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Abstract: Esophageal cancer is one of the most common cancers worldwide. Esophageal squamous
cell carcinoma (ESCC) is the major histological type of esophageal cancer in Eastern Asian
countries. Several types of noncoding RNAs (ncRNAs) function as key epigenetic regulators of
gene expression and are implicated in various physiological processes. Unambiguous evidence
indicates that dysregulation of ncRNAs is deeply implicated in carcinogenesis, cancer progression
and metastases of various cancers, including ESCC. The current review summarizes recent findings
on the ncRNA-mediated mechanisms underlying the characteristic behaviors of ESCC that will help
support the development of biomarkers and the design of novel therapeutic strategies.
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1. Introduction

Esophageal cancer (EC) is known as one of the most aggressive cancers, as reflected by an overall
survival rate of 10%–20%. EC is the eighth most common cancer and the sixth most common cause
of cancer death [1]. In EC cases diagnosed at an advanced stage, the overall five-year survival
rate is 9%–40% [2]. EC is divided into two histological types, adenocarcinoma and squamous
cell carcinoma. Although the incidence of esophageal adenocarcinoma is increasing, esophageal
squamous cell carcinoma (ESCC) is more predominant in East Asia, including Japan. Despite
improved development of multimodal techniques, such as surgery, chemotherapy and radiotherapy,
the survival rate of ESCC patients remains poor because of a high incidence of local invasion and
distant metastasis [3,4]. Therefore, identifying the mechanisms underlying these processes is critical
for the development of biomarkers and therapeutic targets.

The human transcriptome contains numerous protein-coding messenger RNAs (mRNAs),
as well as plenty of non-protein-coding transcripts. Among several kinds of noncoding RNAs
(ncRNAs), long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have received attention
in recent years. lncRNAs are a new class of ncRNAs that are longer than 200 nucleotides and
regulate the expression levels of target genes in diverse biological processes, including chromatin
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modification, transcriptional and post-transcriptional levels [5–7]. Furthermore, recent studies have
demonstrated that the expression of many lncRNAs is dysregulated, and they play critical roles
in tumorigenesis and tumor progression in various types of cancer [8,9]. miRNAs are shorter
noncoding RNAs (21–23 nucleotides) that bind to the 31-untranslated region (UTR) of their target
mRNAs to post-transcriptionally repress their translation. miRNAs have been involved in various
pathological conditions, such as neurological diseases, cardiovascular disease, viral infection and
cancer. A number of miRNAs target particular oncogenes or tumor suppressors and function in the
pathogenesis of many cancers [10–12].

Accumulating evidence indicates that ncRNA dysregulation in ESCC plays an important
role in regulating specific cellular processes, such as differentiation, proliferation, apoptosis and
stress response. In addition, expression of these ncRNAs has the potential to serve as a useful
biomarker for diagnosis and prognosis prediction in ESCC patients. In this review, we focus on
the ncRNA-mediated mechanisms underlying tumor progression and the identification of diagnostic
and prognostic prediction biomarkers in ESCC.

2. Dysregulation of miRNAs Involved in ESCC Development

Dysregulation of miRNAs has been shown to have an effect on tumor growth in ESCC (Figure 1).
The development of ESCC is closely related to lifestyle habits, such as tobacco smoking and/or
alcohol drinking, and chronic stimuli induce genetic and epigenetic alterations in normal esophageal
mucosa. Several miRNAs have been reported to be implicated in lifestyle habit-related ESCC.
Wang et al. showed that smoke exposure increased the risk for ESCC to induce single nucleotide
polymorphisms in miR-423 [13]. Zinc deficiency (ZD) is also implicated in the development of
ESCC [14]. A previous study showed that miR-31 and miR-21 overexpression caused by ZD was
associated with inflammation and resulted in ESCC development in a rat model [15].
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Figure 1. Dysregulation of ncRNAs involved in esophageal squamous cell carcinoma (ESCC) 
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thus contributing to ESCC development. 

Ito et al. showed that miR-593* directly suppressed Polo-like kinase 1 expression and reduced 
ESCC growth [16]. Other studies demonstrated that miR-133a and miR-375 were downregulated in 
ESCC tissues and significantly inhibited tumorigenesis and growth through directly targeting CD47 
and IGF1R, respectively [17,18]. Likewise, miR-29c was significantly downregulated in ESCC tissues 
and decreased tumor growth by causing cell cycle arrest mainly through suppressing cyclin E 
expression [19]. miR-302b and miR-520a were downregulated in ESCC and suppressed cell 
proliferation via binding the 3′-UTR of ErbB4 mRNA [20,21]. Furthermore, a recent study showed 

Figure 1. Dysregulation of ncRNAs involved in esophageal squamous cell carcinoma (ESCC)
development. Dysregulation of various ncRNAs affects tumor growth in ESCC. Chronic inflammation
induces ncRNA alterations in esophageal mucosa and affects downstream target gene regulation, thus
contributing to ESCC development.

Ito et al. showed that miR-593* directly suppressed Polo-like kinase 1 expression and reduced
ESCC growth [16]. Other studies demonstrated that miR-133a and miR-375 were downregulated
in ESCC tissues and significantly inhibited tumorigenesis and growth through directly targeting
CD47 and IGF1R, respectively [17,18]. Likewise, miR-29c was significantly downregulated in ESCC
tissues and decreased tumor growth by causing cell cycle arrest mainly through suppressing cyclin
E expression [19]. miR-302b and miR-520a were downregulated in ESCC and suppressed cell
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proliferation via binding the 31-UTR of ErbB4 mRNA [20,21]. Furthermore, a recent study showed
that miR-27a was downregulated and directly targeted the KRAS gene in ESCC cell lines and tissues,
resulting in inhibited cell growth of ESCC [22]. Gong et al. found that downregulation of miR-138
induced lipid raft formation via upregulating multiple components of lipid rafts, including FLOT1,
FLOT2 and caveolin-1, resulting in NF-κB activation and promotion of ESCC aggressiveness in vitro
and in vivo [23].

Several studies have demonstrated the functional roles of miR-203 in ESCC progression. Yu et al.
examined the expression of the stem renewal factor Bmi-1 and miR-203 in ESCC side population (SP)
and non-SP (NSP) cells and found that Bmi-1 was increased and miR-203 was decreased in SP cells
compared to NSP cells. The authors also found that the SP cell fraction and colony formation were
remarkably decreased in miR-203-overexpressing cells [24]. Yuan et al. reported that cell growth
was inhibited in ESCC cells transfected with miR-203 mimic and ∆Np63 small interfering RNA,
indicating that miR-203 could suppress cell proliferation in ESCC cells through the ∆Np63-mediated
signaling pathway [25]. Another study reported downregulated miR-203 expression in ESCC tissues
and showed its involvement in ESCC cell growth in vitro and in vivo by regulating p63 expression [26].

In contrast, miR-34b and miR-373 were significantly overexpressed in ESCC tissues and
promoted ESCC cell growth, and studies showed that miR-373 suppresses the expression of the
large tumor suppressor, homolog 2 [27,28]. Likewise, other studies revealed that miR-16 and
miR-208 were overexpressed in ESCC tissues and could promote cell proliferation by downregulating
SOX6 [29,30]. Kurashige et al. demonstrated that miR-223 was upregulated in ESCC tissues and
modulated the activity of F-box and WD repeat domain-containing 7, a cell cycle regulatory gene,
leading to abnormal accumulation of c-Myc expression [31]. These findings suggest that the target
gene regulation by various miRNAs is closely correlated with ESCC development and growth.

3. miRNA Regulation of Resistance to Anticancer Drugs

Understanding the mechanisms underlying drug resistance can lead to the development of
novel therapeutic strategies in ESCC patients. Several miRNAs have been reported to regulate the
resistance to anticancer drugs against ESCC. The expression levels of let-7b and let-7c were altered
in cisplatin-resistant ESCC cells, and let-7c directly repressed the cisplatin-activated interleukin
(IL)-6/STAT3 pro-survival pathway, leading to poor prognosis in ESCC patients [32]. Overexpression
of miR-218 resulted in suppressed cell growth, colony formation, migration and invasion, caused cell
apoptosis and arrested cell cycle in the G0/G1 phase. miR-218 mimics increased the sensitivity to the
anti-tumor effect of cisplatin in ESCC cell lines through regulating the expression of phosphorylated
PI3K, AKT and mTOR [33]. These results indicate that these miRNAs act as tumor-suppressive (TR)
miRs related to the drug resistance of ESCC.

Conversely, previous studies have demonstrated the involvement of oncogenic miRNAs
(onco-miRs) in the drug resistance of ESCC. One report showed that miR-141 induced resistance
to cisplatin-induced apoptosis through targeting YAP1, and another study showed that miR-200c
repressed PPP2R1B, a subunit of protein phosphatase 2A, and was also involved in drug
resistance through the Akt pathway in ESCC cells [34,35]. Downregulation of miR-27a and
miR-296 conferred sensitivity of both P-glycoprotein-related and P-glycoprotein-nonrelated drugs
and promoted adriamycin-induced apoptosis by suppressing MDR1 expression [36,37]. These
previous findings may show possible candidates for the development of individualized treatment
against refractory ESCC.

4. miRNAs Involved in ESCC Cell Migration and Invasion

The motility of cancer cells is essential for invasion into blood vessels and spreading to the
surrounding organs. One of the most common processes that induces the early steps of cancer
metastasis is epithelial to mesenchymal transition (EMT). The expressions of miR-9, miR-25 and
miR-92a, which regulate CDH1 expression, were shown to be upregulated in ESCC tissues and to
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promote cell migration and invasion [38–40]. In addition, Zhang et al. reported a positive association
between miR-21 expression and cigarette smoking. Upregulation of miR-21 was also induced by
nicotine in an ESCC cell line, promoting EMT via transforming growth factor-β [41]. However,
miR-205 and the miR-200 family suppressed tumor activities by EMT inhibition through targeting
ZEB expression in ESCC cells [42,43].

Several studies have identified miRNAs that promote ESCC cell invasion. miR-21 and miR-183
promote ESCC cell growth and invasion through targeting PDCD4 [44,45]. Ohta et al. reported that
the expression of miR-328, a candidate regulator of GNG7 mRNA, was inversely and significantly
associated with GNG7 expression in 16 ESCC cell lines, suggesting that miR-328 could repress GNG7,
leading to the invasiveness of ESCC cells and poor prognosis [46]. Li et al. showed that miR-21
was overexpressed in ESCC tissues and cell lines. Furthermore, knockdown of miR-21 significantly
increased the expression of PTEN protein and consequently reduced cell proliferation, invasion and
migration [47]. Tian et al. revealed that overexpression of miR-10b in ESCC cells increased cell motility
and invasiveness induced by the suppression of endogenous KLF4 protein [48].

In contrast, other studies have identified miRNAs that suppress ESCC cell invasion.
The expression of miR-100 was downregulated in ESCC tissues, and miR-100 modulated cell
invasion through the repression of mTOR expression [49]. Overexpression of miR-625 inhibits
cell proliferation and invasion through the repression of Sox2 [50]. miR-326 is involved in the
regulation of VEGF-C-mediated cortactin expression and the subsequent invasion of ESCC cells [51].
Knockdown of FSCN1 or matrix metalloproteinase 14, one of the invadopodia-related proteins, and
overexpression of miR-133a inhibited the growth and invasion of ESCC cells [52]. Ectopic expression
of miR-195 induced G1 cell cycle arrest, leading to a significant decrease in cell growth, migration
and invasion through the suppression of Cdc42 [53]. Zhang et al. showed that the overexpression
of miR-200b or knockdown of Kindlin-2 in ESCC cells suppressed cell protrusion and focal adhesion
(FA) formation and decreased cell spreading and invasiveness/migration. Furthermore, the authors
demonstrated that Rho-family guanosine triphosphatases and FA kinase had an impact on the
biological effects of the miR-200b-Kindlin-2 cascade [54].

Several studies have demonstrated important functions of miR-203. Takeshita et al. reported
downregulation of miR-203 expression in ESCC tissues and showed that miR-203 played an
important role in ESCC cell invasion by regulating LIM and SH3 protein 1 expression [55]. Another
study revealed that overexpression of miR-203 in ESCC cells remarkably induced cell apoptosis and
inhibited cell growth, migration and invasion via targeting small GTPase Ran [56]. The miRNAs
involved in ESCC cell migration and invasion are summarized in Figure 2.
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Figure 2. ncRNAs involved in ESCC cell migration and invasion. A number of ncRNAs regulate
ESCC cell migration and invasion through targeting tumor suppressor genes or oncogenes.
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5. miRNAs as Diagnostic and Prognostic Biomarkers in Primary ESCC Tissue

The identification of effective diagnostic and prognostic prediction biomarkers is invaluable
for the development of treatment strategies against ESCC (Table 1). Among the members of the
miR-17–92 cluster, which have been reported to be highly expressed in several cancers, miR-17,
miR-18a and miR-19a serve as potential unfavorable prognostic biomarkers and are associated with
some clinicopathologic factors [57]. miRNA microarray analysis using 31 ESCC samples showed that
high expressions of miR-103 and miR-107 were associated with poor prognosis in overall survival by
multivariate analysis [58]. Fu et al. investigated 22 studies including a total of 1946 participants
by searching PubMed, Embase and Web of Science to identify miRNAs that may function as
prognostic biomarkers in ESCC. Among 33 prognostic miRNAs, miR-21 and miR-375 were selected,
and further analysis revealed that upregulation of miR-21 and downregulation of miR-375 can predict
unfavorable prognosis in ESCC [59].

6. Plasma miRNAs as Noninvasive Biomarkers

The identification of novel biomarkers in plasma/serum miRNA is required for early detection
and prognostic prediction in ESCC (Table 1). A previous study showed that plasma concentrations
of miR-19b and miR-25 were significantly higher in ESCC patients than in healthy volunteers,
and plasma miR-25 levels were significantly downregulated in postoperative samples compared to
preoperative samples and were significantly overexpressed in association with ESCC recurrence [60].
Another report showed that serum miR-1246 was markedly upregulated in ESCC patients and has
the possibility of being a novel noninvasive biomarker for the early detection of ESCC [61]. Plasma
concentrations of miR-18a, miR-21 and miR-375 were significantly higher in ESCC patients compared
to healthy volunteers, and plasma levels of miR-18a were significantly lower in postoperative samples
compared to preoperative samples [62,63]. Furthermore, the serum levels of miR-200c in ESCC
patients were significantly higher than those in healthy volunteers, and high expression of miR-200c
was significantly associated with poor response to chemotherapy [64].

In addition to plasma miRNAs, recent studies have focused on the detection of exosomal
miRNAs. Tanaka et al. reported that the levels of miR-21 in exosomes were higher in patients with
ESCC than those in the control group, and exosomal miR-21 expression was associated with advanced
tumor stage, positive lymph node status and the presence of metastasis [65]. Taken together, this
evidence shows that the search for definitive noninvasive biomarkers in plasma/serum is still in the
preliminary stages, and further prospective studies are required in the future.

7. Long Noncoding RNA Aberration in ESCC

Several lncRNAs have been reported to function as potential oncogenes in ESCC (Figure 1).
Metastasis associated with lung adenocarcinoma transcript 1 (MALAT1), a novel lncRNA, showed
a significant impact on proliferation, invasion and metastasis of ESCC cells. Tumor-suppressive
miRNAs (TS-miRs), miR-101 and miR-217, could suppress MALAT1 expression through
posttranscriptional regulation [66]. The expression of PlncRNA-1 and taurine upregulated gene 1
(TUG1) were significantly upregulated in human ESCC compared to the adjacent normal tissues
and induced ESCC cell proliferation [67,68]. Furthermore, long intergenic non-protein coding RNAs
(lincRNAs) have been explored, and linc-POU3F3 was significantly upregulated in ESCC compared
to corresponding normal tissues. RNA immunoprecipitation assays showed that linc-POU3F3 was
associated with the enhancer of zeste homolog 2 (EZH2) mRNA. Overexpression of linc-POU3F3 in
ESCC cell lines increased their proliferation, colony formation ability and tumorigenicity [69].

Several lncRNAs have the potential of being noninvasive biomarkers in plasma/serum for early
detection and prognostic prediction of cancer (Table 1). Previous studies have shown that lncRNA
HOX transcript antisense RNA (HOTAIR) was upregulated in ESCC tissues compared to the controls
and correlated with the poor prognosis of ESCC patients. In addition, the functional investigation
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showed that HOTAIR contributed to the malignant behavior of ESCC cells, such as proliferation,
anti-apoptosis, migration and invasion, through regulating diverse gene expression [70–73]. A recent
study further identified a novel intronic HOTAIR enhancer and a functional ESCC susceptibility SNP
rs920778 in Chinese populations [74]. Furthermore, several studies demonstrated that SPRY4-IT1,
CCAT2 and prostate cancer-associated ncRNA transcript 1 (PCAT-1) were upregulated in ESCC
tissues compared to the adjacent noncancerous tissues, and high expression of these lncRNAs was
significantly associated with the clinical pathological stage and poor survival rate of ESCC [75–77].
On the other hand, LOC285194 expression was significantly downregulated in ESCC tissues and cell
lines, and low expression of LOC285194 had a relationship with chemoradiotherapy resistance and
unfavorable prognosis [78].

Plasma lncRNAs have also been explored, and the levels of POU3F3, HNF1A-AS1 and
SPRY4-IT1 were significantly upregulated in plasma from ESCC patients. Among the three lncRNAs,
POU3F3 showed the most reliable potential for detecting ESCC, suggesting that plasma POU3F3
could be a novel biomarker for the diagnosis of ESCC [79].

Table 1. Potential biomarkers in ESCC.

Materials Non-coding RNA Signature Potential Value Reference

Primary tissues

miR-17 Ò, miR-18a Ò, miR-19a Ò Prognostic factor [57]
miR-103 Ò, miR-107 Ò Prognostic factor [58]
miR-21 Ò, miR-375 Ò Prognostic factor [59]

HOTAIR Ò Prognostic factor [70–74]
SPRY4-IT1 Ò Prognostic factor [75]

CCAT2 Ò Prognostic factor [76]
PCAT-1 Ò Prognostic factor [77]

LOC285194 Ó
Prognostic factor;

responsiveness to chemoradiotherapy [78]

Plasma

miR-19b Ò, miR-25 Ò Screening marker [60]
miR-1246 Ò Screening marker [61]
miR-18a Ò Screening marker [62]

miR-21 Ò, miR-375 Ò Screening marker [63]

miR-200c Ò
Screening marker;

responsiveness to chemoradiotherapy [64]

POU3F3 Ò Screening marker [79]
Exosome miR-21 Ò Correlation with tumor progression [65]

8. Conclusions

Accumulating evidence has suggested that ncRNAs play important roles in the initiation and
development of ESCC. ESCC development is likely to be influenced by lifestyle factors, such as
tobacco smoking and alcohol drinking, and these factors cause not only genomic alterations, but
also dysregulation of various ncRNAs. Furthermore, the complex dysregulation of various ncRNAs
is involved in the metastatic processes of ESCC cells. Previous studies for ncRNAs have reported a
one-to-one relationship with a certain target gene, but actually, the ncRNA interacts with various
genes. By establishing the model in vivo that genetically regulates the ncRNA expression, it will
be possible to identify the most important ncRNA having an effect on ESCC development. This
will lead to the design of novel strategies for ESCC treatment by targeting the ncRNA. To develop
treatments that regulate distinct ncRNA-gene pathways, delivery systems for ncRNA modulators in
ESCC tissue will be required before progressing to clinical application. Notably, several potential
biomarkers related to ncRNAs in ESCC tissue or plasma have already been reported so far. However,
clinical application of these candidates has not been accomplished at this time, because of the limit
of sensitivity. Thus, further studies conducted in terms of ncRNAs are crucial to help further the
development of useful biomarkers and successful therapeutic strategies against ESCC.
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