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Abstract: Spleen tyrosine kinase (Syk) plays an indispensable role through preliminary 

extracellular antigen-induced crosslinking of Fc receptor (FcR) in the pathogenesis of 

autoimmune disorders, such as rheumatoid arthritis. In this study, we identify Vam3,  

a dimeric derivative of resveratrol isolated from grapes, as an ATP-competitive inhibitor of 

Syk with an IC50 of 62.95 nM in an in vitro kinase assay. Moreover, docking and molecular 

dynamics simulation approaches were performed to get more detailed information about 

the binding mode of Vam3 and Syk. The results show that 11b-OH on ring-C and 4b-OH 

on ring-D could form two hydrogen bonds with Glu449 and Phe382 of Syk, respectively.  

In addition, arene-cation interaction between ring-D of Vam3 and Lys402 of Syk was also 

observed. These results indicate that ring-C and D play an essential role in Vam3–Syk 

interaction. Our studies may be helpful in the structural optimization of Vam3, and also aid 

the design of novel Syk inhibitors in the future. 

Keywords: Vam3; Syk; docking; molecular dynamics simulation; Syk inhibitor 

 
  

OPEN ACCESS



Int. J. Mol. Sci. 2014, 15 17189 

 

 

1. Introduction 

Allergic and autoimmune disorders share significant functional overlap in the biologic pathways 

responsible for the activation of signal transduction events leading to production of numerous 

proinflammatory factors involved in disease initiation and progression [1]. Given the reciprocal 

connections in these mechanistic pathways, it would be advantageous to target strategic master regulators 

with novel therapeutics to treat allergic and autoimmune diseases. One such crucial regulator is spleen 

tyrosine kinase (Syk). Syk is a cytosolic non-receptor tyrosine kinase. It serves as a key mediator of  

B-cell receptor and Fc receptor mediated signaling in inflammatory cells such as B cells, mast cells, 

macrophages, dendritic cells, and neutrophils and is involved in bone resorption by osteoclasts [2–4]. 

Activation of Syk occurs through preliminary extracellular antigen-induced crosslinking of FcεR1  

and FcγRs I, IIA, and IIIA. Upon abnormal activation, Syk, a master upstream regulator of signal 

transduction, propagates downstream signaling molecules, resulting in initiation of disease [3]. 

Furthermore, in specific contexts, uncontrolled activation of B cell receptor (BCR) signaling via Syk 

would lead to development of lymphomas and leukemia. Murine studies have shown that Syk expression 

is required for the survival of Non-Hodgkin Lymphomas-like (NHL-like) tumors in vitro. Pharmacologic 

inhibition of Syk induced apoptosis in murine B-cell lymphomas in vitro and resulted in regression of 

NHL-like B-cell lymphomas [1,5]. 

Full-length Syk is composed of two N-terminal Src homology 2 (SH2) domains followed by an 

interdomain linker and a C-terminal kinase domain [6]. The tandem SH2 (tSH2) module is also separated 

by an inter-SH2 linker and serves as a docking platform for immune receptor tyrosine-based activating 

motifs (ITAMs) which are displayed at the cytosolic side of the plasma membrane [7,8]. The truncated 

kinase domain of Syk (Syk-KD), which contains an ATP-binding pocket shows significant catalytic 

activity and has been extensively used for inhibitor design [9]. 

In recent years, a number of Syk inhibitors have been discovered for treatment of autoimmune, 

allergic and autoinflammatory diseases and most of them are ATP-competitive Syk inhibitors [3,10–12]. 

Several research groups have independently reported the crystal structures of the Syk catalytic domain, 

co-crystallized and ligand soaked with small molecule inhibitors [13–16]. For example, as shown in 

Figure 1, OSB and 1B6 are two ATP-competitive inhibitors of Syk with an IC50 of 60 and 26 nM, 

respectively. The crystal structures of OSB and 1B6 with the catalytic domain of Syk were reported by 

Marcos Castillo et al. and Fernando Padilla et al., respectively [10,12]. 

Figure 1. Structures of 1B6 and OSB. 
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Vam3 (amurensis H), a resveratrol dimer, was first isolated from ethanol extracts of Vitis amurensis 

Rupr as a secondary natural product. Previous studies indicated that Vam3 has anti-inflammatory effects, 

including alleviate the asthmatic inflammation in asthmatic mice and decrease cigarette smoke-induced 

autophagy in human bronchial epithelial cells [17,18]. However, the molecular basis by which Vam3 

inhibits inflammation is not clear. In this study, we identified Vam3 as a potent ATP-competitive 

inhibitor of Syk kinase and it might exert its anti-inflammatories through the Syk pathway. As depicted 

in Figure 2c, Vam3 is a polyphenol hydroxyl natural product. Compared with other Syk inhibitors 

which contain different amounts of N atoms, Vam3 owns a polyphenol hydroxyl scaffold with no  

N atoms. This might provide a new strategy to design novel Syk inhibitors. However, the solubility of 

Vam3 in water is poor. Structural changes on Vam3 to improve its solubility should not decrease  

the binding affinity of Vam3. Therefore, interaction between Vam3 and Syk interaction should be 

understood first. Indeed, characterizing the 3D-structure of Syk–Vam3 complex using crystallization or 

nuclear magnetic resonance (NMR) techniques is the best way, but it is time and resource consuming. 

Figure 2. (a) IC50 determination of Vam3 with recombination Syk protein; (b) Ki 

determination of Vam3 with recombination Syk protein; (c) Chemical structure of Vam3. 

 

Fortunately, the comparably fast and inexpensive docking protocols can be combined with accurate 

but more expensive molecular dynamics (MD) simulation techniques to predict more reliable  

protein–ligand complex structures [19–21]. In our work, molecular docking and dynamics simulation 

were carried out to investigate the binding mode of the Vam3 with Syk. To investigate the reliability of 

our stimulation methods, OSB and 1B6 were employed as controls during the docking studies and 

dynamics simulations. Resveratrol, the monomer of Vam3, was used as a negative control to validate the 
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binding mode of Vam3–Syk complex. We hope that we can reveal the mechanism of the Vam3–Syk 

interaction and give some useful information to structure optimization of Vam3 as Syk selective inhibitor 

with good properties. 

2. Results and Discussion 

2.1. Vam3 Inhibited Syk Kinase Activity in Vitro 

Resveratrol is a polyphenolic compound found in grapes. Previous studies reported that resveratrol 

was a major Syk inhibitor and inhibits activation of Syk kinase in mast cell [22,23]. Vam3 is a derivative 

of resveratrol. Ring-C and D of Vam3 share the same structure with Resveratrol. This suggests that 

Vam3 may also have the capacity for Syk inhibition. 

To confirm that Syk was the cellular target of Vam3, in vitro kinase assays were performed by using 

purified Syk protein. As shown in Figure 2, Vam3 inhibited Syk kinase activity with an IC50 of 62.95 nM 

and Vam3 was shown to be an ATP-competitive inhibitor of Syk kinase with a Ki of 61.09 nM. 

2.2. Extra Precision Docking Studies 

Extra precision docking of Glide was carried out to investigate the binding mode of Vam3 with Syk. 

As for 1B6 and OSB, as revealed in Figure 3, two binding conformations of docking were performed 

respectively and there was no large difference between them. Therefore the conformations which 

achieved the highest GlideScore (G-score) were used as the initial structures for future binding mode 

analysis including a 15 ns MD simulation. As for Vam3, however, only one binding conformation was 

performed. This mainly came from the large rigidity of Vam3 and special shape of the ATP-binding 

pocket of Syk. Therefore the only credible docking result of Vam3 was used in future binding  

mode analysis. As shown in Figure 4, the three molecules (1B6, OSB and Vam3), as all of them are 

ATP-competitive inhibitor of Syk, were docked into the APT-binding pocket of Syk and all of them 

were positioned in the same location of Syk. 1B6 and OSB possessed a “U”-shaped conformations in 

the pocket while Vam3 shown the “ψ”-shape conformation. The binding modes of 1B6, OSB and 

Vam3 are shown in panels of Figure 4b–d, respectively. The detailed interactions will be discussed 

further in the following molecular dynamics simulations. 

Figure 3. Superposition of conformations of docking results of 1B6 (a) and OSB (b). 
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Figure 4. (a) Docked structures of 1B6 (green), OSB (yellow) and Vam3 (pink) with Syk; 

(b) The binding site positioned around 1B6; (c) The binding site positioned around OSB; 

(d) The binding site positioned around Vam3. 

 

2.3. Molecular Dynamics Simulation Studies 

In the docking studies, flexibility of the protein was not taken into consideration. In order to find  

the key residues and position of Vam3–Syk interaction, we performed 15 ns MD simulations with the 

Desmond program in which flexibility of proteins were taken into consideration. Three different systems 

were studied, including 1B6-bound system, OSB-bound system and Vam3-bound system. 1B6-bound 

system and OSB-bound system were taken as controls. The root mean square deviation (RMSD) values 

of the backbone atoms relative to the initial structure were calculated to measure the convergence of  

the systems and ensure the rationality of the sampling method. As depicted in Figure 5, the RMSD of  

the three were about 3.5 Å after 10 ns and all of them almost remained at this level in the following 

simulation processes. This indicated that the three systems were stable after 10 ns of simulation. 
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Therefore, as the essential roles of ring-C and D in Vam3–Syk interaction, structural optimization 

of Vam3 could focus on ring-A and B of Vam3 using chemical approach, such as bioisosteres [24].  

In addition, optimization of ring-A, the hydrophobic ring, with hydrophilic groups may improve  

its solubility. 

3. Materials and Methods 

3.1. Experimental Studies 

3.1.1. Plant Material 

Vam3 was isolated from the ethanol extracts of a methanol extracts of Vitis amurensis Rupr, as 

described previously. This compound was prepared by dissolving in dimethyl sulfoxide (DMSO) and 

the final concentration of DMSO was adjusted to 0.1% (v/v) in culture media. 

3.1.2. In Vitro Fluorescence Polarization Kinase Assay 

The reactions were carried out in a total volume of 25 μL in 96-well microtiter plates. The Syk 

tyrosine kinase activity at single dose concentration of 12.5 ng/μL, 10 μL of volume, was carried out 

served as the enzyme source. The total volume of 10 μL mixture containing 0.2 μg/μL Poly (Glu, Tyr) 

sodium salt (4:1, Glu:Tyr, Sigma–Aldrich, St. Louis, MO, USA) and 10 μM ATP (Promega, Madison, 

WI, USA) served as the standardized substrate. The concentration range of the tested inhibitors 

employed in reactions was 0.0032, 0.016, 0.08, 0.4, 2, 10 μM or DMSO with 5 μL volume. All of the 

enzymatic reactions were conducted at 37 °C for 60 min. The assay was terminated by adding 25 μL of 

ADP-GloTM Reagent (Promega, Madison, WI, USA). The 96-well plate was shaken and then incubated 

for 40 min at ambient temperature. Fifty microliter of Kinase detection reagent was added and the  

96-well reaction plate was then read using the ADP-Glo Luminescences Protocol on a GloMax plate 

reader (Promega: Catalog #E7031). For each concentration of Vam3, the rate of reaction at each 

concentration of ATP was determined and plotted against the ATP concentration to determine the 

apparent Km and Vmax (maximal rate). Finally, the apparent Km (or apparent Km/Vmax) was plotted 

against the inhibitor concentration to determine the Ki. All data analysis was performed using Prism 

and Prism enzyme kinetics programs. 

3.2. Computational Studies 

3.2.1. Preparation of Protein Target Structure 

The crystal structure of full-length Syk in complex with ANP (PDB code: 4FL2, with the resolution 

of 2.19 Ǻ) was retrieved from the RCSB Brookhaven Protein Data Bank (PDB) [6]. The structure is the 

only well-defined full-length Syk with a resolution of 2.19 Ǻ except for the first part of the N-terminus 

(amino acids 1–8) and for the interdomain linker region (amino acids 265–336). Indeed, using the 

catalytic domain alone in the simulation would save time. However, the simulation of the whole protein 

with inhibitor would provide more information about the SH2 domains, which is helpful to further study. 

Therefore 4FL2 was used as the receptor. Furthermore, 4FL2 is a full-length Syk in complex with  
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AMP–PNP revealing an autoinhibited conformation which is close to the conformation of Syk–ATP 

complex. Therefore, using 4FL2 as the receptor is more suitable than the other structures and can make 

docking and MD simulation results persuasive and convincing. As for the missing residues being far 

away from the ATP-binding pocket, lacking of these 73 residues would not largely affect the results of 

our simulations. Therefore, we do not model this part. Then the structure was prepared using the 

following procedures by the Protein Preparation Wizard in the Schrödinger software suite, including 

adding hydrogen atoms, assigning partial charges using the OPLS_2005 force field and assigning 

protonation states, and structure minimizing in vacuum. Finally, the cocrystal ANP was removed, and the 

resulting structure was used as the receptor model in the following studies. 

3.2.2. Ligand Preparation 

The structure of Vam3 and resveratrol was constructed using Mastro [25], while the ligands OSB 

and 1B6 were retrieved from the Protein Data Bank (PDB code: 4F4P and 4Y0T, respectively) [10,12]. 

All the ligands were prepared by using the LigPrep [26] and then to proceed with stereoisomer 

generation, neutralization of charged structures and determination of the most probable ionization  

state at pH 7.2 ± 0.2. The OPLS-2005 forcefield was used for optimization to produce the low-energy 

conformer of the ligand [27]. 

3.2.3. Molecular Docking 

The ligands Vam3, resveratrol, OSB and 1B6 were docked into the receptor using Glide software [28]. 

Glide approximated a complete systematic search of the conformational, orientational and positional 

space of the docked ligand, and a series of hierarchical filters was used to search for possible locations of 

the ligand in the active-site region. In this work, grid box was centered on the ATP centroid in the X-ray 

crystal structure of Syk and the ligands were docked into the box using the “extra precision” glide 

docking (Glide XP) which docks ligands flexibly and the protein rigidly. The quality of the geometric 

matches of the docked binding structures with the lowest GlideScore was visually checked and the  

best one was selected as the initial complex for further studies. GlideScore is based on ChemScore,  

but includes a steric-clash term and adds buried polar terms devised by Schrödinger to penalize 

electrostatic mismatches: 

GScore = 0.065 × vdW + 0.130 × Coul + Lipo + H-bond + Metal + BuryP + RotB + Site (1)

where vdW, Coul, Lipo, H-bond, Metal, BuryP, RotB and Site are the van der Waals energy, Coulomb 

energy, Lipophilic contact term, Hydrogen-bonding term, Metal-binding term, Penalty for buried polar 

groups, Penalty for freezing rotatable bonds and Polar interactions in the active site, respectively. 

3.2.4. Molecular Dynamics Stimulation 

The initial coordinates for the MD calculations were taken from the docking results. For each 

system, MD studies were performed using OPLS_2005 force field in an explicit solvent with the 

TIP3P model [29] of water within the Desmond software. The dimensions of each orthorhombic  

water box were 100 × 100 × 100 Å, which ensured that the entire surface of each complex was covered 

by the solvent model and the systems were neutralized by adding Cl− counter ions to balance the net 
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charges of the systems. Before equilibration and long production MD simulations, the systems were 

minimized and pre-equilibrated using the default relaxation routine implemented in Desmond [30].  

The solvated system was minimized first with solute restrained and then again minimized without solute 

restraints by using hybrid method of steepest descent and the LBFGS (limited-memory Broyden–Fletcher–

Goldfarb–Shanno) algorithm with a maximum of 2000 steps including initial 10 steps of steepest descent. 

The minimized system was passed through a short 12 ps simulation in the NVT ensemble using a 

temperature of 10 K with nonhydrogen solute atoms restrained. Subsequently, the system was simulated 

for 12 ps in the NPT ensemble using temperature 10 K with restraints on nonhydrogen solute atoms.  

In the next step, the system was simulated for 24 ps in NPT ensemble using a temperature of 300 K 

restraining the nonhydrogen solute atoms. In the last step of equilibration process, the system was 

further simulated for 24 ps in the NPT ensemble with no restraints at temperature 300 K. The temperatures 

and pressures in the short initial simulations were controlled using Berendsen thermostats and barostats, 

respectively. Then, each system was performed for a 15 ns long production MD simulation. The 

OPLS_2005 force field was used along with the MacroModel module [31] to provide and check the 

necessary force field parameters for the ligands. When MacroModel performs an energy calculation, 

the program checks the quality of each parameter in use. The use of low quality parameters, especially 

torsional ones, may result in inaccurate conformational energy differences and geometries. Bond, 

angle, torsional angle and improper angle checked parameters were listed as high- and medium-quality 

force field parameters for all ligands studied. During the MD simulations, the equations of motion were 

integrated with a 2 fs time step in the NPTensemble. The Shake algorithm was applied to all hydrogen 

atoms; the van der Waals (VDW) cutoff was set to 9 Å [32]. The temperature was maintained at 300 K, 

employing the Nose-Hoover thermostat method with a relaxation time of 1 ps [33]. Long-range 

electrostatic forces were taken into account by means of the particle-mesh Ewald (PME) approach [34]. 

Data were collected every 12 ps during the MD runs. Visualization of protein–ligand complexes and 

MD trajectory analyses were carried out with the VMD software package [35,36]. The equilibration 

was monitored by examining the stability of the temperature, energy, and the density of the system as 

well as the RMSD of the backbone atoms. 

4. Conclusions 

In this study, we first demonstrated that Vam3 is an ATP-competitive inhibitor of Syk with IC50  

of 62.95 nM and Ki of 61.09 nM by using in vitro fluorescence polarization kinase assay. Moreover,  

to investigate the mechanism of Vam3–Syk interaction, docking studies and molecular dynamics 

stimulations were performed. Through our stimulations, we have predicted optimal binding conformation 

of Vam3 with Syk. 11b-OH and 4b-OH of Vam3 formed two H-bonds with Glu449 and Phe382 in the 

active site of Syk, respectively. Arene-cation action was also found in Vam3–Syk interaction. Together 

with hydrophobic interactions, these actions form the basis of the well inhibitory activity of Vam3. 

These results may not only useful for the structural optimization of Vam3 but also for the rational 

design of novel Syk inhibitors with new scaffold. 
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