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Abstract: To survive under abiotic stresses in the environment, plants trigger a reprogramming 

of gene expression, by transcriptional regulation or translational regulation, to turn on  

protective mechanisms. The current focus of research on how plants cope with abiotic 

stresses has transitioned from transcriptomic analyses to small RNA investigations. In this 

review, we have summarized and evaluated the current methodologies used in the 

identification and validation of small RNAs and their targets, in the context of plant 

responses to abiotic stresses. 
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1. Introduction: The Importance of Small RNAs 

Plants are constantly challenged by environmental abiotic stresses such as high salinity, drought, 

flooding, extreme temperatures, and high irradiation. These adverse effects hamper plant growth and 
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development, and may even lead to premature death. To combat the changes in the environment, plants 

trigger a network of genetic regulations to turn on protective mechanisms. This involves reprogramming 

of gene expressions. The expressions of protective genes are up-regulated while those of negative 

regulators are down-regulated. Transcriptional reprogramming (Figure 1) is one essential step to trigger 

the adaptation processes [1–3]. On the other hand, increasing evidence suggests that small RNAs 

(sRNAs) play important roles in the regulation of gene expressions. High-throughput sequencing and 

computational prediction have been important tools for identifying abiotic stress-related sRNAs. Guided 

by computational prediction, experimental validation and functional tests are required to understand  

the roles of the identified sRNAs. In this review, we will summarize the current findings of the regulatory 

roles of sRNAs of plants under abiotic stresses as well as the computational and experimental methods 

used in sRNAs studies. 

 

Figure 1. A simplified representation to illustrate the central role of gene expression 

reprogramming in triggering the adaption to abiotic stresses. Upon abiotic stresses, cellular 

homeostasis is disrupted. The signal is sensed and transduced by signaling molecules. This 

brings forth the reprogramming of gene expression which involves transcriptional factors 

and sRNAs, resulting in the up-regulation of positive regulators and down-regulation of 

negative regulators. 

sRNAs are short transcripts (21–25 nucleotides) that do not translate into proteins, but instead regulate 

vital biological processes and epigenetic events. The first group of sRNAs discovered are characterized 

by their short and unique lengths and their participation in post-transcriptional gene silencing (PTGS)  

in plants such as tobacco, Arabidopsis and tomato [4–6]. These regulators were later referred to as small 
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interfering RNAs (siRNAs). Efforts to clone dicer cleavage products in the model plant Arabidopsis 

initiated the massive discovery of sRNAs in plants, with many of them sharing characteristic features 

with sRNAs discovered in animals [7,8]. 

Many breakthroughs have been made in identifying different classes of sRNAs of various origins,  

as well as elucidating their biogenesis pathways and functions in diverse plants species. Initially,  

several groups adopted cloning methods to identify plant sRNAs [7,9–11]. This approach is labor-intensive 

and time-consuming. The growth of high-throughput next-generation sequencing (NGS) has accelerated 

the discovery of novel plant sRNAs by transcriptome-wide investigations of sRNA profiles. Numerous 

bioinformatics tools were developed to analyze the sequencing data, identify sRNAs of interest and 

predict their targets. Successful predictions of sRNA targets have helped researchers to further 

investigate the mechanisms of sRNA regulations in plants. Moreover, a series of experimental strategies 

have been invented, optimized, and modified to overcome the challenging tasks in validating sRNA 

expressions and functions. In this review, the current understanding on sRNAs in abiotic stress,  

the strategies to identify these sRNAs, and the functional validations of sRNAs will be discussed. 

2. Mechanisms of sRNA-Mediated Genetic Regulation 

2.1. Transcriptional Gene Silencing 

sRNA-directed DNA methylation leads to the inhibition of transcription [12]. This phenomenon  

is known as transcriptional gene silencing (TGS). TGS is also termed homology-dependent gene 

silencing (HDGS) as it requires the sequence homology between the sRNA and the promoter [13,14]. 

Recent studies have revealed the roles of sRNAs in DNA methylation. It was demonstrated in  

tobacco that double-stranded RNA-(dsRNA-)triggered TGS and promoter methylation involved  

the production of sRNA (~23 nt) [14]. siRNAs of heterochromatic origin (hc-siRNA) have recently  

been identified as a functionally distinct subset of siRNAs which are involved in inducing RNA-directed 

DNA methylation (RdDM) [15,16]. These 24 nt hc-siRNAs are transcribed at the heterochromatic 

regions where they trigger the methylation of cytosine, in these sequence contexts: CG, CHG and CHH, 

in cis [17–19]. Figure 2 shows the role of hc-siRNAs in TGS. Besides typical sRNA biogenesis 

components (RDR, DCL, AGO), the mechanism of de novo hc-siRNA-induced RdDM involves both 

RNA polymerases (Pol) IV and V, which probably transcribe the double-stranded precursors and 

facilitate methylation at the target sites respectively [15,20]. 

There are extensive studies showing the relationships between DNA methylation and abiotic  

stresses [21]. It was shown that the decrease in the salt tolerance capability of Arabidopsis coincided 

with the blocking of DNA methylation at cytosine by 5-azacytidine treatment [22]. It was also found 

that there is a positive relationship between the dosage of irradiation and the extent of global genome 

methylation in pine trees [23]. There are some studies showing the association between sRNAs and DNA 

methylation under abiotic stress. For example, in Prunus persica, a number of cold-responsive 

microRNAs (miRNAs) were predicted to target genes involved in DNA methylation [24]. 
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Figure 2. hc-siRNAs are transcribed at the heterochromatic regions where they act in  

cis to trigger the methylation of cytosine in these sequence contexts: CG, CHG and  

CHH [17–19], resulting in transcriptional silencing. 

2.2. Post-Transcriptional Gene Silencing 

Based on the differences in their biogenesis pathway, sRNAs in plants are usually classified  

into two major groups: miRNAs and endogenous siRNAs. miRNAs and siRNAs are derived from 

structurally different precursors (Figure 3). The precursors of miRNAs are near-perfectly or perfectly  

self-complementary, forming a hair-pin-like loop. On the contrary, siRNA precursors are double-stranded, 

extensively complementary. In spite of the structural differences in their precursors, the biogenesis 

pathways of siRNAs and miRNAs essentially resemble each other [25,26]. The early precursors of 

sRNAs are usually transcribed by RNA polymerases (Pol) II, IV and V [27]. The miRNA precursors 

fold to form hair-pins, while siRNA precursors are converted to dsRNAs by RNA-dependent RNA 

polymerases (RDR). Precursors are then diced into mature miRNAs or siRNAs by dicer-like (DCL) 

proteins [7,28,29]. Mature miRNAs and siRNAs are single-stranded and can interact with argonaute 

(AGO) proteins to form RNA-induced silencing complexes (RISC). Depending on the type of AGO 

involved, PTGS could silence targets through cleavage of the transcript or translational inhibition by 

RISC [30,31]. The biogenesis pathways of miRNAs and siRNAs use distinct sets of Pol, RDR, DCL and 

AGO. This highlights the differences between the two major classes of sRNAs [26]. sRNA-mediated 

gene regulation mechanisms are summarized in Table 1. 

 

Figure 3. Cont. 
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Figure 3. The roles of miRNA and siRNA in PTGS (post-transcriptional gene silencing). 

(A) The precursor of miRNA is a self-complementary RNA which forms a hair-pin structure 

while the precursor of siRNA is a dsRNA. The precursors are diced to form mature miRNA 

or siRNA [7,28,29]; (B) The mature miRNA or siRNA interacts with the AGO (argonaute) 

protein to form RISC (RNA-induced silencing complexes), which causes the silencing of 

the target gene by transcript cleavage or translational inhibition [7,28,29]. 

Table 1. Summary of sRNA-mediated gene regulation mechanisms. 

Mechanism  

of Regulation 

sRNA Types 

Participated 
Origin of sRNAs Targets of sRNAs Modes of Action 

Transcriptional  

gene silencing 
hc-siRNAs 

Transcripts of 

heterochromatic regions 

Heterochromatic 

regions (act in cis) 

RNA-directed  

DNA methylation 

Post-transcriptional 

gene silencing 

miRNAs 
Short stem-loop-forming 

transcripts 

Other transcripts (act in 

both cis and trans) 

Transcript cleavage; 

translational inhibition 

TAS-transcripts 

Triggering double 

strand synthesis  

of TAS-transcripts 

NAT-siRNAs Antisense transcripts 
Other transcripts in  

both cis and trans 

Transcript cleavage; 

translational inhibition 

ta-siRNAs 
TAS-loci derived 

transcripts 

Other transcripts in 

both cis and trans 

Transcript cleavage; 

translational inhibition 

TAS-transcripts, ta-siRNA transcripts; TAS-loci, ta-siRNA generating loci. 

2.2.1. miRNA 

Most efforts have been devoted to an identification of conserved and lineage-specific miRNAs. 

Currently, it is known that many plant miRNA target genes are involved in developmental processes, 

and the disruption of miRNA biogenesis generally results in developmental abnormalities such as  

the accelerated growth of lateral roots in the early seedling stage [32]. The cleavage of mRNAs directed 

by miRNAs was demonstrated in Arabidopsis [33]. The advancement of high-throughput sequencing 

has facilitated the identification of abiotic stress-responsive miRNAs. For example, it was reported  

that the expression level of miR398 was decreased after Cu+, Fe+, ozone, and salt treatments [34,35]. 

The identification of the cleavage targets of miR398 has enabled the understanding of the functions of 

this miRNA under abiotic stresses [36]. 
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2.2.2. siRNA 

Plant siRNAs are more diverse than miRNAs in terms of sizes, structures of precursors, genomic 

origins and functions. Trans-acting siRNAs (ta-siRNAs), natural antisense transcript-derived siRNAs 

(NAT-siRNAs) and the newly identified hc-siRNAs are relatively well-studied subsets. The role of  

hc-siRNAs has been discussed above in Section 2.1. While many other siRNAs are involved in PTGS, 

the newly classified hc-siRNA is involved in TGS [17–19,37–40]. 

Ta-siRNAs are derived from ta-siRNA generating loci (TAS loci) [37,38]. The existence of  

ta-siRNAs revealed that sRNA regulations in plants form complex and multi-level networks through 

miRNA-induced signal transduction [41]. A miRNA-guided cleavage of TAS transcripts triggers the 

conversion of these transcripts to double-stranded ta-siRNA precursors, which can be diced in-phase  

to produce 21–22 nt ta-siRNAs [42]. Hence, a number of ta-siRNAs can arise along the ta-siRNA 

transcripts (TAS transcripts) neither with gaps nor overlaps. This phasing feature has been frequently 

used to predict novel ta-siRNA generating gene (TAS genes) and hence some researchers also refer  

ta-siRNAs as phased siRNAs (phasiRNAs) [43,44]. Four TAS gene families have been discovered in 

Arabidopsis thaliana [45–47]. TAS3 is well known for its function in determining the developmental 

timing and pattern by targeting to the AUXIN RESPONSE FACTOR 3 [48]. Hypoxia-responsive  

ta-siRNAs from the TAS1, TAS2 and TAS3 families have also been reported [49]. 

NAT-siRNAs refer to the natural antisense transcript-(NAT-) derived siRNAs. The double-stranded 

precursors are generated at the overlapping region of 2 partial or perfectly complementary  

transcripts [39,50]. Deep sequencing analyses on Arabidopsis thaliana suggested the occurrence  

of 2 classes of NAT-siRNAs: (i) 20–22 nt, DCL-1-dependent; and (ii) 23–28 nt, DCL-3-dependent  

NAT-siRNAs [51]. NAT-siRNAs can be further classified based on the origins of their NAT precursors, 

with cis-NATs being derived from the same loci [39,40,52] and trans-NATs from remote loci of  

their sense counterparts [40,53]. Genome-wide searches for overlapping short transcripts were 

successfully applied in Oryza sativa [53] and Petunia hybrida [54] to predict NAT-siRNAs. Through 

deep sequencing, NAT-siRNAs responsive to abiotic stresses including salt, cold, and drought have  

been reported [55]. 

3. Computational Methods to Identify sRNAs 

As discussed above, in most of the recent research, abiotic stress-responsive sRNAs are identified by 

comparing the sRNA profiles between treated and untreated plants through high-throughput sequencing. 

Therefore, reliable computational tools are crucial for the identification of sRNAs involved in the gene 

regulation network. 

3.1. Computational Prediction of miRNA Gene Loci 

Most of the mature plant miRNAs are 21–24 nt long. From the analyses of eight plant species, 84% 

of plant miRNA loci are found in clusters at intergenic regions, with a few exceptions found in intronic 

regions [56]. In contrast to animal miRNAs which are frequently clustered together, only ~20% of plant 

miRNA genes are clustered together, and these clustered genes often encode miRNAs belonging to  

the same family or targeting genes of the same protein family [57]. The usual characteristic actions of 
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miRNAs in plants in trans and the hairpin structure of their precursors are hallmarks frequently 

employed by common miRNA prediction tools. Given the well-developed and relatively standard 

prediction pipeline, an overwhelming number of miRNAs has been documented in different plant 

species. These classical prediction tools are summarized in Table 2. 

Table 2. Summary of classical miRNA prediction tools. 

Tool Application Property Reference 

MIRFINDER 

Detection of potential 

conserved miRNAs in 

Arabidopsis thaliana 

and Oryza satica 

The use of NCBI BLAST to search for conserved short 

hits (~21–22 nt). The hits with flanking sequences were 

identified as putative hairpin precursors. 

[58] 

miRSeeker 

Identification of novel 

miRNA candidates that 

are conserved in insect, 

nematode, or vertebrate 

The use of AVID to align Drosophila melanogaster  

and Drosophila pseudoobscura euchromatic sequences 

to search for conserved sequences meeting these  

two criteria:  

1. Having extended stem-loop structure;  

2. Having nucleotide divergence from known miRNAs. 

[59] 

mirCoS 
Prediction of  

mammalian miRNAs 

Detection of known miRNAs and prediction of new 

miRNAs based on sequence, secondary structure and 

conservation by comparing human and mouse genomes. 

[60] 

miRRim 
Identification of novel 

miRNAs in human 

Detection of miRNAs with the use of a hidden  

Markov model. 
[61] 

miRAlign 

Detection of miRNA 

homologs or orthologs  

in animals. 

Detection of miRNAs based on sequence and structure 

alignment. The sensitivity is better than BLAST search 

and ERPIN search with comparable specificity. 

[62] 

microHARVESTER 
Identification of plant 

miRNA homologs 

Identification of plant miRNA homologs based on  

query miRNA. 
[63] 

MiRscan 
Identification of 

vertebrate miRNA genes 
Evaluation of conserved stem-loops. [64] 

miRDeep 

Identification of 

miRNAs with deep 

sequencing data 

The use of known miRNA training set obtained  

from Caenorhabditis elegans to deduce parameters  

of most probable miRNA precursors.  

These parameters were used to score precursor  

candidates using a probabilistic approach. 

[65] 

MiRCheck 

Identification of 

miRNAs in  

Arabidopsis thaliana 

and Oryza sativa 

The use of EINVERTED from EMBOSS [66] to predict 

genome-wide inverted repeats in both Arabidopsis 

thaliana and Oryza sativa to define possible hairpin 

regions, and the check for segments with high homology 

between Arabidopsis thaliana hairpins and Oryza sativa 

hairpins using Patscan. 

[67] 

NCBI, National Center for Biotechnology Information; BLAST, Basic Local Alignment Search Tool; AVID, 

a global alignment program; ERPIN, Easy RNA Profile IdentificatioN; EINVERTED, a program that finds 

inverted repeats in nucleotide sequences; EMBOSS, European Molecular Biology Open Software Suite. 
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3.1.1. Choosing the Right Tools for Plant miRNA Discovery 

There are some key differences between animal and plant miRNAs [68]. For example, the plant  

stem-loop precursors are more variable in length. Longer precursors usually have smaller minimum  

free energy (MFE) and hence will increase the false-positive rate of miRNA prediction [69]. Therefore, 

some programs such as miRDeep-P [70] and a newer graphical user interface (GUI) application, 

miRPlant [71], have set a maximal value for the log-odds score for the MFE metric based on the Gumbel 

distribution to model the distribution of MFE. 

The length of plant miRNA precursors ranged from 50 to 930 nt with a mean length of 146 nt;  

whereas animal precursors have a range of 45 to 215 nt and a mean length of 87 nt [69]. The program 

miRPlant includes both short and long plant miRNA precursors to solve the issue of length variability, 

by scanning the peak expressed region. Both 100 and 200 nt sliding windows are scanned when  

predicting the secondary structure of the precursors [71]. The program MIReNA is also plant  

miRNA-detection-friendly. In this method, MFE metric is normalized by the length and then GC content 

of the precursors to obtain the final minimum free energy index (MFEI). Using this approach, rice 

miRNAs were successfully discovered [72]. 

Another difference between plant and animal miRNAs is the degree of conservation in certain  

segments of the miRNA precursors. For instance, the miRDeep core algorithm, designed for animals [73], 

scores the sequence conservation in the proposed seed region [73], which is the 2nd–7th nucleotides  

of the predicted mature miRNA. In contrast, plant miRNA mature sequences are conserved in two 

positional blocks, from the 2nd to 13th nucleotide and from the 16th to the 19th nucleotide, with the 4th 

nucleotide strictly conserved [69]. Therefore, it is important to use plant-friendly tools for plant miRNA 

identification. These plant-friendly tools are summarized in Table 3. Figure 4 shows the workflow of 

miRNA gene prediction. 

Table 3. Summary of plant-friendly miRNA prediction tools using deep sequencing data. 

Tool Property Reference 

miRDeep-P 
Adopting miRDeep core algorithm with modified step of setting 
a maximal value for the MFE log-odds score to account for 
longer plant miRNA precursors 

[70] 

miRPlant 
Implementing miRDeep* [74] with 100 and 200 nt extended 
genomic regions from mapped read peaks to include more 
bona fide miRNA precursor candidates 

[71] 

miR-PREFeR 
Filtering miRNA precursor candidates with criteria suggested 
in [75] for annotating plant miRNAs 

[76] 

MIReNA 
Filtering putative precursors with length-normalized and  
GC-normalized MFE to accommodate the prediction of  
plant miRNAs 

[72] 

ShortStack 

Defining structural miRNA parameters based on selected 
annotated miRNA in miRBase depending on the “miRType” 
specified by user, either “plant” or “animal”, subsequently 
filter candidates with criteria suggested in [75] 

[77] 
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Figure 4. A flowchart for miRNA gene prediction. This flowchart summarized how 

computational tools predict miRNAs with different approaches. Purely ab initio miRNA 

prediction programs (pink boxes) use the reference genome of interest as the only starting 

material to generate miRNA precursor candidates, followed by classifying/filtering with 

known miRNA properties. In contrast, comparative genomics miRNA prediction programs 

(green boxes) start with identifying conserved regions between two or more genomes to 

generate miRNA precursor candidates, followed by the same classifying/filtering step of 

purely ab initio prediction programs (orange boxes). The sequencing read-based prediction 

programs (purple boxes) use miRNA expression data to locate possible mature miRNAs. 

Subsequently, flanking genomic regions of mapped reads are extracted and evaluated whether 

they pass the criteria of miRNA annotation, using various scoring/classifying algorithms. 

3.1.2. Computational Prediction of TAS-Like Loci 

Based on the characteristics of ta-siRNAs, computational methods have been employed to predict 

TAS-like loci in plants. Since the phased 21 nt increments have been observed for all known TAS loci 

in Arabidopsis thaliana, the algorithm utilizes the phasing feature to predict novel TAS loci [78]. Usually 

11 cycles of a 231-bp window of sequence downstream of the 5′ mapping start site of each sRNA  

are examined. Significant occurrences from random events can be identified by calculating the p-value 

for k-phased sRNAs, and a p-value between 0.0005 and 0.001 is considered stringent. The following 

equation shows the p-value calculation: 
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( = ) =  (1)

where k is the number of distinct sRNAs mapped to phased positions and n is the total distinct sRNAs 

observed in a 231-bp fragment. 

( ) = ( ) (2)

The algorithm can also be modified to predict phasiRNAs with phasing intervals other than 21 nt, 

such as that used by the plant sRNA regulatory cascade analysis server pssRNAMiner [79]. In this 

revised version, the number of positions having sRNAs are mapped, rather than counting the number of 

distinct sRNAs [79], with a new variable (±2 nt) added to reflect the offset [47] of the cleavage positions 

of phased sRNAs to phased positions. 

Another method to evaluate phased regions is to use the phase score (P) [80] to examine each of  

the 8-cycle windows using 454 pyrosequencing reads, and its calculation is shown below: 

= In 1 + , > 0 (3)

where n is the number of phased cycle positions occupied by at least one sRNA read and k is the total 

number of reads with consolidated start coordinates in a given phase. An adjusted version of phase score 

was proposed [81] which was fitted to analyze the Illumina sequencing reads. 

3.1.3. Common Features of Target Prediction Tools 

There are a few considerations in the design and development of sRNA target prediction tools.  

First of all, sRNAs are mapped to mRNA transcripts to get a set of potential targets. BLAST [82] and 

Smith-Waterman algorithm [83] are widely used in sequence alignments. Based on the phenomenon  

that sRNAs are highly complementary to their mRNA targets, the sequence similarity and binding 

pattern in potential sRNA-target pairs are further modeled into scoring schemes [84–91]. The number of 

mismatches, insertions/deletions (indels) and gaps allowed in miRNA-mRNA alignment are limited  

in sequence similarity requirements, and mismatches/indels/gaps at positions near the 5′ ends of miRNAs 

are further punished. Besides examining the complementarity between sRNA and target sequences, 

psRNATarget [92] also integrates reverse complementary matching and target-site accessibility, which 

in turn is evaluated by the energy required to “open” secondary structures around target sites on mRNAs. 

3.1.4. Functions of Prediction Tools 

Most prediction methods/tools are used to search for potential targets for query sRNAs [45,84,85,87–89,92], 

and some search potential sRNAs that can target to the query mRNAs [86]. In addition to reporting  

target mRNAs, psRNATarget also predicts if the sRNA regulatory effect is at the post-transcriptional or 

translational level. The sRNA regulatory effect is reported as translational inhibition when a mismatch 

is detected in the central complementary region of the sRNA sequence [92]. 
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3.2. Computational Prediction of sRNA Targets 

Plant RNA targets have been computationally predicted on the basis of their extensive complementarity 

to the miRNAs. A variety of computational tools specific for plant miRNAs have been developed in 

recent years, including miRU [85], C-mii [87], TAPIR [91], miRTour [93], psRNATarget [92],  

and Targetfinder [45,84], as opposed to tools designed for mammalian miRNAs such as miRanda [94] 

and RNAHybrid [95]. Several principles of plant miRNA target prediction include an alignment  

scoring scheme, target site accessibility [96,97] and mapping patterns between miRNAs and mRNA 

targets (such as G:U wobbles and mismatches), which are commonly applied in many tools and  

methods [45,84–87,89–91,93]. 

Ta-siRNAs interact with target RNAs by the same mechanism as miRNAs [45], and thus the current 

prediction methods for ta-siRNA targets are similar to those of miRNAs. psRNATarget can detect targets 

for both miRNAs and ta-siRNAs using the same strategy. In a study on grapevine [89], ta-siRNA targets 

were predicted by applying standard BLASTn [82] without any filters to search for complementarity 

between ta-siRNA and transcripts. The results of target prediction based on sequence similarity  

using BLASTn alone need further validation to reduce false-positive hits that show high similarity to  

the real targets. 

3.3. High-Throughput sRNA Target Identification—Degradome 

Given the high false-positive rate, high-throughput experimental confirmation of computational 

predicted targets is an important step to expedite sRNA researches. Degradome sequencing [98],  

also known as parallel analysis of RNA ends (PARE) [99], provides a high-throughput strategy for the 

global experimental identification of targets for miRNAs, ta-siRNAs and NAT-siRNAs. The protocol 

for constructing a degradome library is modified from RLM-RACE, in order to sequence millions of  

5′ uncapped ends of RNA fragments originating from poly-A RNAs [99,100]. Some of these fragments 

represent cleavage signatures as a result of sRNA regulation. To identify miRNA targets, degradome 

sequencing reads are first mapped to genome/transcripts, then these reads are extended a few nucleotides 

both upstream and downstream to retrieve the extended degradome tags. If the 10th position of a miRNA 

was aligned to the starting position of a read on an extended degradome tag, the tag will be reported as 

the miRNA cleavage signature [98,101]. To identify a true miRNA cleavage from background noise, 

target plots (t-plots) (a function of degradome reads abundance against the position on a transcript) can 

be used. The true miRNA cleavages usually have a high abundance at a specific position on a t-plot.  

An automated plant-compatible pipeline CleaveLand was developed to facilitate the interpretation  

of degradome data [102]. For ta-siRNA and NAT-siRNA targets, similar and simpler methods are 

employed. SiRNAs of lengths 20–22 nt were aligned to degradome tags, and alignments indicated 

cleavage of mRNA [102]. Degradome analyses can significantly increase the precision of sRNA target 

identification and reduce the number of false-positive targets. However, its major drawback is the 

requirement of a large amount of RNA inputs for the library preparation [99,100]. 
  



Int. J. Mol. Sci. 2015, 16 24543 

 

 

4. Experimental Validations of Predicted sRNAs 

The genome-wide identification of sRNAs by deep RNA sequencing has been a popular strategy  

to search for abiotic stress-responsive sRNAs. However, deep sequencing has to be followed by 

experimental validation to provide the biological context for the big data set. The existence of  

the predicted sRNAs, targets of the sRNAs, and the biological functions of the sRNAs have to be 

validated. The classical validation methodologies are summarized in Table 4. 

Table 4. Summary of experimental methodologies previously used for sRNA studies. 

Method Stress sRNA Reference 

Validation of the existence of sRNA 

qRT-PCR Salinity, copper deficiency miR397, miR857 [103] 

Northern blot 

Salinity, sulphur deprivation, oxidative 
stress, nitrogen deficiency, inorganic 
phosphtase deprivation, drought, 
irradiation, copper deficiency 

miR399, miR395, 
miR398, miR408 

[34,90,104–110] 

Validation of the target gene 

5′ RACE Copper deficiency miR397, miR408 [103] 

Transgenic plant for functional test 

Arabidopsis Inorganic phosphate deprivation miR399 [104] 

Arabidopsis Drought miR196 [111] 

Creeping bentgrass Drought, salinity miR319 [112] 

Classical validation methodologies suffer from various shortcomings. Therefore, we will discuss 

below the recent advancements and improvements of these validation methodologies. 

4.1. Validation of sRNAs Expression 

4.1.1. Quantitative Detection of sRNAs by Northern Blot 

Northern blot is a traditional method for studying gene expression. However, this method suffers from 

low sensitivity and low throughput. Despite these drawbacks, northern blot is still a valuable tool for 

studying the sRNA size, differentiating sRNAs of highly similar sequences, and detecting a mature 

sRNA and its precursor simultaneously [113]. These northern blots have been modified specifically for 

detecting sRNAs by improving probe synthesis and cross-linking methods. Traditional cross-linking 

methods for mRNA, such as heat or alkaline-assisted fixation, are not suitable for sRNAs due to  

their small sizes. On the other hand, UV-mediated cross-linking can potentially reduce the detection 

sensitivity [113]. Locked nucleic acid (LNA), an RNA analog containing a modified ribose moiety, has 

been used to modify oligonucleotide probes to improve detection sensitivity [114]. In principle, LNAs 

are incorporated into every 3rd nucleotide position on LNA-modified probes, resulting in better binding 

specificity and sensitivity than traditional DNA probes [114]. A chemical cross-linking method using  

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) has also been introduced to improve detection 

sensitivity [113]. EDC cross-linking facilitates the formation of covalent bonds between the terminal 

phosphate of RNAs to the amino group on the nylon membrane, and the detection sensitivity can be 
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enhanced by up to 50 folds [113]. Based on LNA-modified probes (L), EDC cross-linking (E) and 

traditional digoxigenin (DIG)-labeled probes (D), an LED protocol was further developed to enhance 

the detection sensitivity for rare sRNAs [115]. However, due to the short lengths of sRNA, there is a 

high possibility that different sRNAs may share similar sequences. 

4.1.2. Quantitative Detection of sRNAs by qPCR 

An obvious advantage of qPCR is that the amount of starting RNA material is significantly lower 

than that required for a northern blot [116]. Unlike traditional mRNA expression studies by qPCR,  

the length of sRNAs is too short to allow the annealing of PCR primers at both ends. There are mainly 

two types of detection methods used in qPCR, namely interchelating dye-based and probe-based  

methods [117]. For interchelating dye-based detection, the experimental procedures include the isolation 

of sRNAs, addition of poly-A at the 3′ ends by polyadenylation and reverse transcription using  

a primer consisting of poly-T at the 3′ end and adaptor sequence at the 5′ end, followed by qPCR using 

an sRNA-specific primer and an adaptor-specific primer [116]. For the probe-based detection method, 

TaqMan PCR is a common strategy [118]. Unlike the interchelating dye-based method, TaqMan PCR 

does not involve polyadenylation. Reverse transcription is mediated by a stem-loop primer which is 

complementary to the sRNA at its 3′ end with an adaptor sequence at its 5′ end. Using an sRNA-specific 

primer and an adaptor-specific primer, PCR is performed in the presence of a TaqMan probe for 

detection [118]. To improve the sensitivity of sRNA-qPCR, Zip Nucleic Acids (ZNAs) can be used as 

qPCR primers by their rapid binding to target DNAs and stably enhance the amplification of rare DNA 

species [119,120]. Common strategies of normalization involve the use of endogenous house-keeping 

genes or the external spike-in of control oligonucleotides that relies on the accuracy of quantifying the 

oligonucleotide used [117]. 

4.1.3. In Situ Hybridization for Spatiotemporal Detection of sRNAs 

In situ hybridization allows the tissue-specific and spatiotemporal detection of sRNAs [121].  

DIG-labeled probes are commonly used in in situ hybridization. However, its sensitivity and specificity 

of detection have been challenged [121]. Recently, a refined protocol using LNA probes was introduced 

in a number of plant tissues [121]. In this protocol, the permeability of sample tissue is improved by 

protease treatment to enhance detection sensitivity. Triethanolamine-acetic anhydride (TEA) is also  

used to treat the sample tissue to reduce non-specific binding between the probe and positively-charged 

amino acids, and RNase is used in the post-hybridization wash to reduce non-specific binding [121].  

As a low-cost alternative, ZNA probes for whole-mount in situ hybridization have been successfully 

used in Arabidopsis tissues [122]. 

4.2. Validation of sRNA Targets 

The functional validation of sRNAs involves the validation of binding targets predicted 

computationally and the study of the functional roles of the sRNAs of interest in the biological systems. 
  



Int. J. Mol. Sci. 2015, 16 24545 

 

 

4.2.1. Labeled miRNA Pull-down (LAMP) Assay System 

The LAMP assay system was employed successfully in zebrafish and C. elegans as an experimental 

approach to validate the target transcripts of a miRNA of interest [123]. In the LAMP assay system,  

the pre-miRNA is DIG-labeled and mixed with a cell extract to allow the in vitro production of mature 

miRNA and the binding between the miRNA with its target [123]. The miRNA-transcript complex is 

then pulled down by immunoprecipitation [123]. This approach is relatively straightforward. However, 

it has been criticized that the presence of the DIG group may influence the processing of pre-miRNA as 

well as the binding of the miRNA to its target [124]. Furthermore, the specificity of this in vitro approach 

is also questionable [124]. Hence, the LAMP assay is not yet popular in the study of plant systems. 

4.2.2. RNA Ligase-Mediated Amplification of cDNA End (RLM-RACE) 

RLM-RACE involves the isolation of mRNAs with a poly-A tail, followed by the ligation of  

an RNA adaptor at the 5′ end of the cleavage product which contains the 5′ monophosphate available  

for ligation [33]. After reverse transcription using an oligo-T (dT) primer, the cDNAs of the cleavage 

products are amplified with the use of a 5′ adaptor-specific primer and a gene-specific primer. The  

PCR product is then confirmed by sequencing [33]. Since RLM-RACE yields the cDNAs of all cleaved 

mRNAs with 5′ monophosphate available for ligation, this method cannot distinguish which type of 

sRNAs are involved in mRNA cleavages. 

4.3. Functional Validation of sRNAs 

To have better understanding of the biological roles of the sRNAs, functional analyses are necessary. 

Functional analyses include the study on the regulatory roles, either positive or negative, of sRNAs  

and also the validation of predicted sRNA targets. The validation of the predicted sRNA targets  

usually involves reporter assays, while the study on sRNA regulatory roles includes gain-of-function or  

loss-of-function approaches. 

4.3.1. Reporter Assays 

Reporter assays are in vivo approaches to validate the binding between the sRNA of interest and  

the predicted targets. These assays involve the transient or stable expression of a construct composed of 

the target sequence of sRNA at the 3′ UTR downstream to a reporter gene such as green fluorescence 

protein (GFP) and luciferase. When the sRNA of interest and the reporter gene are co-expressed, the 

transcripts of the reporter gene will be cleaved, leading to a reduction of the reporter signal [125]. 

However, such reporter assays involve transgenesis which could be a limiting factor for some plant species. 

4.3.2. Validation of the Effect of the sRNA of Interest on the Target Gene Expression 

The effect of sRNAs can be either on the transcript cleavage or the inhibition of translation [126]. 

Therefore, it is expected that the change in sRNA expressions would alter the expression of target  

genes at the transcript level or protein level. Over-expression and knock-down of the sRNA concerned 

are common strategies to investigate the effects of the sRNA abundance on the target transcript 
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expression [125]. The knock-down of sRNA is commonly done by transforming the anti-sense sRNA 

into the system to be studied [125]. Following the study of the effects of the sRNA on the target gene 

expression, physiological investigations are needed to understand the response of the biological system 

to the altered sRNA expression level. Similar to reporter assays, such over-expression and knock-down 

approaches are challenging in many plant systems that are not readily transformable. T-DNA insertion 

has been a common approach in inducing plant mutagenesis [127]. However, the efficiency of sRNA 

precursor mutations by T-DNA insertion is not satisfactory [127,128]. In the genome-wide mutagenesis 

study in Arabidopsis thaliana, over 225,000 T-DNA insertion events resulted in the identification of 

only 21,799 mutations of genes [127]. Thus alternative approaches have been developed to validate  

the function of the sRNA of interest. Using Arabidopsis as a model, the artificial miRNA (amiRNA) 

technology was introduced to silence endogenous miRNA [128]. The amiRNA technology works  

with Agrobacterium-mediated transformation of Arabidopsis thaliana to introduce the amiRNA into  

the genome [128]. If an amiRNA is designed to target the mature miRNA, it will result in the silencing 

of the whole family of the miRNA [128]. On the contrary, if the amiRNA is designed to target the  

stem-loop of the miRNA precursor, it will silence a specific targeted miRNA family member [128].  

This method has been demonstrated in the sRNA-guided cleavage of pre-sRNAs in the plant nucleus  

so far [128]. Other than modulating the expression of the sRNA concerned, the plant can also be 

transformed with the modified target of the sRNA in the target mimicry approach where the function of 

the sRNA will be negated [129]. A comparison of sRNA validation methods is shown in Table 5. 

Table 5. Comparison of methods for sRNA validation. 

Purpose Method Advantage(s) Disadvantage(s) 

Validation of  
the existence of 
predicted sRNA 

Northern blot 
Quantitative, simultaneous 
detection of sRNA and  
its precursor 

Optimization steps are needed to 
improve sensitivity and specificity. 

qPCR 
Small amount of RNA  
is required 

Normalization by spike-in control or 
housekeeping genes can be unreliable. 

Validation of  
the existence of 
predicted sRNA 

In situ 
hybridization 

Allows tissue-specific and 
spatiotemporal detection 

Optimization steps are needed to 
improve sensitivity and specificity. 

Functional analysis 
of sRNA 

LAMP assay Straightforward 
An in vitro approach, the pre-miRNA 
processing and specificity have been 
questioned; not popular for plants. 

RLM-RACE 
Previous knowledge of  
the cleaved mRNA is  
not required 

Cannot distinguish by which type of 
sRNA the mRNA cleavage is mediated. 

Reporter assays An in vivo approach 
Transformation of the species under 
study is needed. 

5. Conclusions 

Different classes of sRNAs have been shown to associate with abiotic stresses. Computational 

prediction is a powerful approach to perform a genome-wide search of sRNAs. However, special 

attention should be paid to plant sRNA analyses since the methods used in animal research need to be 
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optimized for their proper use in plant applications. Moreover, experimental validation is an essential 

step before making conclusions on the biological functions of the identified sRNAs. 
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