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Abstract: To understand the molecular evolution of mitochondrial genomes (mitogenomes) 

in the genus Odontobutis, the mitogenome of Odontobutis yaluensis was sequenced and 

compared with those of another four Odontobutis species. Our results displayed similar 

mitogenome features among species in genome organization, base composition, codon 

usage, and gene rearrangement. The identical gene rearrangement of trnS-trnL-trnH tRNA 

cluster observed in mitogenomes of these five closely related freshwater sleepers suggests 

that this unique gene order is conserved within Odontobutis. Additionally, the present gene 

order and the positions of associated intergenic spacers of these Odontobutis mitogenomes 

indicate that this unusual gene rearrangement results from tandem duplication and random 

loss of large-scale gene regions. Moreover, these mitogenomes exhibit a high level of 

sequence variation, mainly due to the differences of corresponding intergenic sequences in 

gene rearrangement regions and the heterogeneity of tandem repeats in the control regions. 

Phylogenetic analyses support Odontobutis species with shared gene rearrangement forming 
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a monophyletic group, and the interspecific phylogenetic relationships are associated with 

structural differences among their mitogenomes. The present study contributes to understanding 

the evolutionary patterns of Odontobutidae species. 

Keywords: mitochondrial genome; codon usage; gene order; control region; tandem  

repeats; phylogeny 

 

1. Introduction 

The vertebrate mitogenomes are usually small circular molecules (16–18 kb) containing  

13 protein-coding genes (PCGs), two rRNA genes (rRNAs), 22 tRNA genes (tRNAs), and a putative 

control region (CR) [1,2]. Due to its simple structure, constant gene content, rapid evolutionary rate,  

and maternal inheritance, mtDNA has been extensively used for studying population genetics [3], 

biogeography [4], and phylogenetics [5,6]. Moreover, it is of great importance to offer genome- and 

sequence-level information, such as the gene rearrangement [7,8] and the evolutionary patterns of  

the CR [9]. 

The CR is usually regarded as the most variable part of the mitogenome in terms of nucleotide 

substitutions, short insertion/deletion, and variable number of tandem repeats (VNTRs) [10,11].  

The tandem repeats in CR of mitogenomes have been documented in a wide range of taxa [10,12,13]. 

They are usually located in the extended termination-associated sequences (ETAS) domain or conserved 

sequence blocks (CSBs) domain, which are more variable than the central conserved domain [14].  

So far, three main mechanisms have been proposed to explain the formation of the repeated sequences 

in different regions of the mitochondrial CR [13], including the illegitimate elongation model [15],  

the improper initiation model [16], and the pause-melting misalignment [17]. These tandem repeats 

provide a source of length polymorphism and heteroplasmy within individuals and species of particular 

vertebrate taxa [15,18]. Consequently, comparative analyses of tandem repeats may play a crucial role 

in studying mitogenome evolution or population dynamics from a population level perspective [19]. 

As an increasing number of complete mitogenomes of metazoan are sequenced, diverse gene 

rearrangements have been identified [2,20,21]. For instance, several marsupials and caecilian amphibians 

have derived rearrangement of trnW-trnA-trnN-trnC-trnY to trnA-trnC-trnW-trnN-trnY [22–24], three 

crocodilians share the exchange in position of trnS and trnH [25,26], and 10 parrotfishes possess  

the shared gene order trnI-trnM-trnQ which is different from the typical vertebrate gene order  

trnI-trnQ-trnM [27]. Thus far, there are three models usually applied to explain gene rearrangements in 

metazoan mitogenomes: Firstly, the recombination model, involving the breaking and rejoining of  

DNA strands [28]. The presence of mitochondrial DNA recombination has been proved by some direct 

evidence [29,30]. Secondly, the tandem duplication and random loss (TDRL) model [31], a commonly 

accepted hypothetical mechanism to clarify gene rearrangements occurred via tandem duplications of 

certain genes, followed by random deletion of some gene regions [24,32,33]. Last but not least,  

the tandem duplication and non-random loss (TDNL) model, which assumes that this process involves 

complete mitogenome duplication and gene loss. The non-random gene loss depended on their 

transcriptional polarities and locations in the genome, and resulted in the gene rearrangements with 
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additional non-coding regions [34]. The TDNL model has been applied to explain the gene rearrangements 

of invertebrate mitogenomes [35,36]. Nevertheless, cases of convergence exist, particularly near 

hotspots of gene order rearrangements [24], where some flatfishes exhibit particular large-scale tRNA 

genes rearrangements [37,38]. 

The Gobioidei belongs to the order Perciformes and comprises about 2210 species [39]. Due to their 

worldwide distribution from tropical regions to temperate regions [40], these gobioids exhibit prominent 

variety in morphology, ecology, and behavior among other teleosts [41]. Odontobutidae is one of  

the basal families within the suborder Gobioidei [42], and this family comprises at least six genera and 

about 15 species [43]. Thus far, few studies have tackled with gobioid intra-relationships based on 

morphological and molecular data, especially rarely involving Odontobutids. As a consequence,  

the biology and classification of gobioids are still controversial [44], despite their evolutionary and 

ecological importance [45]. For instance, early studies about gobioids regarded the Rhyacichthyidae as 

the sister to all remainder gobioids [40,42,46–48]. However, recent molecular phylogenetic results  

have indicated that the Rhyacichthyidae + Odontobutidae clade is the sister group of all other gobioid 

lineages [44,49,50]. As for Odontobutidae, all phylogenetic hypothesis in previous studies just contained 

few Odontobutidae species and/or partial mitochondrial nucleotide sequences [40,42,44,45,48,49,51–53]. 

In particular, Zang et al. [54] analyzed the molecular phylogeny of the family Odontobutidae based  

on mitochondrial DNA, while they ambiguously explained the method and dataset used for constructing 

phylogenetic tree, and their intra-relationships of Odontobutidae were different from previous standardized 

reanalysis of molecular phylogenetic hypotheses (see figures S11 and S12 in [45]). Moreover, recent 

odontobutid mitogenomic phylogeny did not argue about mitochondrial gene order and mitogenome 

organization as phylogenetic markers [54]. Therefore, clarifications of the whole taxonomic and 

evolutionary relationships among Odontobutids remain to be completed. 

Considering these perplexities and insufficient above, we report one new mitogenome of O. yaluensis 

and firstly present comparative mitogenomic analyses of Odontobutis species in the present study.  

We compare five Odontobutis mitogenomes in detail, regarding mitogenome structure, base composition, 

codon usage, gene order, evolutionary factors, and the tandem repeats in control regions. The features 

of this unique gene order and additional intergenic spacers provide sufficient evidence for the TDRL 

model, accounting for the conserved gene rearrangement in Odontobutis mitogenomes. In addition,  

the phylogenetic trees of the family Odontobutidae are reconstructed based on the concatenated 

nucleotide sequences of 13 mitochondrial PCGs datasets from seven odontobutids (one for Micropercops, 

one for Perccottus, and five for Odontobutis). Our comparative analyses of mitogenome sequences and 

gene rearrangement provide novel insights into the evolutionary relationships within Odontobutidae. 

2. Results and Discussion 

2.1. Mitogenome Composition 

The new mitogenome of O. yaluensis was sequenced, annotated and deposited in the NCBI database 

(GenBank accession number: KM207149). Aligning overlapping mitochondrial DNA amplifications 

spanning the whole mitogenome indicated that the total length was 16,988 bp, slightly longer than  

that of O. potamophila (16,932 bp, KF305680) and O. interrupta (16,802 bp, KR364945) while  
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significantly shorter than that of O. sinensis (17,441 bp, KF154120) and O. platycephala (17,588 bp, 

DQ010651). Moreover, the size of the newly sequenced O. yaluensis mitogenome was 79 bp longer  

than that of another O. yaluensis mitogenome (16,909 bp, KM277942), primarily due to the significant 

sequence variation of intergenic non-coding region between trnL(CUN) and trnH. 

As expected, it displayed 37 typical mitochondrial genes (13 PCGs, 22 tRNAs, and two rRNAs) and 

the putative CR. Most gene sequences were on the H-strand, however, eight tRNAs (trnQ, trnA, trnN, 

trnC, trnY, trnS(UCN), trnE, and trnP) and nad6 were encoded on the L-strand (Figure 1).  

The mitogenome structure and individual gene size (Table S1) were largely identical to those of other 

Odontobutis species, with the unusual trnS-trnL-trnH gene arrangement which differs from that 

determined in other non-Odontobutis lineages of Gobioidei [53,55–57]. 

 

Figure 1. The gene map of Odontobutis yaluensis mitogenome. Genes located at the H- or 

L-strand are mapped outside or inside of the circle. The names of protein-coding genes and 

rRNAs are expressed by standard abbreviations, while names of tRNAs are abbreviated by 

a single letter. “CR” refers to the control region, while “NC1”, “NC2” and “NC3” refer to 

additional large intergenic non-coding spacers. The innermost circle of the images represents 

(G + C)% per every 5 bp of the mitogenome; the darker lines are, the higher their (G + C)% 

are. The figure was initially generated by MitoFish and MitoAnnotator program [58], and 

modified manually. 
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Comparative analyses also showed that base composition in five Odontobutis species was similar, 

with a slight A+T bias (Table 1). In addition, the bias against G was prominent at the second and third 

codon of protein-coding genes, especially at the third codon. Such relaxed selection at the third codon 

position was considered to result from different natural selection or mutational pressures [59],  

and might affect the base composition of the whole mitogenomes. 

Table 1. A+T contents, AT/GC-skew of the mitochondrial genomes of five Odontobutis species. 

Region 
A+T AT-skew GC-skew 

Osi Opl Oya Oin Opo Osi Opl Oya Oin Opo Osi Opl Oya Oin Opo 

Whole genome 58.91 56.87 55.79 55.33 55.43 0.08 0.09 0.03 0.08 0.02 −0.30 −0.30 −0.31 −0.30 −0.30 

Protein-coding genes 58.39 55.86 55.17 54.63 54.76 0.03 0.01 −0.03 −0.01 −0.05 −0.31 −0.32 −0.33 −0.31 −0.32 

1st codon position 50.96 48.21 48.43 48.03 48.42 0.07 0.16 0.01 0.14 0.01 −0.05 −0.05 −0.07 −0.05 −0.06 

2nd codon position 59.20 58.79 58.57 58.61 58.48 −0.16 −0.38 −0.17 −0.38 −0.17 −0.34 −0.36 −0.35 −0.35 −0.35 

3rd codon position 65.00 60.58 58.52 57.27 57.37 0.17 0.26 0.06 0.25 0.03 −0.62 −0.64 −0.63 −0.59 −0.60 

tRNA genes 56.63 55.35 55.97 55.11 55.43 0.15 0.14 0.13 0.11 0.11 0.03 −0.15 0.03 −0.14 0.03 

rrnL 57.85 56.01 54.72 56.30 55.74 0.21 0.24 0.17 0.28 0.19 −0.13 −0.11 −0.11 −0.10 −0.10 

rrnS 54.95 53.80 53.15 52.00 52.68 0.17 0.26 0.13 0.27 0.12 −0.12 −0.14 −0.14 −0.16 −0.14 

Control region 68.77 68.28 64.98 64.79 64.67 0.19 0.01 0.20 −0.01 0.19 −0.25 −0.15 −0.13 −0.13 −0.13 

Osi, Opl, Oya, Opo, and Oin indicate O. sinensis, O. platycephala, O. yaluensis, O. potamophila, and  

O. interrupta, respectively. 

2.2. Comparison of Protein-Coding Genes 

All PCGs shared ATG start codon, except for cox1, which began with GTG. The stop codons varied 

with TAA, TAG, TA, or T (Table S1), and the incomplete stop codons were presumably completed by 

post-transcriptional polyadenylation [60]. Comparative analyses showed differences among gobioids 

that the cox1 gene stopped with TAG in O. sinensis but TAA in other four Odontobutis species, and even 

varied with AGA or AGG in other gobioids [61,62]. The results reveal that the cox1 gene of gobioids 

may select a different mechanism for transcription termination during the evolutionary process. 

Additionally, gene overlapping regions have been detected in all these Odontobutis mitogenomes.  

For example, atp8-atp6 and nad4L-nad4 each overlap by seven nucleotides, and nad5-nad6 share four 

nucleotides, which agree with those of most other vertebrate mitogenomes [63]. 

Excluding stop codons, the 13 PCGs in these five Odontobutis mitogenomes consisted of  

3797–3800 codons (CDs) in total, with a very similar behavior of codon usage (Figure 2). The four  

most predominant codon families were Leu1 (CUN), Thr, Ala, and Ile, each with more than 70 CDsp T 

(codons per thousand codons). Among them, Leu1 (CUN), as one of the hydrophobic amino acids, 

possessed the highest usage bias (129.5–143.7 CDsp T), which might be associated with the encoding 

function of chondriosome [64]. By contrast, Cys had the least CDsp T. 

Subsequently, we utilized the relative synonymous codon usage (RSCU) to determine the preference 

for particular synonymous codons [65,66]. The codon usage pattern among these five Odontobutis 

species were similar, with both two- and four-fold degenerate codons exhibiting an over-usage of A  

and T at the third codon positions (Figure 3), which was consistent with other teleosts [67].  
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This phenomenon might relate to genome bias, optimal selection of tRNA usage, or the efficiency of 

DNA repair [68,69]. 

 

Figure 2. The codon usage pattern of five Odontobutis mitogenomes. The codon families 

are shown on the X-axis and CDsp T on the Y-axis. 

 

Figure 3. The RSCU of five Odontobutis mitogenomes. The codons are shown on  

the X-axis, and the RSCU values are shown on the Y-axis. 
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To explore the sequence divergence among Odontobutis mitogenomes, we analyzed the pairwise 

genetic distances based on 13 PCGs (Table 2). The cox2 gene showed the smallest genetic distance 

among the 13 single PCG (mean distance: 0.120, Kimura two-parameter distance; K2P), while nad5 

gene showed the largest genetic distance (mean distance: 0.835), revealing different mutation pressures 

among genes [70]. The K2P pairwise genetic distance of nad5 gene exhibited low variation within  

O. yaluensis, O. potamophila, O. interrupta, and O. platycephala (averaged 0.165, range 0.062–0.237) 

but high sequence divergence between these four species and O. sinensis (averaged 1.839, range  

1.759–1.920). Furthermore, we also calculated the pairwise distance based on amino acid sequences, 

showing higher values than those calculated by nucleotide sequences. Our results show that synonymous 

substitutions are less than nonsynonymous substitutions in the PCGs of Odontobutis mitogenomes, 

revealing some protein-coding genes may have experienced positive selection. 

Table 2. Pairwise genetic distances for 13 PCGs. 

Gene Osi-Opl Osi-Oya Osi-Opo Osi-Oin Opl-Oya Opl-Opo Opl-Oin Oya-Opo Oya-Oin Opo-Oin Mean 

atp6 0.250 0.228 0.234 0.245 0.214 0.216 0.233 0.097 0.113 0.055 0.189 

atp8 0.249 0.262 0.288 0.291 0.238 0.266 0.239 0.130 0.138 0.045 0.215 

cox1 0.148 0.143 0.142 0.153 0.145 0.152 0.146 0.081 0.081 0.040 0.123 

cox2 0.168 0.157 0.170 0.162 0.123 0.132 0.128 0.066 0.063 0.034 0.120 

cox3 0.163 0.166 0.187 0.178 0.147 0.172 0.164 0.094 0.106 0.059 0.143 

cob 0.213 0.208 0.192 0.195 0.176 0.144 0.128 0.093 0.098 0.049 0.150 

nad1 0.217 0.239 0.248 0.249 0.191 0.192 0.207 0.129 0.132 0.058 0.186 

nad2 0.228 0.250 0.257 0.258 0.227 0.243 0.247 0.170 0.171 0.063 0.211 

nad3 0.294 0.279 0.300 0.263 0.232 0.334 0.255 0.207 0.133 0.128 0.243 

nad4 0.268 0.268 0.267 0.257 0.229 0.246 0.241 0.113 0.118 0.063 0.207 

nad4L 0.159 0.150 0.207 0.145 0.182 0.272 0.203 0.175 0.095 0.111 0.170 

nad5 1.920 1.819 1.759 1.860 0.218 0.237 0.229 0.125 0.120 0.062 0.835 

nad6 0.269 0.278 0.295 0.297 0.271 0.262 0.277 0.126 0.123 0.066 0.226 

Nt 0.924 0.934 1.259 1.257 0.292 1.233 1.251 1.125 1.148 0.058 0.948 

AA 1.057 1.051 1.519 1.523 0.255 1.483 1.492 1.450 1.462 0.040 1.133 

The abbreviations for five scientific names agree with those in Table 1; In addition, “Nt” indicates  

“the nucleotide of concatenated 13 PCGs”, and “AA” indicates “the amino acid of concatenated 13 PCGs”. 

Among all 10 groups, the Ka/Ks values of most PCGs were less than 0.3 (Figure 4), indicating that 

they were under purifying selection. However, the Ka/Ks values of nad5 in these four groups (Osi-Opl, 

Osi-Oya, Osi-Opo, and Osi-Oin) were greater than 1, which showed a strong positive selection. Previous 

study has illustrated that energetic functional constraints are the major factors shaping different patterns 

of mitochondrial-encoded protein evolution [71,72]. Combining the Ka/Ks and genetic distance data 

suggests that O. sinensis is a relatively distinct lineage from other Odontobutis species, and nad5 gene 

has played a crucial role in the evolutionary process of selective adaptation. 
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Figure 4. The evolutionary rates (Ka/Ks) for each PCG among five Odontobutis 

mitogenomes. The names of 13 PCGs are shown on the X-axis, and the Ka/Ks values are 

shown on the Y-axis. 

2.3. High Variations in Control Regions 

Previous studies have indicated that the CR of O. platycephala contained a tandem repeat (TR)  

region consisting of 14 copies of 34 bp unit (476 bp in total) [53], and the CR of O. sinensis comprised 

seven 46 bp repeat units (322 bp in total) [57]. However, the CR of O. potamophila was composed  

of non-repetitive sequences [56], which was identical to that of O. yaluensis and O. interrupta.  

It was not difficult to find that these TRs bear responsibility for the length heteroplasmy in CRs of  

Odontobutis mitogenomes. 

Upstream of CR in most animal mitogenomes, there was a conserved structure including the motif 

“ATGTA” in TAS-complementary TAS block sequence, which had been suggested as a terminate signal 

for CR strand synthesis [63]. We had detected the conserved motif “ATGTA” in every repeat unit in  

the CR of O. sinensis and O. platycephala (Figures S1 and S2). Buroker et al. [15] had proposed  

the illegitimate elongation model to account for the formation of the repeated sequences in the 

mitogenome, and this model was targeted at explaining the generation of the TAS motif in the 5′ of  

the CR. In the present study, the TRs in the O. sinensis and O. platycephala exactly contained the 

sequence associated with TAS domain. Thus, the heteroplasmy of TRs in O. sinensis and O. platycephala 

mitochondrial CR could be explained by the illegitimate elongation model. 

2.4. Gene Rearrangement and Possible Mechanisms 

For a typical vertebrate mitogenome, the tRNA-gene cluster between nad4 and nad5 genes includes 

trnH, trnS, and trnL genes in this order [63]. However, in the O. yaluensis mitogenome, the position of 

trnH gene had been translocated to the downstream of the trnL gene in the order S–L–H. This novel 
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gene order was identical to that of recently reported Odontobutis mitogenomes with three large 

intergenic non-coding sequences that respectively named NC1, NC2, and NC3 in this study (Figure 1). 

Previous study about the mitogenome of O. platycephala has reported this novel S–L–H gene order 

accompanied with three large intergenic spacers [53]. However, due to the lack of comparative 

mitogenomics data, the authors speculated this phenomenon might have occurred independently in 

certain species rather than all members of the genus Odontobutis [53]. As this gene rearrangement had 

not been observed in other vertebrates, our results suggest that this gene rearrangement is conserved in 

Odontobutis mitogenomes. 

As shown in Figure 5, these intergenic spacers exhibited high variations among interspecific and 

intraspecific mitogenomes. The positions and sizes of intergenic spacers in each mitogenome indicate 

that the NC1 is the pseudogene of trnH gene and NC3 appears to be the residual sequence of combined 

trnS and trnL genes. Further sequence alignment could also provide evidence for our hypothesis  

(Figures S3 and S4). In addition, although the sequence similarity between NC2 and CR was low 

(<50%), we still infer the NC2 as the residual sequence of CR for the following reason: the NC2 in each 

mitogenome included some residual sequences of conserved sequence blocks (TAS, CSB-C, -D, -F, -1, 

and -2; Figures S1, S2, and S5–S7). 

 

Figure 5. Cont. 



Int. J. Mol. Sci. 2015, 16 25040 

 

 

 

Figure 5. Aligned sequences of gene rearrangement regions of Odontobutis mitogenomes. 

Arrows indicate portions of three intergenic spacers and arranged genes. The positions of 

black arrows represent the starting sites of different regions. Gray boxes denote the tRNA 

genes. The numbers reveal the positional relationships among sequences. The abbreviations 

for their scientific names agree with those in Table 1. In addition, the Oya-1 indicates the  

O. yaluensis (KM207149), while Oya-2 indicates another O. yaluensis (KM277942). 

Considering gene rearrangements occurring by tandem duplication of gene regions and deletions of 

redundant genes [27,73,74], the present rearranged genes and the associated intergenic spacers 

(pseudogenes) of Odontobutis mitogenomes could be explained by such process as follows (Figure 6): 

Firstly, tandem duplication occurred in the trnH-CR region, and the mitogenome would have contained 

two sets of the same region (Figure 6B); Then, to maintain the normal function of the mitogenome, one 

of the duplicated genes and CR randomly lost its function and became a pseudogene or even was 

completely lost during subsequent evolutionary events. Actually, as described above, NC1, NC2,  

and NC3 respectively corresponded to trnH, CR, and trnS-L; however, the approximately 3700 bp 

sequence (the nad5-trnP duplication) left no trace in NC2. This observation supports our hypothesis  

that the gene rearrangement events have occurred via tandem duplication of the whole trnH-CR region. 

Eventually, the existing gene order and intergenic spacers of the Odontobutis mitogenome were 

established (Figure 6C). 

 

Figure 6. The mechanism proposed for the gene rearrangement in Odontobutis mitogenomes 

in tandem duplication and random loss (TDRL) model. The background colors correspond to 

the attributes of different gene clusters. The gene names are identical with those in Figure 1. 

2.5. Phylogenetic Relationships 

Mitochondrial sequences are widely used to infer phylogenetic relationships among teleosts [5,21,75]. 

To have a better insight into the phylogenetic interrelationships within Odontobutidae, we obtained  
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the concatenated nucleotide sequences of 13 PCGs from seven Odontobutidae species, including five 

Odontobutis species, one Perccottus species and one Micropercops species. Besides this, we used 

Rhyacichthys aspro as an outgroup because there was compelling evidence that Rhyacichthyidae was 

most closely related to Odontobutidae [44,45,49]. The phylogenetic trees reconstructed by two methods 

(maximum likelihood (ML) and Bayesian inference (BI)) exhibit a coincident topology (Figure 6A). 

Almost all nodes have high ML bootstrap supports (>90) and Bayesian posterior probabilities (>0.95). 

Odontobutidae contains six genera (Odontobutis, Perccottus, Micropercops, Neodontobutis, 

Sineleotris, Terateleotris) [43,76], while no representatives of the latter three genera could be included 

here or in previous phylogenetic researches. In the present study, the phylogenetic trees showed that five 

Odontobutis species which shared conserved mitochondrial gene rearrangement were clustered into one 

clade (Figure 7A,B), indicating this gene rearrangement event may occur after Odontobutis diverges 

from other Odontobutidae lineages. In addition, the monophyly of the genus Odontobutis was also supported 

by the sampled taxa (Figure 7A), which was consistent with previous phylogenetic hypotheses [45,52,54]. 

The phylogenetic topologies exhibited that O. sinensis and O. platycephala shared a closer relationship, 

and the remainders formed another distinct clade. In addition, this phylogenetic interrelationship of 

Odontobutis exactly corresponded to the above comparative analysis based on whether they possessed 

tandem repeats in the mitochondrial control region (Figure 7C). The present study proves that the gene 

order and genome organization provide useful genetic information for understanding the evolutionary 

relationships among Odontobutidae species. 

 

Figure 7. (A) Phylogenetic relationships of Odontobutidae species using concatenated 

nucleotide sequences of 13 mitochondrial PCGs. Numbers at the nodes show ML bootstrap 

percentages (left) and BI posterior probabilities (right), respectively; (B) Comparison of 

mitogenome structure between nad4 and nad5 genes within Odontobutidae. The protein-coding 

genes, tRNA genes, and non-coding regions are shown with yellow, blue, and white boxes, 

respectively. The numbers in white boxes (NC1, NC2, and NC3) represent the number of 

unassigned nucleotides of intergenic spacers; (C) Comparative analyses of the structure of 

CR among Odontobutis species. In white boxes, the numbers indicate the length of fragment. 

The gray shaded boxes represent the tandem repeat (TR) regions. 
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3. Experimental Section 

3.1. Samples and DNA Extraction 

Specimens of O. yaluensis were collected from Dandong in Liaoning Province, China (40°31′22.74′′N, 

123°55′14.24′′E), and identified according to Wu et al. [77]. Subsequently, caudal fins were preserved 

in 100% ethanol. Total genomic DNA was extracted by the modified ammonium acetate precipitation 

protocol [78]. The DNA integrity was examined by electrophoresis in agarose gel, and the purity and 

concentration were measured on the NanoDrop 2000 (Thermo Scientific, Wilmington, DE, USA). 

3.2. PCR Amplification and Sequencing 

Based on conserved nucleotide sequences of published Odontobutis mitogenomes, a total of 20 pairs 

of species-specific primers (Table S2) were designed using Primer Premier 5.0 software (PREMIER 

Biosoft International, Palo Alto, CA, USA) for the amplification of the entire O. yaluensis mitogenome. 

To sequence the complete mitogenome and assemble correctly, we make sure that adjacent two 

fragments overlap more than 50 bp. 

The PCR reactions were carried out on an Eppendorf Thermal Cycler (Berlin, Germany) in 25 μL 

reaction volumes containing 2 μL of each primer, 2 μL PCR buffer II (Mg2+), 1.25 mM of dNTPs,  

1.25 U LA Taq polymerase, about 100 ng template DNA, and sterile doubly-distilled water to final 

volume. Conditions for PCR amplification were as follows: one initial denaturation step at 94 °C for  

2 min; then 94 °C for 30 s (denaturation), 50–58 °C for 45 s (annealing), 72 °C for 1–3 min (extension) 

for 35 cycles; followed by a final extension step at 72 °C for 10 min. The PCR products were examined 

by 1.0% agarose gel electrophoresis, and purified using the TaKaRa MiniBEST Agarose Gel DNA 

Extraction Kit (Takara, Dalian, China). Sequencing was completed in Tsingke Biotech Co., Ltd. 

(Wuhan, China). 

3.3. Gene Annotation and Sequence Analysis 

The DNA sequences were assembled using SeqMan program of Lasergene 7.0 (DNAstar, Madison, 

WI, USA) to create complete mitogenome. During the walking sequencing of large fragments, we 

regularly examine the assembly to ensure its reliability. The annotation of 13 PCGs and two rRNAs, and 

the definition of each gene boundaries were determined by both DOGMA [79] and MitoFish [58] 

programs. tRNAs and their secondary structures were predicted by tRNAscan-SE 1.21 [80], and the  

cut-off value was 1. Non-coding regions were identified via sequence homology with Clustal W2 [81]. 

Tandem repetitive elements were detected by using the Tandem Repeats Finder 4.04 [82]. 

Nucleotide base compositions and codon usage were calculated with MEGA 5.2 [83]. AT-skew  

((A−T)/(A+T)) and GC-skew ((G−C)/(G+C)) were used to measure nucleotide bias [84]. The genetic 

distance of different PCGs were also analyzed in MEGA 5.2 [83]. The Ks and Ka in each protein-coding 

gene were determined by DnaSP 5.0 [85] for ten groups: O. sinensis-O. platycephala (Osi-Opl),  

O. sinensis-O. yaluensis (Osi-Oya), O. sinensis-O. potamophila (Osi-Opo), O. sinensis-O. interrupta 

(Osi-Oin), O. platycephala-O. yaluensis (Opl-Oya), O. platycephala-O. potamophila (Opl-Opo),  

O. platycephala-O. interrupta (Opl-Oin), O. yaluensis-O. potamophila (Oya-Opo), O. yaluensis-O. 
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interrupta (Oya-Oin), O. potamophila-O. interrupta (Opo-Oin). The gene map of the O. yaluensis 

mitogenome was generated by MitoFish and MitoAnnotator program [58]. 

3.4. Phylogenetic Analyses 

A total of seven Odontobutidae species were used to reconstruct the phylogenetic trees. Beside this, 

we selected Rhyacichthys aspro (AP004454) as an outgroup (Table S3). The nucleotide sequences of  

13 mitochondrial PCGs were concatenated and a multiple sequence alignment was performed with 

Clustal W built-in MEGA 5.2 [83]. Phylogenetic analyses were carried out by both ML and BI methods. 

We implemented the ML analyses in RAxML version 8.0.0 (BlackBox webserver; http://embnet.vital-it.ch/ 

raxml-bb/) to generate phylogenetic trees under GTR+G+I model [86]. The Bayesian analyses was 

performed using Mrbayes 3.2.4 [87] with four independent chains running for 3 million generations, 

sampling a tree every 1000 generations, the first 750 trees were removed as burn-in and the remaining 

trees were used to calculated Bayesian posterior probabilities (BPP). Phylogenetic trees were viewed 

and edited in Figtree 1.4.0 [88]. 

4. Conclusions 

The mitogenome of O. yaluensis is similar to those of other four Odontobutis species. The identical 

gene rearrangement of trnS-trnL-trnH tRNA cluster observed in these mitogenomes suggests that this 

unique gene order is conserved within the genus Odontobutis. The present rearranged genes and 

associated intergenic spacers reveal that this gene rearrangement results from tandem duplication and 

random loss (TDRL) of large-scale gene regions. Phylogenetic analyses of the family Odontobutidae 

support Odontobutis species which share gene rearrangement forming a monophyletic group, and  

the interspecific evolutionary relationships within the genus Odontobutis are consistent with the features, 

whether or not they share tandem repeats in their control regions. 
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Supplementary materials can be found at http://www.mdpi.com/1422-0067/16/10/25031/s1. 
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