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Abstract: Alzheimer’s disease (AD) is a common neurodegenerative disease resulting in 

progressive dementia, and is a principal cause of dementia among older adults. Folate acts 

through one-carbon metabolism to support the methylation of multiple substrates. We 

hypothesized that folic acid supplementation modulates DNA methyltransferase (DNMT) 

activity and may alter amyloid β-peptide (Aβ) production in AD. Mouse Neuro-2a cells 

expressing human APP695 were incubated with folic acid (2.8–40 μmol/L), and with or 

without zebularine (the DNMT inhibitor). DNMT activity, cell viability, Aβ and DNMTs 

expression were then examined. The results showed that folic acid stimulated DNMT gene 

and protein expression, and DNMT activity. Furthermore, folic acid decreased Aβ protein 

production, whereas inhibition of DNMT activity by zebularine increased Aβ production. 

The results indicate that folic acid induces methylation potential-dependent DNMT 

enzymes, thereby attenuating Aβ production. 
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1. Introduction 

Alzheimer’s disease (AD) is one of the major amyloidoses, with two types of amyloid deposited in 

the brain: (i) amyloid β-peptide (Aβ) forming aggregates senile plaques and cerebrovascular amyloid 

angiopathy [1]; and (ii) tau protein, which forms neurofibrillary tangles, neuropil threads, and 

dystrophic neurites [2]. There is no cure for AD currently [3]. However, malnutrition is a potential risk 

factor for cognitive impairment [4], there is a strong rationale to search for nutritional interventions for 

AD and to understand their molecular mechanisms of action. 

The epigenetic mechanism of gene methylation provides a putative link between nutrition, one-carbon 

metabolism and disease progression, because dietary deficiency in transmethylation micronutrients  

(e.g., folate) may cause hypomethylation of promoter regions in AD-relevant genes. This effect is 

observed in AD models, for example in TgCRND8 mice which carrying mutant amyloid precursor 

protein (APP), fed a diet deficient in three kinds of vitamin B (folate, vitamin B12 and B6) [5]. The 

diet inhibits the metabolism of homocysteine by transsulfuration and remethylation pathways in 

TgCRND8 mice [6]. The resulting hyperhomocysteinemia is associated with a demethylation of the 

PS1 gene promoter that is not attributable to the deposition of Aβ in neuritic plaques. 

Instead the gene demethylation may be due, at least partially, to depletion of S-adenosylmethionine 

(SAM) and elevation of intracellular S-adenosylhomocysteine (SAH), resulting in an overall  

decrease of methylation potential. In particular, SAH concentration rises to levels that competitively 

inhibit the SAM-dependent methylation of genes by DNA methyltransferases (DNMT) [6,7]. 

Hyperhomocysteinemia and DNA hypomethylation are associated with elevated PS1 expression and 

Aβ production [7]. In neuroblastoma cell cultures, folate/B6/B12-deprivation leads to accumulation of 

homocysteine, diminution of the methylation potential, and upregulation of PS1 and Aβ gene 

expression, whereas SAM administration downregulates PS1 gene expression and Aβ production [8,9]. 

The folate/B6/B12-dependent mechanisms described above may occur in clinical AD [10].  

Because folic acid supplementation is a potential therapeutic intervention, the study of the effects of 

exogenous folate independently of B6 and B12 is important. In this study we hypothesized that folic 

acid supplementation may alter Aβ production in N2a-APP cells because the DNMT expression and 

activity can be modulated. 

2. Results 

2.1. Amyloid β-Peptide Protein 

Almost no expression of Aβ production was observed in N2a-WT cells. High expression of Aβ 

production due to the stable expression of human APP695 was seen in N2a-APP cells (Figure 1). 

Immunofluorescence staining of N2a-APP cell cultures revealed that folic acid (2.8 to 40 μmol/L) 

caused a dose-dependent decrease in immunoreactive Aβ (Figure 2). Incubation of the cells with 

zebularine increased Aβ immunoreactivity at each folic acid concentration (Figure 2). 
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Figure 1. The comparison of Aβ production levels between N2a-WT and N2a-APP cells. 

Both WT-N2a and N2a-APP cells were cultured with 10 μmol/L folic acid. Subsequently Aβ 

was detected by immunofluorescence staining (red), nucleus staining by DAPI (blue). (A) 

Representative images showing Aβ immunofluorescence in N2a-WT cells; (B) Representative 

images showing Aβ immunofluorescence in N2a-APP cells. Scale bar = 50 μm. 

 

Figure 2. Folic acid decreases, and zebularine increases, Aβ production in N2a-APP cells. 

The cells were incubated with 2.8, 10, 20 or 40 μmol/L folic acid for 96 h, and with either 

zebularine or its vehicle present during the first 12 h. Subsequently Aβ was detected by 

immunofluorescence staining (red), nucleus staining by DAPI (blue). (A) Representative 

images showing Aβ immunofluorescence; (B) Summary of Aβ production levels shows 

mean ± SEM for integrated optical density (IOD) of immunoreactive Aβ in 3 experiments. 

* p < 0.05 compared with 2.8 μmol/L. # p < 0.05 compared with 10 μmol/L. § p < 0.05 

compared with 20 μmol/L. ** p < 0.05 compared with vehicle at the same folate 

concentration. Scale bar = 50 μm. 
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2.2. DNMT Activity 

DNMT activity in N2a-APP cells increased with folic acid concentration (2.8 to 20 μmol/L) and 

was partially inhibited by zebularine (Figure 3A). Neither folic acid nor zebularine altered cell viability 

(Figure 3B). 

 

Figure 3. Folic acid raises and zebularine lowers DNMT activity, without altering cell 

viability. N2a-APP cells were incubated as described in Figure 1. (A) DNMT activity in 

nuclear extracts; (B) Cell viability based on Alamar blue assay. The plotted values are  

mean ± SEM values for 3 experiments. * p < 0.05 compared with 2.8 μmol/L. # p < 0.05 

compared with 10 μmol/L. ** p < 0.05 compared with vehicle at the same folic  

acid concentration. 

2.3. DNMT Expression 

The levels of gene expression of DNMT1 and DNMT3b were lower in N2a-APP cells than wild 

type N2a cells when the culture medium contained folic acid 10 μmol/L (Figure 4A,C). However, 

DNMT3a gene expression did not differ between the cell types (Figure 4B). Gene expression of all  

the DNMT isoforms increased with folic acid concentration (2.8 to 20 μmol/L) in N2a-APP cells  

(Figure 4A–C). 

The protein expression levels of DNMT1 were lower in N2a-APP cells than wild type N2a cells 

when the culture medium contained 10 μmol/L. However, DNMT3a and DNMT3b protein expression 

did not differ between the cell types. Folic acid caused a dose-dependent increased protein expression 

of all the DNMTs in N2a-APP cells (Figure 4D–I). 



Int. J. Mol. Sci. 2015, 16 25006 
 

 

 

 

Figure 4. Cont. 
  



Int. J. Mol. Sci. 2015, 16 25007 
 

 

Figure 4. Folic acid increases the expression of DNMT isoforms in N2a cells. Wild type 

N2a cells were incubated with 10 μmol/L folic acid (WT + 10) and N2a-APP cells were 

incubated with 2.8–40 μmol/L folic acid for 96 h. (A–C) Gene expression levels of 

DNMT1, DNMT3a and DNMT3b in N2a and N2a-APP cells (n = 3 experiments); (D–F) 

Representative western blots of DNMT isoforms and actin in N2a and N2a-APP cells;  

(G–I) Summaries of densitometric analyses of western blots of DNMT isoforms and actin 

in N2a and N2a-APP cells (n = 3 experiments). * p < 0.05 compared with 2.8 μmol/L;  

# p < 0.05 compared with 10 μmol/L; § p < 0.05 compared with 20 μmol/L. 

3. Discussion 

The present study found that folic acid dose-dependently inhibited Aβ production in N2a-APP cells. 

Further observations indicated that this effect of folic acid was mediated by stimulated DNMT gene 

and protein expression, and DNMT activity. Furthermore, folic acid decreased Aβ protein production, 

whereas inhibition of DNMT activity by zebularine increased Aβ production. Taken together,  

these results indicate that folic acid induces methylation potential-dependent DNMT enzymes 

attenuating Aβ production. 

Genetic factors have an important role in the development of late-onset AD (LOAD).  

AD, especially LOAD, arises mainly from heritable causes. Yet, the etiology of AD is complex and 

non-Mendelian, so the epigenetic mechanism in AD development should also be noted [11]. DNMT3A 

and DNMT3B establish DNA methylation patterns, and DNMT1 subsequently maintains it. The 

general characteristic of age-related diseases and aging are hypomethylation of genome and 

hypermethylation of specific genes promoter. Aberrant epigenetic control in CpG-island may 

contribute to late-onset AD pathology [12]. Some studies showed that some genes which participate in 

methylation homeostasis (e.g., DNMT1, MTHFR) and Aβ processing (e.g., APOE, PSEN1) show  

a significant epigenetic variability, those genes may contribute to late-onset AD predisposition. 

Mastroeni’s study detected neuronal immunoreactivity of epigenetic factors, including DNMT1, in AD 

cases whose epigenetic factors were significant decrements in AD-vulnerable neurons [13]. Thus, the 

expression of DNMT1 was decreased in the AD cell model (N2a-APP cells) as compared with the wild 

type cells for which culture medium contains 10 μmol/L folic acid. 

The stimulation by folic acid attenuating Aβ production could be explained by the increases in 

DNMT activity that was observed in N2a-APP cells. The rise in DNMT activity supported DNA 
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methylation modulated by DNMT isoforms. Also consistent with this explanation were the effects of 

zebularine, which is a validated inhibitor of DNMT [14,15]. 

In addition folic acid elevated the gene expression and protein levels of DNMT1, DNMT3a and 

DNMT3b in N2a-APP cells. Folic acid evidently induced expression of functional DNMT isoforms, 

because it increased the DNMT activity measured in nuclear extracts. An essential role of DNMT 

activity in protecting against experimental AD progression was revealed by the observation that  

the DNMT inhibitor zebularine stimulated Aβ production at each folic acid concentration in N2a-APP 

cell cultures. 

Recent studies revealed that experience factors could mediate DNA methylation, which is regulated 

by DNMT activity, and DNMT activity is related to recent memory formation and as well as remote 

memory maintenance [16,17]. Notably, the expression of DNMT3a was detected in the hippocampus 

in aged mice, DNMT3a overexpression can reverse the deficit especially in spatial memory [18,19]. 

However, a decline in global DNA methylation was found in the autopsied hippocampus of patients 

with AD [20,21].Moreover, Guo’s study indicated that histone H3 hyperacetylation and  

DNMT-dependent hypomethylation mediate the stress-related signaling pathways activation in  

SH-SY5Y cells, which lead to APP, PSEN1, and BACE1 genes expression increase, thus leading to Aβ 

overproduction [22]. Thus, we speculate that folic acid modulates the activity of DNMT to ameliorate 

Aβ production. 

A randomized controlled trial in elderly patients with mild to moderate AD found that cognitive 

decline did not slow by supplements of folic acid, B6 and B12 during the 18-month follow-up [23].  

It should be noted that the trial excluded individuals if they had subnormal serum levels of folate or 

vitamin B12 [24], although a review of other studies found that serum folate concentration typically is 

lower in AD patients than controls [25]. However, in contrast to studies of cognitive decline,  

the VITACOG randomized controlled trial used structural neuroimaging of the brain to assess the 

effect of supplementation with folic acid, B6 and B12 in elderly patients with mild cognitive 

impairment [26]. The VITACOG trial found that this supplementation decreased atrophy in brain 

regions specifically vulnerable to the AD process [26]. 

4. Experimental Section 

4.1. In Vitro Model 

The experimental protocols of cells were approved by Tianjin Medical University Animal Ethics 

Committee (Study number: TMUaMEC 2012016; Tianjin, China). Mouse neuroblastoma N2a cells 

stably expressing human APP695 (N2a-APP cells) and wild type N2a cells were obtained from  

Huaxi Xu (Biomedical Research, Xiamen University, Xiamen, China) [27]. The N2a-APP cells were 

maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)/Opti-MEM (1:1, v/v), with 200 μg/mL 

G418, 10% fetal bovine serum, 100 mg/mL streptomycin, 100 units/mL penicillin, at 37 °C in 5% 

CO2/95% air. Both cell types were passaged every 3 days when growing to 80% confluence. Folic 

acid-free DMEM powder was purchased from Gibco-BRL (Paisley, UK) and combined with 

predetermined amounts of folic acid to make culture media for the experiment. The N2a-APP cells 

were exposed to folic acid (2.8–40 μmol/L) for the 96 h. Either the DNMT inhibitor zebularine  
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(30 μmol/L) or its vehicle was added for the first 12 h, the medium was changed after first 12 h to 

remove zebularine or its vehicle from the cell cultures. 

4.2. Immunofluorescence Staining 

Aβ protein in N2a-APP cell cultures was detected by immunofluorescence staining. Cell cultures on 

laminin-coated coverslips were fixed 20 min in 4% paraformaldehyde at room temperature, washed 

with PBS, and then blocked 1 h with 10% goat serum in PBS. Slides were incubated at 4 °C over  

night with the primary antibody (anti-Aβ (to detect Aβ 1–42 and Aβ 1–40), 1:200; Sigma, St. Louis, 

MO, USA) [28]. After repeated PBS rinses of slides, the secondary antibody (1:100; Jackson 

ImmunoResearch Laboratories; West Grove, PA, USA) was applied at room temperature for 2 h.  

PBS was used to wash and incubate slides. Ten images were obtained from each slide by indirect 

fluorescence using a fluorescent microscope X81 (Olympus, Tokyo, Japan) and the integrated optical 

density of each was determined with Image-Pro Plus 6.0 software (Media Cybrnetics, Silver Spring, 

MD, USA). 

4.3. DNMT Activity 

A nuclear extraction kit of Merck (Merck KGaA, Darmstadt, Germany) was used to isolate nuclear 

extracts of cells. These extracts was used to measure DNMT activity using the DNA Methyltransferase 

Activity/Inhibition Assay Kit of Active Motif (Carlsbad, CA, USA) [14]. According to the 

manufacturer’s instructions, DNMT1 provided in the kit was used to create a lot-specific standard 

curve. The microplate reader was used to measure optical density (OD) at 450 nm and DNMT activity 

(unit by OD/(h·mg)) was calculated using the following formula: 

 (1)

* Protein added for the reaction; ** Incubation time for the reaction. 

4.4. Cell Viability 

Alamar Blue (resazurin) assay was used to measure cell viability. Cells were incubated for 3 h with 

0.1 mg/mL Alamar blue reagent (Gibco-BRL, Paisley, UK) in cell culture medium, then the optical 

density (OD) at 575 nm was read used microplate reader (Bio-Tek ELX800uv, Bio-Tek Instrument 

Inc., Winooski, VT, USA). 

4.5. Real-Time PCR 

Real-time PCR was used to quantify the genes expression. Trizol was used to extract total RNA of 

the cells according to the instructions of the manufacturer. First-strand cDNA was synthesized from 

total RNA (2 μg) using MMLV reverse transcriptase. The reaction mixture (20 μL) was incubated for 

60 min at 42 °C, 10 min at 70 °C, and held at −20 °C. LightCycler 480 SYBR Green I Master Kit 

(Roche, Mannheim, Germany) was used to perform real-time PCR. The 20 μL PCR mixture included 

PCR Master (10 μL), cDNA (5 μL), forward primer (1 μL), reverse primer (1 μL) and water  

[ ] (Average Sample OD - Average Blank OD)
DNMT activity OD/(h mg) 1000

Protein amount (μg) hour
= ×

∗× ∗∗
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(PCR-grade) (3 μL). Those reaction mixtures were incubated 5 min at 95 °C, followed by 45 

amplification cycles (denaturation, 95 °C for 10 s; annealing, 56 °C for DNMT3b, 59 °C for DNMT1 

and DNMT3a for 10 s; extension, 72 °C for 10 s). Primers were specific for DNMT1 (forward, CTAG 

TTCCGTGGCTACGAG GAGAA; reverse, TCTCTCTCCTCTGCAGCCGACTCA), DNMT3a (forward, 

GCCGAATTGTGTCTTGGTGGATGACA; reverse, CCTGGTGGAATGCACTGCAGAAGGA), or 

DNMT3b (forward, TTCAGTGACCAGTCCTC AGACACGAA; reverse, TCAGAAGGCTGGAGACC 

TCCCTCTT). For each gene the expression was normalized to β-actin (forward, AATGTGTCCG 

TCGTGGATCT; reverse, GGTCCTCAGTGTAGCCCAAG) in order to calculate relative levels  

of transcripts. 

4.6. Western Blot Analysis 

Western blot analysis was used to assess protein expression of DNMT isoforms. Ice-cold PBS 

washed cells were lysed used TNE-NP40 buffer. Lysates of cells were separated by electrophoresis on 

12% sodium dodecyl sulfate polyacrylamide gel then transferred to PVDF membranes. After blocking  

(5% non-fat milk),the PVDF membranes were incubated with primary antibodies (anti-DNMT1, 

1:1000; anti-DNMT3a, 1:1000; anti-DNMT3b, 1:1000; anti-β-actin, 1:5000) overnight at 4 °C, 

antibody of DNMT1 and DNMT3a purchase from CST and antibody of DNMT3b and β-actin 

purchase from Abcam, after washed with PBST, incubated with appropriate secondary antibodies 

(IgG-horseradish peroxidase, Zhongshan Goldbridge Biotechnology, Beijing, China) at room 

temperature for l h. Chemiluminescence assay was used to detected the expression of proteins and  

then using NIH Image software 1.61 (Macintosh, CA, USA) quantified intensity, and normalized to  

β-actin band respectively. 

4.7. Statistical Analysis 

The plotted values are mean ± SEM values for 3 experiments. We used the statistical software 

package SPSS 16.0 to evaluate differences between groups used one-way ANOVA and either Tukey’s 

HSD test or Dunnet’s test. p < 0.05 was considered significant. 

5. Conclusions 

In conclusion, the present study using an AD cell model found that folic acid stimulated gene and 

protein expression of DNMT isoforms, and DNMT activity. Folic acid also decreased Aβ protein 

levels, whereas inhibition of DNMT activity by zebularine increased Aβ production. These results 

indicate that folic acid’s induction of methylation potential-dependent DNMT enzymes could 

consequently slow Aβ production. This novel finding may stimulate reinvestigation of folic acid 

supplementation as a treatment for AD patients. 
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