
 

Supplementary Information 

Determining the Value of (50 )
PE

SE  

From Figure 2 for the translation through the single-stranded mRNA with PE = 1, the mean time of 

an elongation cycle under saturating concentrations of EF-G·GTP and the aminoacyl-tRNA·EF-Tu·GTP 

ternary complex is calculated by 
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The translation rate is calculated by 
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Then, consider the translation through the mRNA duplex, with PE < 1. Based on Figure 2, for  

the mRNA duplex with n base pairs next to the mRNA-entry channel of the ribosome being open 

spontaneously the translation rate under saturating concentrations of EF-G·GTP and the ternary complex 

is calculated by 
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where ( )
E

nP is calculated by Equations (1)–(4), τ  is calculated by Equation (S1) and τF  is calculated by 
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Equation (S3) can be rewritten as 
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The mean translation rate is then calculated by 
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It is seen that when ( )n
EP  = 1, Equations (S5) and (S6) or (S7) are reduced to Equation (S2). It is 

also noted that if the time of slow EF-G∙GDP release from the pre-translocation State F is close to the 

time of fast EF-G∙GDP release from the post-translocation state plus the time from the binding of the 
ternary complex through the peptidyl transfer, i.e., τ τF≈ , Equations (S5) and (S6) or (S7) are reduced 

to ( )( ) ( )
0 E O
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Equation (S8) is the same as that used in the previous work [13]. It is noted here that with  

values of the rate constants given in Table 1, from Figure 2 it is calculated that the mean  

time of transition from State POST to State C at saturating ternary complex, 

( ) ( )5 7 7 8 7 8 9 10 11τ 1 1 1 1POST C k k k k k k k k k→ −= + + + + + + , is comparable to the time τ 1r rk= . Thus, 

as seen from Equations (S1) and (S4), the approximation τ τF≈  is valid. 

As done in the previous work [13], for fixed Zmax = 0.58 nm/base, Ebp = 3kBT and b = 1.85 nm for  

mRNA duplex hpValGC50, using Equation (S8) the experimental data on the rate of the ribosome 

translation through mRNA duplex hpValGC50 vs. the pulling force F [7] can be fitted well, as shown in 

Figure S1, where the parameters for the ribosome are (50 )
PE

SE  = 9kBT and v0 = 0.42 codons/s. Similarly, 

for Zmax = 0.58 nm/base, Ebp = 3.3kBT and b = 0.72 nm for mRNA duplex hpValGC100, and (50 )
PE

SE  = 9kBT 

and v0 = 0.42 codons/s for the ribosome, using Equation (S8) the theoretical data on the rate of the 

ribosome translation through mRNA duplex hpValGC100 are also in good agreement with  

the experimental data [7] (Figure S1). It is noted here that the base-pairing energies Ebp = 3kBT  

for hpValGC50 and Ebp = 3.3kBT for hpValGC100 are consistent with those estimated by using the  

nearest-neighboring thermodynamic model for the RNA duplex stability [51]. The maximum extension 

of the single-stranded mRNA containing onebaseunder the pulling force, Zmax = 0.58 nm/base,  

is the same as that used in the literature (see main text). The Kuhn length b = 1.85 nm for hpValGC50 and 

b = 0.72 nm for hpValGC100 are consistent with those (b = 0.6–2.5 nm) estimated in the literature  

(see main text). Moreover, since the Kuhn length is dependent on the persistence length that is sequence 

dependent [52], it is understandable that the two duplexeshpValGC50and hpValGC100 have different  

Kuhn lengths. 

 

Figure S1. Mean rate of translation through mRNA duplexes vs. the pulling force F to unzip 

the duplexes. Solid lines are theoretical results and symbols are experimental data taken from 

Qu et al. [7] (reproduced with permission from Nature). The black line and symbols are for 

mRNA duplex hpValGC50, while the red line and symbols are for mRNA duplex hpValGC100. 
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Figure S2. Distributions of dwell times calculated by taking PE = 1 (black lines), which 

corresponds to the translation through the single-stranded mRNA. In order to make a direct 

comparison with the experimental data, we multiply the calculated distribution of dwell 

times, h(t), by a constant C. Red dots are experimental data taken from Wen et al. [6]. 

(a) With values of rate constants k1–k11 as given in Table 1. The experimental data are taken 

from Figure 4a in Wen et al. [6]; (b) With values of rate constants k1–k11 given in Table 1 

being divided by 1.5. The experimental data are taken from Figure S5a in Wen et al. [6];  

(c) With rate constant of the translocation step, k4, given in Table 1 being divided by 80 

while with values of other rate constants as given in Table 1. The experimental data are taken 

from Figure S5a in Wen et al. [6] (reproduced with permission from Nature). 

 

Figure S3. Distributions of dwell times with long durations (>7 s) calculated by taking  

PE = 1 (black line), which corresponds to the translation through the single-stranded mRNA. 

In order to make a direct comparison with the experimental data, we multiply the calculated 
distribution of dwell times, ( )h t , by a constant C. Red dots are experimental data taken  

from Figure S5b in Wen et al. [6] (reproduced with permission from Nature). (a) With values 

of rate constants k1–k11 given in Table 1 being divided by 9; and (b) With rate constant of  

the translocation step, k4, given in Table 1 being divided by 1000 while with values of other 

rate constants as given in Table 1. 
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Figure S4. Normalized distributions of dwell times calculated by taking PE = 1, which 

corresponds to the translation through the single-stranded mRNA, but with different values 

of α, where k4 is replaced by k4/α. 

 

Figure S5. Dwell time, tmax, at which the maximum value of the distribution occurs, dwell 
time, (1)

1 3t , at which the distribution increases from zero to the value equal to one third of  

the maximal value, and dwell time, (2)
1 3t , at which the distribution decreases from the 

maximal value to the value equal to one third of the maximal value, vs. α (left panel, a), 
which are obtained from Figure S4. The right panel (b) corresponds to tmax, (1)

1 3t  and (2)
1 3t  vs.  

the translation rate v0, where the theoretical data for v0 are calculated by using Equations (S1) 

and (S2). The two experimental data for tmax are taken from and those for v are calculated 

from the two distributions of dwell times shown in Figure 4a and Figure S5a of Wen et al. [6]. 
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Figure S6. Normalized distributions of dwell times, h(n)(t) for different values of ( )
E

nP . 

 

Figure S7. Dwell time, ( )
max
nt , at which the maximum value of the distribution ( ) ( )nh t  

occurs, dwell time, ( 1)
1 3

nt , at which the distribution ( ) ( )nh t  increases from zero to the value 

equal to one third of the maximal value, and dwell time, ( 2)
1 3

nt , at which the distribution 

( ) ( )nh t  decreases from the maximal value to the value equal to one third of the maximal value, 

vs. the effective translocation probability ( )
E

nP , which are obtained from Figure S6. 


