. 

3.4. One Application of Microproteomics: Exploring Cancer Samples 

Cancer is one of the leading causes of death in the United States, and the growth and developmental 

mechanisms of tumors are poorly understood [160]. Tumors have substantial cellular heterogeneity, 

making tumor biology a critical area of study. Microproteomic techniques are valuable tools to explore 

the complex proteomic differences within a single tumor [161]. Many of the approaches used in this 

review are techniques that can be applied to tumor analysis. Indeed, tumor biology and biomarker 

discovery are major driving forces for proteomic analysis, based on the number of publications on 

proteomic cancer analysis in recent years. 

Proteomics is useful for tumor biology due to the breadth of protein information obtainable. Often, 

diagnosis and evaluation of tumors are done with histology and immunohistochemical analysis [162]. 

Biopsies are sliced, stained, and analyzed with microscopy. While accurate, precise, and mature, the 

throughput of this technique is relatively low. Immunostaining and histochemical staining are 

commonly used for cancer diagnosis, but they are limited techniques. Only one or two proteins can be 
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visualized with traditional microscopy techniques. Tumors can also be biopsied using needle core or 

aspiration biopsies. The typical diameter of a needle core biopsy is about 1 mm across [163] and about 

the length of a grain of rice [164], limiting sample amount and thus the breadth of analyses that may be 

possible. However, microproteomics can bridge this gap, providing more methods for tumor analysis to 

complement mature techniques. Thanks to laser capture microdissection, both histology and mass 

spectrometry can be performed on the same sample. Diagnosis, proteome analysis, and network analysis 

can be consolidated, and microproteomics can help ensure maximum data from minimal material. 

Meanwhile, thousands of protein groups can be identified in a single mass spectrometry run. That 

information is then uploaded into network analysis databases, providing an in-depth look at a tumor’s 

molecular equilibria. Mass spectrometry-based strategies can identify targets for cancer therapy. 

Analysis of pathways in cancer can not only give scientists and medical personnel insight into the 

workings of cancer; it can also give more immediate treatment options, possibly ruling out ineffective 

therapies or encouraging more productive, less deleterious chemotherapies. 

Model systems for cancer can be used in place of primary tumor samples, which are precious 

biological samples. Two-dimensional (2D) cell culture and murine model are both useful model systems 

with unique advantages and disadvantages. 2D cell culture is least likely to be used for microproteomic 

analysis; great quantities of cells can be cultured in a single flask, resulting in milligram amounts  

of protein available. Furthermore, clonal lines can be grown in parallel and combined. For cancer 

researchers, this is an advantage. 2D cell culture is a high-throughput, relatively low-cost technique,  

at the expense of the model’s accuracy. Murine models, while expensive, have more accurate 

representations of human tumors. Tumors obtained from mouse models are reproducible, yet unique  

to the individual organism. The overall size of tumors are smaller, providing less protein; coupled with 

other analyses, microproteomics is a likely candidate with the sample available. Further, even without 

direct tumor analysis, inferences and data can be obtained using tests similar to human techniques, such 

as blood and plasma [165,166]. 3D cell cultures recapitulate the tumor microenvironment to a high 

degree, but also retain many of the advantages of 2D cell culture. Deriving from clonal cell lines,  

3D cultures (“spheroids”) are reproducible in their growth patterns, but display intraculture chemical and 

cellular heterogeneity. Most often, 3D cultures are analyzed in bulk. We have found that, in certain cell 

lines, these cell cultures consistently provide around 40 μg of protein in a 1 mm HCT116 spheroid [167]. 

Analysis of single cultures under various conditions using microproteomic techniques is a viable next 

step in multicellular spheroid characterization. 

4. Conclusions 

The field of proteomics continues to present solutions to unique challenges of small sample analysis. 

With advances in technology and methodological breakthroughs, microproteomics pushes the 

boundaries of analysis down to the biological dynamic range. Progress into the lower reaches of 

biological activity requires greater reproducibility and specificity of techniques, to analyze specific 

subsets of tissue with greater confidence. Increases in instrument sensitivity and more compatible 

preparation techniques are necessary advancements for robust analysis of micro- and nano-scale 

samples, especially in the analysis of membrane proteins. 
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The future holds many options for the field of microproteomics. The development of methods for 

efficient removal of contaminants, such as FASP, provides paths to analyze single, fixed mammalian 

cells with minimal loss. While obligate losses exist, the analysis of single-cell proteomes remains a 

major goal. Microdissection using lasers has already miniaturized the dimensions of sample collection; 

separation techniques for UPLC or CZE need to follow this miniaturized approach to provide new 

workhorses with minimal sample dilution. Robotics may replace hand-held instruments to provide 

precise handling of specimens and samples, increasing speed of analysis and reproducibility of  

results. The field of microproteomics can build on the solid foundation already laid, and with some 

inventiveness and visionary techniques, the limitations of current techniques can be surmounted. 
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