Supplementary Information

Determining the Value of E](J%OS)

From Figure 2 for the translation through the single-stranded mRNA with P = 1, the mean time of
an elongation cycle under saturating concentrations of EF-G-GTP and the aminoacyl-tRNA-EF-Tu-GTP
ternary complex is calculated by
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The translation rate is calculated by
. :
0= (S2)

Then, consider the translation through the mRNA duplex, with Pe < 1. Based on Figure 2, for
the mRNA duplex with n base pairs next to the mRNA-entry channel of the ribosome being open
spontaneously the translation rate under saturating concentrations of EF-G-GTP and the ternary complex
is calculated by
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where PFE”) is calculated by Equations (1)~(4), t is calculated by Equation (S1) and 1, is calculated by
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Equation (S3) can be rewritten as
0 — 1
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The mean translation rate is then calculated by

v=3(v"1£5") (S6)

Since V" =y and Z f(g") =1, Equation (S6) can be rewritten as
n=0
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It is seen that when Pbg”) = 1, Equations (S5) and (S6) or (S7) are reduced to Equation (S2). It is

also noted that if the time of slow EF-G-GDP release from the pre-translocation State F is close to the

time of fast EF-G-GDP release from the post-translocation state plus the time from the binding of the
ternary complex through the peptidyl transfer, i.e., ©= 1, Equations (S5) and (S6) or (S7) are reduced

to v= i(voPé")f(g")), ie.,
n=0
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Equation (S8) is the same as that used in the previous work [13]. It is noted here that with
values of the rate constants given in Table 1, from Figure 2 it is calculated that the mean
time of transition from State POST to State C at saturating ternary complex,
Tposroc = ks +(k; +k_; + kg ) [(kykg ) +1/ko +1/kyo +1/ky; , is comparable to the time T, =1/k, . Thus,
as seen from Equations (S1) and (S4), the approximationt = 1 is valid.

As done in the previous work [13], for fixed Zmax = 0.58 nm/base, Evp = 3k7 and b = 1.85 nm for
mRNA duplex hpValccso, using Equation (S8) the experimental data on the rate of the ribosome
translation through mRNA duplex hpValacceso vs. the pulling force F [7] can be fitted well, as shown in
Figure S1, where the parameters for the ribosome are E$° ) = 9kpT and vo = 0.42 codons/s. Similarly,

for Zmax = 0.58 nm/base, Evp = 3.3ksT and b = 0.72 nm for mRNA duplex hpValscioo, and ES’S) = 9ksT

and vo = 0.42 codons/s for the ribosome, using Equation (S8) the theoretical data on the rate of the
ribosome translation through mRNA duplex hpValccioo are also in good agreement with
the experimental data [7] (Figure S1). It is noted here that the base-pairing energies Ebp = 3ksT
for hpValceso and Evp = 3.3ksT for hpValGcioo are consistent with those estimated by using the
nearest-neighboring thermodynamic model for the RNA duplex stability [51]. The maximum extension
of the single-stranded mRNA containing onebaseunder the pulling force, Zmax = 0.58 nm/base,
is the same as that used in the literature (see main text). The Kuhn length » = 1.85 nm for hpValccso and
b = 0.72 nm for hpValccioo are consistent with those (b = 0.6-2.5 nm) estimated in the literature
(see main text). Moreover, since the Kuhn length is dependent on the persistence length that is sequence
dependent [52], it is understandable that the two duplexeshpValccsoand hpValceioo have different
Kuhn lengths.
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Figure S1. Mean rate of translation through mRNA duplexes vs. the pulling force F to unzip
the duplexes. Solid lines are theoretical results and symbols are experimental data taken from
Qu et al. [7] (reproduced with permission from Nature). The black line and symbols are for
mRNA duplex hpValccso, while the red line and symbols are for mRNA duplex hpValacioo.
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Figure S2. Distributions of dwell times calculated by taking Pr = 1 (black lines), which
corresponds to the translation through the single-stranded mRNA. In order to make a direct
comparison with the experimental data, we multiply the calculated distribution of dwell
times, /(f), by a constant C. Red dots are experimental data taken from Wen et al. [6].
(a) With values of rate constants k1—k11 as given in Table 1. The experimental data are taken
from Figure 4a in Wen et al. [6]; (b) With values of rate constants ki—k11 given in Table 1
being divided by 1.5. The experimental data are taken from Figure S5a in Wen et al. [6];
(c) With rate constant of the translocation step, k4, given in Table 1 being divided by 80
while with values of other rate constants as given in Table 1. The experimental data are taken
from Figure S5a in Wen et al. [6] (reproduced with permission from Nature).
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Figure S3. Distributions of dwell times with long durations (>7 s) calculated by taking
Pr=1 (black line), which corresponds to the translation through the single-stranded mRNA.
In order to make a direct comparison with the experimental data, we multiply the calculated
distribution of dwell times, A(¢), by a constant C. Red dots are experimental data taken
from Figure S5b in Wen et al. [6] (reproduced with permission from Nature). (a) With values
of rate constants ki—ki1 given in Table 1 being divided by 9; and (b) With rate constant of
the translocation step, k4, given in Table 1 being divided by 1000 while with values of other
rate constants as given in Table 1.
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Figure S4. Normalized distributions of dwell times calculated by taking Pt = 1, which
corresponds to the translation through the single-stranded mRNA, but with different values
of a, where k4 is replaced by k4/a.
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Figure SS. Dwell time, fmax, at which the maximum value of the distribution occurs, dwell
time, tl(/lg , at which the distribution increases from zero to the value equal to one third of

the maximal value, and dwell time, ’1(/23) , at which the distribution decreases from the

maximal value to the value equal to one third of the maximal value, vs. a (left panel, a),

which are obtained from Figure S4. The right panel (b) corresponds to #max, tl(/lg and t1(/23) Vs.

the translation rate vo, where the theoretical data for vo are calculated by using Equations (S1)
and (S2). The two experimental data for fmax are taken from and those for v are calculated
from the two distributions of dwell times shown in Figure 4a and Figure S5a of Wen et al. [6].
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Figure S6. Normalized distributions of dwell times, #™() for different values of PE(").

5

4‘ ()
— —o—t__ (theo)
~ (nl)
OIS 3—+t1 " (theo)
%= 3
S (n2)
e) 2_+t1 3 (theo),
~ &
E;iE

I oee e e e .

0 T T T T T
00 02 04 06 08 1.0
P(n)

E

Figure S7. Dwell time, ) , at which the maximum value of the distribution h(1)
occurs, dwell time, t](/’gl) , at which the distribution h(")(t) increases from zero to the value
equal to one third of the maximal value, and dwell time, tl(/gz) , at which the distribution
K™ (t) decreases from the maximal value to the value equal to one third of the maximal value,

vs. the effective translocation probability PE(”) , which are obtained from Figure S6.



