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Abstract: Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating
various diseases from common cold to cancer. Linalool is one of the biologically active compounds
that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs
have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway
for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer
cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular
cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells,
and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism
of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937
and HeLa cells, with the IC50 value of 2.59 and 11.02 µM, respectively, compared with 5-FU with
values of 4.86 and 12.31 µM, respectively. After treating U937 cells with linalool for 6 h, we found an
increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the
G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53,
p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell
cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase.
Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21,
p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity.
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1. Introduction

According to a statistical report by the World Health Organization, cervical cancer is the second
most common cancer in women. More than 250,000 women are estimated to die annually from
cervical cancer [1]. Leukemia is a serious and often lethal form of hematological malignancy [2].
In Taiwan, deaths caused by leukemia represent 2.61% of the total number of cancer mortalities, and
leukemia has the highest treatment cost. Due to the promotion of cancer screenings, early cancer
detection, and improvements in cancer therapy and care, the lives of cancer patients are increasingly
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able to be extended, which also contributes to increased odds of those patients developing other types
of cancers. Cervical cancer and leukemia are both common types of second primary cancers. Thus,
more effective medication is required for treating cervical cancer and leukemia [1]. The development
of effective medication will inevitably become a primary focus of biotechnology, and the advancement
of drug activation will enhance the functions of drugs [3–5].

Plants have a long history of use in the treatment of cancer, and it is significant that more
than 60% of currently used anti-cancer agents come from natural sources [6–8]. For example,
Camptothecin extracted from Camptotheca acuminata suppresses topoisomerase I, repressing the
DNA of slow growing tumors [6–8]; purified etoposide (VP-16) and teniposide (VM-26) from
the Mandrake [9,10] suppresses topoisomerase II and so are used in the treatment of fast-growth
tumors [11,12]; Taxol extracted from Taxus brerifolia can stop p53-independent G2-M and cause cell
apoptosis [13]; and Vinblastine and quercetin extracted from Catharanthus roseus also have anti-cancer
applications [14,15].

Anti-cancer drugs can induce apoptosis in many tumor cells. Nowadays, researchers are still
attempting to find the mechanisms responsible for drug-induced cell death. Previous studies have
demonstrated the cytotoxic effect of Plantaginaceae, a type of traditional medicinal plant [16–20].
Linalool is a member of the monoterpenoids family of compounds that come from medicinal plants
and are recognized as a group of potential chemopreventive compounds. Linalool is one such
compound that has been reported to inhibit the growth of various human cancer cells by causing
apoptotic cell death [21–23]. However, despite the accumulation of data, the molecular mechanism
by which linalool acts against leukemia and cervical cancer cells is still unexplored. In this study,
we investigate the cytotoxic effect of linalool against U937 and HeLa cells. Through flow cytometry
and genechip analyses, we were able to determine how linalool suppresses the regulation of both
leukemia and cervical cancer cell cycles.

2. Results and Discussion

2.1. Cytotoxicity Assay

HeLa cell lines are transformed by Human papillomavirus 18 [24], and Human papillomavirus
types 16 and 18 are the most common strains in Taiwan, accounting for nearly 70% of all cervical
cancer cases [1]. Acute myeloid leukemia (AML) is the most common form of leukemia in adults;
therefore, human AML cell line U937 was used as the raw material in our study. Cell viability
may be observed to assess the ability of specific drugs to eliminate tumor cells. Understanding the
mechanism of apoptosis can be applied in the development of anti-cancer drugs or the treatment of
cancer. In our previous study, we found that normal lymphocytes can induce anticancer activity after
linalool treatment [20]. Based on this theoretical foundation, linalool was investigated in this study
to determine its actual mechanisms in causing the cytotoxic effect on U937 and HeLa cells. Through
cell viability assay, WST-1 analysis, linalool (Figure 1) showed a good cytotoxic effect against U937
(Figure 2) and HeLa (Figure 3) cells with IC50 value of 2.59 and 11.02 µM, respectively, compared
with 5-fluorouracil (5-FU), one of the standard therapy for cervical cancer, with value of 4.86 and
12.31 µM, respectively.
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Figure 1. The chemical structure of linalool. Figure 1. The chemical structure of linalool.
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Figure 2. Water-soluble tetrazolium salts (WST-1) analysis was used to determine inhibition of 
cell growth by varying the concentrations (1.30, 1.94, 3.24, and 6.48 μM) of linalool administered to 
U937 cells (1.2 × 105/mL) and activating for 24 h. Data are presented as mean ± SD, n = 3. Asterisks 
indicate the statistical significance between control and linalool treatment groups; * p ≤ 0.01 and ** p < 
0.001 against the control. 

 

Figure 3. WST-1 analysis was used to determine inhibition of cell growth by varying the 
concentrations (6.48, 12.96, 32.4, 64.8, and 129.6 μM) of linalool administered to HeLa cells (1 × 
105/mL) and activating for 24 h. Data are presented as mean ± SD, n = 3. Asterisks indicate the 
statistical significance between control and linalool treatment groups; * p ≤ 0.01 and ** p < 0.001 
against the control. 

2.2. Cell Damage Assay 

The above results confirmed the excellent cytotoxic potential of linalool. Further investigations 
were conducted to determine whether linalool facilitates DNA fracturing in U937 and HeLa cells. In 
a DNA ladder experiment, 1.3–12.96 μM of linalool were used to process the cells for 6 h, followed 
by DNA extraction and electrophoresis. The typical characteristics of apoptosis, using the ladder 
model, were observed via the agarose gel (Figure 4). The experimental results further showed the 
DNA ladder model became increasingly prominent during apoptosis with an increase in dosage, 
allowing for clearer observation of the apoptotic characteristics in the model. This suggests that the 
experiment was significantly dose-dependent. Although the agarose gel electrophoresis method can 
be employed to observe the DNA ladder model when cells undergo apoptosis, it does have some 
limitations. Electrophoresis results are relatively unclear when evaluating quantity. The utility of 
electrophoresis for analyzing DNA is limited because only the portion of the DNA that undergoes 
apoptosis or decomposes can be observed. The common disadvantage of electrophoresis and 
cytotoxic effect analysis is that the number of cells undergoing apoptosis cannot be clearly 
determined; in other words, their results in terms of quantity evaluation are weaker. Because the 
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growth by varying the concentrations (1.30, 1.94, 3.24, and 6.48 µM) of linalool administered to U937
cells (1.2ˆ 105/mL) and activating for 24 h. Data are presented as mean˘ SD, n = 3. Asterisks indicate
the statistical significance between control and linalool treatment groups; * p ď 0.01 and ** p < 0.001
against the control.
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2.2. Cell Damage Assay

The above results confirmed the excellent cytotoxic potential of linalool. Further investigations
were conducted to determine whether linalool facilitates DNA fracturing in U937 and HeLa cells. In
a DNA ladder experiment, 1.3–12.96 µM of linalool were used to process the cells for 6 h, followed by
DNA extraction and electrophoresis. The typical characteristics of apoptosis, using the ladder model,
were observed via the agarose gel (Figure 4). The experimental results further showed the DNA
ladder model became increasingly prominent during apoptosis with an increase in dosage, allowing
for clearer observation of the apoptotic characteristics in the model. This suggests that the experiment
was significantly dose-dependent. Although the agarose gel electrophoresis method can be employed
to observe the DNA ladder model when cells undergo apoptosis, it does have some limitations.
Electrophoresis results are relatively unclear when evaluating quantity. The utility of electrophoresis
for analyzing DNA is limited because only the portion of the DNA that undergoes apoptosis or
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decomposes can be observed. The common disadvantage of electrophoresis and cytotoxic effect
analysis is that the number of cells undergoing apoptosis cannot be clearly determined; in other
words, their results in terms of quantity evaluation are weaker. Because the cytotoxic effect analysis
only revealed cytotoxic effects on the U937 and HeLa cells after 24 h of reaction with linalool,
whether the apoptosis pathways were activated and how many cells died via the apoptosis pathways
remained unknown. The best observation time for apoptosis in the electrophoresis method was 6 h
after the reaction with linalool. However, the DNA available when using electrophoresis was limited;
thus, only the portion of the DNA that underwent apoptosis or decomposed could be observed.
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used to analyze the amount of apoptosis. FCM results can be used in conjunction with data 
obtained from cell morphology for the cross-verification and confirmation of whether apoptosis is 
present. Therefore, the FCM method was employed to further test the linalool’s influence on the cell 
cycles of U937 and HeLa cells. The degree of cancer cell DNA destruction and the changes in cell 
cycles were observed after administering linalool in order to verify whether this substance caused 
U937 and HeLa cells to undergo apoptosis or suspended cell cycle. From the results shown in 
Figure 5, linalool administered to U937 cells in quantities of 1.30, 1.94, and 3.24 μM for 6 h, and 
linalool administered to HeLa cells in quantities of 6.48 and 12.96 μM for 6 h clearly presented the 
occurrence of sub-G1 peaks and drug dependency. The U937 cells in phase sub-G1 increased from a 
percentage of 4.62% to 89.88% of the overall cells. In contrast, the sub-G1 phases for the control 
group (DMSO processed) occupied only 1.91% of the overall cells (Figure 5A,C). The HeLa cells in 
phase sub-G1 increased from 5.12% to 29.51% of the overall cells, while the sub-G1 phases for the 
control group (DMSO processed) occupied only 1.05% of the overall cells (Figure 5B,D). Moreover, 
as shown in Figure 5A, where linalool was administered to U937 cells in quantities of 1.30, 1.94, and 
3.24 μM for 6 h, cells in phases G0/G1 to S reduced dramatically. These phases reduced by 50% for 
doses of 1.30 and 1.94 μM, which suggest that a significant suppression effect occurred. However, 
the cell cycle distributions of cells in phase S were similar under the effects of varying quantities of 
linalool. Accordingly, these results imply that linalool can effectively suspend the cell cycle of U937 
cells in phase G0/G1 and subsequently present sub-G1 peaks, which symbolize the occurrence of 
apoptosis. 

Figure 4. Linalool administered to HeLa cells at concentrations of 6.48 µM (2) and 12.96 µM (3) and
activated for 6 h. Linalool administered to U937 cells at concentrations of 1.94 µM (5) and 3.24 µM
(6) and activated for 6 h. The DNA damage following cell apoptosis was determined via agarose gel
electrophoresis. Columns 1 and 4 show the control group, and M shows the DNA marker group.

2.3. Cell Growth Assay

The FCM method is the most economical method for quantifying cell apoptosis and it can be
used to analyze the amount of apoptosis. FCM results can be used in conjunction with data obtained
from cell morphology for the cross-verification and confirmation of whether apoptosis is present.
Therefore, the FCM method was employed to further test the linalool’s influence on the cell cycles
of U937 and HeLa cells. The degree of cancer cell DNA destruction and the changes in cell cycles
were observed after administering linalool in order to verify whether this substance caused U937 and
HeLa cells to undergo apoptosis or suspended cell cycle. From the results shown in Figure 5, linalool
administered to U937 cells in quantities of 1.30, 1.94, and 3.24 µM for 6 h, and linalool administered to
HeLa cells in quantities of 6.48 and 12.96 µM for 6 h clearly presented the occurrence of sub-G1 peaks
and drug dependency. The U937 cells in phase sub-G1 increased from a percentage of 4.62% to 89.88%
of the overall cells. In contrast, the sub-G1 phases for the control group (DMSO processed) occupied
only 1.91% of the overall cells (Figure 5A,C). The HeLa cells in phase sub-G1 increased from 5.12% to
29.51% of the overall cells, while the sub-G1 phases for the control group (DMSO processed) occupied
only 1.05% of the overall cells (Figure 5B,D). Moreover, as shown in Figure 5A, where linalool was
administered to U937 cells in quantities of 1.30, 1.94, and 3.24 µM for 6 h, cells in phases G0/G1 to
S reduced dramatically. These phases reduced by 50% for doses of 1.30 and 1.94 µM, which suggest
that a significant suppression effect occurred. However, the cell cycle distributions of cells in phase S
were similar under the effects of varying quantities of linalool. Accordingly, these results imply that
linalool can effectively suspend the cell cycle of U937 cells in phase G0/G1 and subsequently present
sub-G1 peaks, which symbolize the occurrence of apoptosis.
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Figure 5. Flow cytometry (FCM) was used to obtain the apoptosis rate (sub-G1) and cell cycle 
distribution (G0/G1, S, and G2/M). This figure shows the profile (A) and percentage (C) of 10,000 
U937 cells reacting for 6 h after adding 1.30, 1.94, and 3.24 μM concentrations of linalool and the 
profile (B) and percentage (D) of 10,000 HeLa cells reacting for 6 h after adding 6.48 and 12.96 μM 
concentrations of linalool. Data are presented as mean ± SD for the three independent experiment 
results. * p < 0.05 and ** p < 0.001 against control (0.1% ethylalcohol), respectively. 
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Linalool was administered to HeLa cells at concentrations of 6.48 and 12.96 μM for 6 h. This 
induced cells in phases G0/G1 to S to reduce dramatically and present sub-G1 peaks, again 
indicating the occurrence of apoptosis (Figure 5). Based on these results, linalool can effectively 
cause U937 and HeLa cells to undergo apoptosis. To gain mechanistic insights into the 
linalool-mediated apoptosis of cancer cells, we used a regulated apoptosis pathway-related gene 
chip array to identify U937 and HeLa cells incubated with linalool at 3.24 and 12.96 μM, 
respectively, for 6 h. Then the mRNA expression was measured by Apoptosis Pathway Detection 
Chip assay (Table 1). The overexpression of p53, p21, p27, p16, p18, caspase 9, and caspase 3 was found 
in both U937 and HeLa cells after treatment with linalool. However, Bax, caspase 8, MMP-9, and 
E-cadherin levels were increased only in U937 cells but not in HeLa cells (Figure 6; Table 1). 

Different natural products, such as resveratrol, curcumin, and diallyl trisulfide, have been 
studied and found to induce apoptosis, accompanied by the activation of caspases in malignant cells 
[25,26]. Caspase plays a central role during apoptosis. In the present study, overexpression of 
initiator caspases 8 and 9 (CASP8 and CASP9) and effector caspase 3 (CASP3) were also observed. 
The results indicated that linalool not only reduces the expression levels of Bcl-2 and Bcl-XL genes 
but also enhances the drug‘s toxicity on U937 and HeLa cells. In addition, U937 and HeLa cells show 
that the overexpression of p53, p21, p27, p16, and p18 genes causing the cell cycle to arrest at the 

Figure 5. Flow cytometry (FCM) was used to obtain the apoptosis rate (sub-G1) and cell cycle
distribution (G0/G1, S, and G2/M). This figure shows the profile (A) and percentage (C) of 10,000
U937 cells reacting for 6 h after adding 1.30, 1.94, and 3.24 µM concentrations of linalool and the
profile (B) and percentage (D) of 10,000 HeLa cells reacting for 6 h after adding 6.48 and 12.96 µM
concentrations of linalool. Data are presented as mean ˘ SD for the three independent experiment
results. * p < 0.05 and ** p < 0.001 against control (0.1% ethylalcohol), respectively.

2.4. Apoptosis Pathway Assay

Linalool was administered to HeLa cells at concentrations of 6.48 and 12.96 µM for 6 h. This
induced cells in phases G0/G1 to S to reduce dramatically and present sub-G1 peaks, again indicating
the occurrence of apoptosis (Figure 5). Based on these results, linalool can effectively cause U937 and
HeLa cells to undergo apoptosis. To gain mechanistic insights into the linalool-mediated apoptosis of
cancer cells, we used a regulated apoptosis pathway-related gene chip array to identify U937 and
HeLa cells incubated with linalool at 3.24 and 12.96 µM, respectively, for 6 h. Then the mRNA
expression was measured by Apoptosis Pathway Detection Chip assay (Table 1). The overexpression
of p53, p21, p27, p16, p18, caspase 9, and caspase 3 was found in both U937 and HeLa cells after treatment
with linalool. However, Bax, caspase 8, MMP-9, and E-cadherin levels were increased only in U937 cells
but not in HeLa cells (Figure 6; Table 1).

Different natural products, such as resveratrol, curcumin, and diallyl trisulfide, have been
studied and found to induce apoptosis, accompanied by the activation of caspases in malignant
cells [25,26]. Caspase plays a central role during apoptosis. In the present study, overexpression
of initiator caspases 8 and 9 (CASP8 and CASP9) and effector caspase 3 (CASP3) were also observed.
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The results indicated that linalool not only reduces the expression levels of Bcl-2 and Bcl-XL genes
but also enhances the drug‘s toxicity on U937 and HeLa cells. In addition, U937 and HeLa cells
show that the overexpression of p53, p21, p27, p16, and p18 genes causing the cell cycle to arrest
at the G0/G1 and G2/M phases, respectively. Meanwhile, non-expression of the cyclin-dependent
kinases (CDKs) cyclin D, cyclin E, and cyclin A also indirectly affects cells, causing them to stop
at the G0/G1 phase. The p21, p27, p16, and p18 genes have recently been discovered [27] to be
important cyclin-dependent kinase inhibitors (CDKIs) and are all candidate tumor suppressor genes
located downstream of p53. CDKIs regulate cell cycle as well as DNA replication and repair and,
therefore, cannot proceed through G0/G1 if the damaged DNA is not repaired. This results in
reduced replication and accumulation of damaged DNA and enhanced tumor suppression because
the latter is closely related to cell cycle control. However, expression without increases in Bax, caspase
8, MMP-9, and E-cadherin in HeLa cells will be studied further in future experiments.Int. J. Mol. Sci. 2015, 16, page–page 
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Figure 6. Images from the Apoptosis Pathway Detection Chip assay. U937 cells and HeLa cells were 
incubated with linalool at 3.24 and 12.96 μM, respectively, for 6 h, and then the mRNA expression 
was measured by genechip assay: (A) control (unstimulated) U937 cells; (B) linalool (3.24 μM) 
treated U937 cells; (C) control (unstimulated) HeLa cells; and (D) linalool (12.96 μM) treated HeLa 
cells. Probes 1–32: genes listed in Table 1; probes 33–34: blank; probe 35: negative control; probe 36: 
positive control (β-actin). Red boxes: overexpressed genes. * p < 0.05 and ** p < 0.001 against control, 
respectively. 

Regarding apoptosis, a review of the literature on linalool found in monoterpenoids showed 
that the majority of related studies examined the effects of Candida albicans [28–30], Escherichia coli, 
and Staphylococcus aureus [31,32] or the production of spices [33,34], but few studies investigated 
anti-cancer activity [35–38]. Our results suggest that linalool can induce the cell cycle of U937 cells 
to arrest at the G0/G1 phase, while HeLa cells arrest at the G2/M phase, and its function facilitates 
the expression of p53, p21, p27, p16, and p18 (CDKIs) and the non-expression of CDK activity. 
Therefore, linalool can inhibit the cell cycle of leukemia cells and cervical cancer cells, and we 
believe that it could thus be used to develop novel therapeutic agents for tumors. 

3. Experimental Section 

3.1. Cell Viability Assay 

U937 (ATCC® CRL-1593.2™, Hnman, pleural effusion, histiocytic lymphoma) and HeLa 
(ATCC® CCL-2™, Human, cervix, adenocarcinoma) cells according to the growth rate were 
prepared into 1.2 × 105/mL and 1 × 105/mL samples, respectively. Then, varying concentrations of 
linalool (molecular weight 154.25; Sigma Chemical Co., St. Louis, MO, USA) were administered; each 
concentration was administered 3 times. The samples were placed in 96-well plates and cultivated 
in an incubator at 37 °C with 5% CO2 for 3 days. Subsequently, a WST-1 mixture (Roche Diagnostics 
GmbH, Mannheim, Germany, a colorimetric, non-radioactive assay for assessing cell viability and 
proliferation) was introduced into the incubator. Following 2 to 4 h reaction time, an ELISA reader 
(Multiskan EX, Labsystems, Stockholm, Sweden) was used to test the light absorption values, which 
were 450 nm. For each 96-well plate, a blank-cell control group and a standard 5-FU (5-Fluorouracil; 
molecular weight 130.08, Sigma Chemical Co.) control group were prepared. 
  

Figure 6. Images from the Apoptosis Pathway Detection Chip assay. U937 cells and HeLa cells were
incubated with linalool at 3.24 and 12.96 µM, respectively, for 6 h, and then the mRNA expression was
measured by genechip assay: (A) control (unstimulated) U937 cells; (B) linalool (3.24 µM) treated U937
cells; (C) control (unstimulated) HeLa cells; and (D) linalool (12.96 µM) treated HeLa cells. Probes
1–32: genes listed in Table 1; probes 33–34: blank; probe 35: negative control; probe 36: positive control
(β-actin). Red boxes: overexpressed genes. * p < 0.05 and ** p < 0.001 against control, respectively.

Regarding apoptosis, a review of the literature on linalool found in monoterpenoids showed
that the majority of related studies examined the effects of Candida albicans [28–30], Escherichia coli,
and Staphylococcus aureus [31,32] or the production of spices [33,34], but few studies investigated
anti-cancer activity [35–38]. Our results suggest that linalool can induce the cell cycle of U937 cells to
arrest at the G0/G1 phase, while HeLa cells arrest at the G2/M phase, and its function facilitates the
expression of p53, p21, p27, p16, and p18 (CDKIs) and the non-expression of CDK activity. Therefore,
linalool can inhibit the cell cycle of leukemia cells and cervical cancer cells, and we believe that it
could thus be used to develop novel therapeutic agents for tumors.
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Table 1. The oligonucleotides for Apoptosis Pathway Detection Chip and the expression level of
each probe.

No. Gene Name Oligo Folds
U937 HeLa

1 EGF CTGTAGGGGAAAAGGACAGTAATGACTAAGAAACTCCGAAGCCTC <1 1.44
2 EGFR AGCGGTGCTATCCTTAGGTATTCCACATTCTCAGCTGTGGGCTATTGGTC <1 1.23
3 Erk-1 (MAPK3) GAGCCAGCGCTTCCTCCACTGTGATCCGTTTATTGGGGTTAAAGGTTAAC <1 1.22
4 Erk-2 (MAPK1) CGAGGAACAGCTCACAGCCCTAACACAAGTTACCACATGCAGAGCAAATC <1 1.24
5 PI3K (PIK3CA) GCTGTTGAACTGCAGTGCACCTTTCAAGCCGCCTTTGCACTGAATTTGCA <1 <1
6 AKT (AKT1) CATCTGGGCCGTGAACTCCTCATCAAAATACCTGGTGTCAGTCTCCGACG <1 1.32
7 PTEN GTGTCATGCATGCAGATGGAAGGGGTGGAACTGTGCACTAAAGTGGGGGC <1 1.15
8 B-catanin (CTNNB1) AAACTCAGCTTGGTTAGTGTGTCAGGCACTTTCTGAGATACCAGCCCACC <1 1.19
9 COX-2 (PTGS2) ACAAACCCCGTACAGTTCTCTCTGAGGCACTAGCCTCTTTGCATCCATCT <1 1.15

10 Cyclin D1 (CCND1) CGTGCCTGGAAGTCAACGGTAGCAGCGCAATAAGAAAATGGAGCT <1 <1
11 Cyclin E (CCNE1) TTTCTTTGCTCGGGCTTTGTCCAGCAAATCCAAGCTGTCTCTGTGGGTCT <1 <1
12 Cyclin A (CCNA2) AGGTAGGTCTGGTGAAGGTCCATGAGACAAGGCTTAAGACTTTCCAGGGT <1 <1
13 Cyclin B CCGACCCAGTAGGTATTTTGGTCTGACTGCTTGCTCTTCCTCAAGTTGTC <1 <1
14 p21 (CDKN1A) GTGGCATGCCCTGTCCATAGCCTCTACTGCCACCATCTTAAAATGTCTGA 2.08 1.21
15 p27 (PSMD9) GGAATTCGCCCAATAGGAAGGCTTTGGAATTGAGTGTGAGAACCTGTGGC 1.55 1.21
16 p16 (CDKN2A) ACCTTCGGTGACTGATGATCTAAGTTTCCCGAGGTTTCTCAGAGC 1.80 1.23
17 p18 (CDKN2C) TCTGGCCGCATCATGAATGACAGCGAAACCAGTTCGGTCTTTCAAATCGG 1.87 1.32
18 p53 GGCCCCTACCTAGAATGTGGCTGATTGTAAACTAACCCTTAACTG 2.45 1.19
19 Bcl-XL (BCL2L1) GAGTCCTGGTCCTTGCATCTTTATCCCAAGCAGCCTGAATCCCTAGTCAA <1 <1
20 Bcl-2 GCTGCACTTTGAGCCATGCTGATGTCTCTGGAATCTAAAGGTCGTACCAC <1 <1
21 Bax (BCL2L4) TGCCATAATTTATGGAGGAAAAACACAGTCCAAGGCAGCTGGGGGCCTCA 1.32 <1
22 caspase 9 (CASP9) CTGGGTGCAATGGTGCACGCCTGTAGTAAGAGCTACTTGGGAGGGTCACT 1.50 1.25
23 caspase 8 (CASP8) ATAGTGTTATATCTAAATAGTACCATCGGCCAGGCGCGGTGGCTC 1.54 <1
24 caspase 3 (CASP3) ATCTCCCGTGAAATGTCATACTGACAGCCAGTGAGACTTGGTGCAGTGAC 1.49 1.34
25 VEGF (VEGFA) ATTGAAACCTTATTTCAAAGGAATGTGTGCTGGGGAGCCAGGGGATCGGG <1 <1
26 VEGFR (VEGFR1) TGTGGGCTAGGAAACAAGGCACGGGTCCCTAAAATTAACATCTCGGTGTC <1 1.27
27 VEGFR (VEGFR2) CACTGTGCCCAGCCACCCCCTCTTCCATTTTAGAAATGATGGGTACAGTA <1 1.19
28 MMP-2 ATTCTTCAGGGCTCTTTCTACAGGACAGAGGGACTAGAGCTTACT <1 1.17
29 MMP-3 ACCGGCAAGATACAGATTCACGCTCAAGTTCCCTTGAGTGTGACTCGAGT <1 <1
30 MMP-9 AGCCCACCTCCACTCCTCCCTTTCCTCCAGAACAGAATACCAGTT 1.85 <1
31 MMP-13 AATAAGTGCCAAGCACCCTCCCCAAGTATCAATAGGCACTGTGGGAAGTG <1 <1
32 E-cadherin (CDH1) CCTACCCCTCAACTAACCCCCTTTAGGGCCACATTTTCTTCTTGCTCCTA 1.72 <1
- Bata-actin (BA) AACATAATCTGAGTCATCTTCTCTCTGTTGGCCTTGGGGTTCAGGGGGGC 1.00 1.00

Folds = the mean density of each probe treated with linalool was divided by the mean density of the
unstimulated probe (control).

3. Experimental Section

3.1. Cell Viability Assay

U937 (ATCCr CRL-1593.2™, Hnman, pleural effusion, histiocytic lymphoma) and HeLa
(ATCCr CCL-2™, Human, cervix, adenocarcinoma) cells according to the growth rate were prepared
into 1.2 ˆ 105/mL and 1 ˆ 105/mL samples, respectively. Then, varying concentrations of linalool
(molecular weight 154.25; Sigma Chemical Co., St. Louis, MO, USA) were administered; each
concentration was administered 3 times. The samples were placed in 96-well plates and cultivated
in an incubator at 37 ˝C with 5% CO2 for 3 days. Subsequently, a WST-1 mixture (Roche Diagnostics
GmbH, Mannheim, Germany, a colorimetric, non-radioactive assay for assessing cell viability and
proliferation) was introduced into the incubator. Following 2 to 4 h reaction time, an ELISA reader
(Multiskan EX, Labsystems, Stockholm, Sweden) was used to test the light absorption values, which
were 450 nm. For each 96-well plate, a blank-cell control group and a standard 5-FU (5-Fluorouracil;
molecular weight 130.08, Sigma Chemical Co.) control group were prepared.

3.2. DNA Damage Assay

U937 cell samples at various concentrations of linalool (6.48 and 12.96 µM) and HeLa cell samples
at various concentrations of linalool (1.94 and 3.24 µM) were placed in plates. Subsequently, DMSO
(final concentration = 0.1%) was used as the control group. The cell samples were collected at 6 h.
Lysis buffer and proteinase K were administered separately to each of the cell samples after the cells
had been dispersed. Each mixture was left to react overnight, after which RNase was added. The
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DNA was extracted using a phenol and chloroform (1:1) mixture. The product was then placed in a
centrifuge at 4 ˝C. The DNA from the cells was then analyzed using agarose gel electrophoresis and
ethidium bromide, which was used to dye and contrast the agarose gel.

3.3. Cell Cycle Determination

U937 cell samples at various concentrations of linalool (6.48 and 12.96 µM) and HeLa cell samples
at various concentrations of linalool (1.30, 1.94 and 3.24 µM) were placed in plates. Subsequently,
DMSO (final concentration = 0.1%) was used as the control group. The cells were collected after
6 h and secured with 99.9% alcohol. Then, PBS (Phosphate-buffered saline), RNase (10.0 µg/mL),
and Triton (0.5%) were administered separately. The supernatant was removed from the solution
following centrifuge, and PI (propidium iodide; 0.5%; Sigma Chemical Co.) dye was administered.
Then, the contrast solution was again centrifuged and the subsequent supernatant removed. Finally,
PBS was administered to wash and disperse the solution. The solution was then passed through a
40-µm mesh filter into a test tube [39].

3.4. Total RNA Extraction and First Strand cDNA Synthesis

Using a High Pure RNA Isolation Kit (Roche Diagnostics GmbH, 68298 Mannheim, Germany),
total RNA was extracted from U937 and HeLa cells that had been treated with linalool for 6 h. Purified
RNA was quantified by OD 260 nm using an ND-1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA) and quantitated by Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA,
USA). First-strand cDNA was synthesized from total RNA using a Roche Diagnostics Kit (Roche
Diagnostics GmbH, 68298 Mannheim, Germany) [40]. Reverse transcription was performed in a
reaction mixture consisting of a 2.5 µM oligo (dT) 18-mer primer, 60 µM random hexamer primer,
1 mM deoxyribonucleotide triphosphate, 10 units of Reverse Transcriptase MMLV, and 20 units of
ribonuclease inhibitor. The reaction mixtures with RNA were incubated at 55 ˝C for 30 min, heated
to 85 ˝C for 5 min, and then stored at 2 to 8 ˝C or at ´15 to ´25 ˝C until analysis.

3.5. Preparation of Apoptosis Pathway Detection Chip

The procedure for the design and preparation of the genechip was carried out according to
our previously described method [41,42]. Visual OMP3 (Oligonucleotide Modeling Platform, DNA
Software, Ann Arbor, MI, USA) was used to design probes for target genes and β-actin (BA;
housekeeping gene). The oligonucleotide sequences of 32 target genes for the Apoptosis Pathway
Detection Chip are listed in Table 1. The newly synthesized oligonucleotide fragments were dissolved
in distilled water to a concentration of 100 mM, and applied to a BioJet Plus 3000 nL dispensing
system (BioDot Inc., Irvine, CA, USA), which sequentially blotted the target oligonucleotides; (0.05 µL
per spot and 1.5 mm between spots) on a SuPerCharge nylon membrane (Schleicher and Schuell,
Dassel, Germany) in triplicate, and then cross-linked to the membrane using a UV Stratalinker 1800
(Stratagene, La Jolla, CA, USA).

3.6. Apoptosis Pathway Detection Chip Assay

First-strand cDNA were applied for biotin labeling, and the biotin-labeled probes were then
hybridized with the Apoptosis Pathway Detection Chip. The hybridized chip followed washing,
blocking and color development procedures using a GeneClingr Enzymatic Gene Chip Detection
Kit (Carygene Co., Kaohsiung, Taiwan). The Apoptosis Pathway Detection Chips were then scanned
with an Epson Perfection 1670 flat bed scanner (Seiko Epson Co., Naganoken, Japan). Subsequent
quantification analysis of each spot intensity was carried out using AlphaEaser FC software (Alpha
Innotech Co., San Leandro, CA, USA). For each sample, the Apoptosis Pathway Detection Chip
hybridization was done in triplicate to ensure the reproducibility of the results. The fold ratio of each
gene was calculated as follows: spot intensity ratio = the mean intensity of target gene (n = 3)/the
mean intensity of unstimulated control (β-actin; BA).
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3.7. Statistical Analysis

All data were analyzed using the Statistical Package for the Social Sciences Ver 22 software (SPSS
Inc., Chicago, IL, USA). The significance of the differences was analyzed by a one-way analysis of
variance (ANOVA), with p < 0.05, p < 0.01 or p < 0.001 considered significant.

4. Conclusions

The results obtained in this study demonstrated that linalool produced a cytotoxic effect, by
inducing the cells to undergo apoptosis, triggering cell death. The majority of studies pertaining
to linalool in monoterpenoids are typically based on presenting and suppressing microorganisms
and few have endeavored to research aspects of cytotoxic activation. We believe that linalool offers
tremendous potential for enhancing leukemia and cervical cancer treatment and provides novel
starting points for future anti-cancer research.
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