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Abstract: Cystic fibrosis is an inherited multi-organ disorder caused by mutations in the 

CFTR gene. Patients with this disease exhibit characteristic abnormalities in the levels of 

unsaturated fatty acids in blood and tissue. Recent studies have uncovered an underlying 

biochemical mechanism for some of these changes, namely increased expression and 

activity of fatty acid desaturases. Among other effects, this drives metabolism of linoeate 

to arachidonate. Increased desaturase expression appears to be linked to cystic fibrosis 

mutations via stimulation of the AMP-activated protein kinase in the absence of functional 

CFTR protein. There is evidence that these abnormalities may contribute to disease 

pathophysiology by increasing production of eicosanoids, such as prostaglandins and 

leukotrienes, of which arachidonate is a key substrate. Understanding these underlying 

mechanisms provides key insights that could potentially impact the diagnosis, clinical 

monitoring, nutrition, and therapy of patients suffering from this deadly disease. 
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1. Introduction 

Cystic fibrosis (CF) is one of the most common hereditary disorders of Caucasians, with an 

incidence of approximately 1 in 3000 live births [1]. It is caused by homozygous or compound 

heterozygous mutations in the gene encoding the CF transmembrane regulator (CFTR) protein [2,3]. 

Over 1900 mutations have been described in the CFTR gene, the most common of which is deletion of 

the codon encoding phenylalanine 508 (ΔF508). The CFTR protein is expressed on the apical surface 
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of many epithelial cells and primarily functions as a chloride and bicarbonate transporter, although it 

has a number of additional transport and regulatory functions [4]. 

Loss of CFTR function has pathologic consequences in a number of organ systems [5]. These 

include gastrointestinal obstruction, pancreatic insufficiency and malabsorption, male infertility, and 

CF-related diabetes and liver disease. However, most morbidity and mortality in CF patients is  

related to pulmonary disease. In the airways, there are recurring cycles of obstruction, infection, and 

inflammation, leading to tissue injury, bronchiectasis, and progressive pulmonary decline [6]. This 

leads to early death in many patients, the average life span extending only to the late 4th decade. 

Although considerable progress has been made in understanding the pathogenesis of CF, the 

connection between loss of CFTR function and the protean clinical and pathologic manifestations of 

the disease is not completely understood. It is clear that there are factors beyond CFTR that modulate 

pathology and outcomes, since there is considerable clinical heterogeneity even amongst patients 

carrying the same mutation [7]. One of these factors is fatty acid metabolism. There are consistent 

abnormalities in levels of unsaturated fatty acids in patients and models of CF (reviewed in [8–10]). 

This review will describe these changes and discuss what is known about the underlying mechanisms, 

their connection to CFTR mutations and CF pathophysiology, and potential clinical applications of this 

knowledge in the management of CF patients. 

2. Unsaturated Fatty Acid Metabolism 

Unsaturated fatty acids contain one or more double bonds in the acyl chains. Monounsaturated  

fatty acids (MUFAs) contain a single double bond, while polyunsaturated fatty acids (PUFAs) carry 

two or more double bonds. The most common categories of PUFAs are the n-3 or omega-3 and n-6  

or omega-6 PUFAs. This nomenclature refers to the position of the most distal double bond, either 3 or 

6 carbons from the terminal methyl group of the acyl chain, respectively. These are termed essential fatty 

acids because their precursors cannot be synthesized by mammalian cells and thus, must be obtained 

from dietary sources. 

The primary n-3 and n-6 PUFAs are alpha-linolenate (LNA; 18:3n-3) and linoleate (LA; 18:2n-6). 

These can be metabolized by mammalian cells to more elongated and desaturated forms via the 

parallel metabolic pathways shown in Figure 1. These pathways share common elongase and 

desaturase enzymes, of which Δ6-desaturase is rate-limiting [11]. The activity of these enzymes is 

regulated primarily at the transcriptional level [12]. 

Some of these enzymes are also shared by the n-7 and n-9 pathways, which primarily, but not 

exclusively, metabolize MUFAs (Figure 1). In contrast to PUFA metabolism, these fatty acids are not 

essential, as they are ultimately derived from palmitate (PA; 16:0), the primary product of de novo 

fatty acid biosynthesis. 

3. Unsaturated Fatty Acid Levels in Cystic Fibrosis 

More than 50 years ago, Kuo et al. [13] first identified fatty acid abnormalities in blood and tissues 

of CF patients. Since this description, there have been at least 18 other reports of altered fatty acid 

composition in CF, particularly of unsaturated fatty acids, in serum, plasma, erythrocytes, or whole 

blood [14–31]. The most common of these is decreased LA, which is described in all of these studies. 
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Additionally, increases in palmitoleate (POA; 16:1n-7) and Mead acid (MA; 20:3n-9) and decreased 

docosahexaenoate (DHA; 22:6n-3) have been demonstrated in majority of studies in which they have 

been measured. 

Figure 1. Unsaturated Fatty Acid Metabolism in the n-3, n-6, n-7, and n-9 Pathways. 

Enzymes are in italics and the vertical dashed line indicates the common reactions that  

they catalyze. Fatty acids that show consistently abnormal values in blood from cystic 

fibrosis patients are indicated in red. PA, palmitate; POA, palmitoleate; MA, Mead acid; 

LA, linoleate; AA, arachidonate; DPA, docosapentaenoate; LNA, alpha-linolenate; EPA, 

eicosapentaenoate; DHA, docosapentaenoate; Δ9D, Δ9-desaturase; Δ6D, Δ6-desaturase, 

EL5, elongase 5; Δ5D, Δ5-desaturase; EL2, elongase 2; βOX, β-oxidation. 

 

Similar findings have been noted in a smaller number of studies that examined tissues from CF 

patients. These consistently found decreased LA in adipose tissue, skeletal and cardiac muscle, liver, 

lung, and nasal epithelium [13,23,27] and decreased DHA in nasal and rectal biopsies [27]. 

These findings have been confirmed in animal and cell culture systems, which serve as important 

models for investigating the underlying biochemical mechanisms. Studies in CFTR-null [32,33]  

and CFTR-ΔF508 [34] mice show similar abnormalities to those seen in CF patients. These include  

decreased LA [33,34] that is accompanied by increases in the downstream metabolites dihomo-γ-linolenate 

(20:3n-6) [33,34] and/or arachidonate (AA;20:4n-6) [32,34] in lung, pancreas, and intestine. Decreased 

DHA was also observed in one of these studies [32]. 

In addition, fatty acid metabolism has been examined in two cultured respiratory epithelial cell 

models of CF. One is 16HBE human bronchial epithelial cells in which CFTR is silenced by stable 

transfection of a plasmid expressing a CFTR antisense oligonucleotide [35]. The other (IB3 cells) is  

a respiratory epithelial cell line derived from a patient with CF [36]. These models exhibit the same 

changes as detailed above, including decreased LA and DHA, with increased AA, POA, and MA, 

when compared with controls [37–40]. In addition, there are other changes that are not seen in animal 

or human studies that suggest similar metabolic alterations in the parallel n-3 and n-6 pathways  

(see Figure 1). For example, both LA and LNA are decreased, both AA and eicosapentaenoate  

(EPA; 20:5n-3) are increased, and both DHA and docosapentaenoate (DPA; 22:5n-6) are decreased. 

The observation of these changes in cultured cells, but not whole organisms, is likely due to the fact 
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that these are pure and homogenous populations of cells that are not influenced by the fatty acid 

composition of blood or other tissues. This makes them particularly valuable for studying underlying 

biochemical mechanisms. 

4. Mechanisms of Fatty Acid Abnormalities 

Early studies of fatty acid metabolism in CF attributed the observed abnormalities to pancreatic 

insufficiency and the resultant lipid malabsorption that is typical of CF [20]. In fact, the pattern of fatty 

acid changes is reminiscent of that seen in patients with essential fatty acid deficiency (EFAD) [41]. 

Furthermore, abnormal PUFA levels were more common and more severe in patients with pancreatic 

insufficiency than in those with normal pancreatic function [20,22,23,30]. 

However, several lines of evidence argue against the malabsorption hypothesis. First, the fatty acid 

changes persist in CF patients in whom pancreatic insufficiency has been successfully treated with 

enzyme replacement and aggressive nutritional support [26,29]. Second, in animal models, fatty acid 

abnormalities are limited to tissues that express high levels of CFTR and are primarily affected by CF, 

such as lung, pancreas, and intestine [32,34]. Similarly significant changes are not seen in other tissues 

such as liver, brain, kidney, and heart [32,34]. Finally, the fact that fatty acid abnormalities are present 

even in cultured cells, in which malabsorption plays no role, suggests that they are related to intrinsic 

metabolic alterations that are secondary to loss of CFTR function. 

An important clue as to the origin of the LA deficiency came in the observation of increased metabolism 

of AA from LA in tissues [27] and bronchial fluid [42] of CF patients, as well as in animal [32,34]  

and cell culture models [37,39]. This elevation of the AA/LA ratio suggests increased metabolism  

of LA to AA. This was confirmed by Njoroge et al. [39], who labelled CF cells with 14C-LA and 

demonstrated increased incorporation of the label into cellular AA compared with control cells. This 

was accompanied by increased expression of both Δ5- and Δ6-desaturase mRNA in CF cells. Similar 

changes were seen when CFTR activity was blocked by a small molecule inhibitor CFTRinh-172. 

Further evidence came from DHA supplementation studies. DHA is known to suppress expression 

of Δ5- and Δ6-desaturases [11,12]. In cultured cells, addition of DHA reduced desaturation expression 

and normalized LA to AA metabolism, reducing AA levels in CF cells to control-cell levels [43]. 

Similar results were seen in CFTR-null mice, where dietary supplementation with DHA reduced AA to 

wild-type levels in several tissues [32,34]. Taken together, these results suggest that reduced LA and 

elevated AA levels are due to increased expression and activity of Δ5- and Δ6-desaturases. 

A number of studies have indicated that there is increased release of AA from cell membranes, 

mediated by cytosolic phospholipase A2 (cPLA2), in cells from CF patients, compared with healthy 

controls [44–48]. This likely also contributes to the fatty acid changes noted. In particular, the absence 

of a consistent increase in plasma AA may be a reflection of these changes. Indeed, it is possible that 

increased LA to AA metabolism is a compensatory response to this change. However, the mechanistic 

relationship between these two metabolic alterations has not been fully explored. 

Similar mechanisms appear to be responsible for the changes in n-7 and n-9 fatty acid metabolism. 

Levels of POA and MA are increased in many CF patient studies (see above). Similarly, there were 

increased levels of POA, oleate (18:1n-9), and MA in CF cultured cells compared to controls [40]. 

Using 14C labelling techniques similar to those described above, Thomsen et al. [40] demonstrated 
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increased metabolism from PA to POA, OA, and MA in CF cells (see Figure 1). This was accompanied 

by increased expression of Δ9-desaturase and elongase 6, key enzymes in these pathways. 

Although decreased DHA is one of the most common changes seen in CF, its mechanism is the 

least well understood. It is clear from cell culture studies that metabolism of the upstream precursor 

EPA to DHA is reduced in CF cells [39]. However, the same study showed no reduction of metabolism 

of 22:5n-3, the immediate downstream product of EPA, to DHA. There are several potential explanations 

for this. One possibility is that EPA is preferentially shunted to pathways other than DHA production  

in CF cells. EPA is a substrate for metabolism by cyclooxygenase to 3-series prostaglandins and by 

lipoxygenase to 5-series leukotrienes [49], pathways that are both increased in CF cells [39]. 

Another DHA metabolic pathway is retroconversion of DHA to EPA, reversing typical n-3 

metabolism, which occurs through modified β-oxidation in peroxisomes [50–52]. This is difficult to 

assay directly, but the relative activity of this pathway can be estimated by measuring changes in EPA 

and DHA levels after DHA supplementation [53]. By this technique, there appears to be an approximately 

20-fold elevation in DHA to EPA retroconversion in CF versus control cells [43]. Thus, one potential 

cause of reduced DHA levels is disproportionate retroconversion to EPA in CF cells, although this has 

yet to be validated in other models. 

A third hypothesis to explain lower DHA levels in CF involves differences in phospholipid 

metabolism (reviewed in [10]). The phospholipid phosphatidylcholine (PC) is formed either de novo, 

using dietary choline as a substrate, or by methylation of phosphatidylethanolamine (PE). DHA levels 

are higher in PC formed via the latter mechanism compared with the former. However, CF cells appear 

to have a defect in the methyl group metabolism, such that de novo synthesis of PC is favored, which 

could lead to lower DHA levels [54]. 

5. Signalling Pathways Associated with Fatty Acid Abnormalities 

The above data provide strong evidence that the alterations in fatty acid levels consistently observed 

in CF patients and models result from fundamental changes in metabolism that occur in cells lacking 

CFTR function. However, the connection between CFTR function and fatty acid metabolism is not 

intuitive. In this context, it is important to recognize that in addition to its role as an ion channel, CFTR 

also forms complexes with a host of signaling proteins, particularly kinases and phosphatases, that 

both regulate its function and are regulated by it [55]. Thus, absence of CFTR can disrupt cellular 

signalling networks with broad functional consequences. 

Among the kinases in the CFTR complex is AMP-activated protein kinase (AMPK). AMPK is a 

heterotrimeric complex of proteins, including a catalytic α subunit and regulatory β and γ subunits. 

AMPK is a master regulator of cellular metabolism that responds to cellular energy balance by sensing 

AMP levels and modulating the activity of various metabolic pathways [56–58]. In addition, AMPK 

regulates CFTR activity via phosphorylation [55]. 

At least two studies using cultured respiratory epithelial cells have demonstrated increased activation 

of AMPK in CF compared with wild-type respiratory epithelial cells, as measured by increased 

phosphorylation of AMPKα and AMPK target acetyl CoA carboxylase (ACC) [59,60]. Furthermore, 

inhibition of AMPK activity normalized Δ5- and Δ6-desaturase expression and activity in CF cells to 

control cell levels [60]. Exogenous activation of AMPK had the opposite effect, increasing desaturase 
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expression in wild-type cells to CF cell levels. These findings suggest that increased desaturase expression 

and activity in the absence of CFTR function is mediated by activation of AMPK. 

Activation of AMPK is mediated by one of two other kinases, liver kinase B1 (LKB1), which 

responds to altered cellular AMP levels, and Ca2+/calmodulin-dependent protein kinase kinase β 

(CaMKKβ), which responds to intracellular Ca2+ concentration [61,62]. However, while studies have 

shown no AMP excess in CF cells [59], there is clear evidence of alterations in Ca2+ transport and 

metabolism, leading to increased Ca2+ concentration in CF cells [63,64]. Accordingly, inhibition of 

CaMKKβ, either by a small molecule inhibitor or by Ca2+ sequestration, resulted in normalization  

of desaturase expression and activity in CF cells [60]. These findings suggest that altered Ca2+ 

metabolism and CaMKKβ activity are upstream of AMPK activation in CF. 

The mechanism by which AMPK activates desaturase expression is not yet clear. The expression of Δ5- 

and Δ6-desaturases are known to be activated by the transcription factors peroxisome proliferator-activated 

receptor alpha (PPARα) [65] and sterol response element-binding protein-1 (SREBP-1) [66,67]. SREBP-1 

is unlikely to mediate the effect of AMPK on desaturase expression, as phosphorylation by AMPK  

inhibits SREBP activity [68]. However, phosphorylation by AMPK activates PGC-1α, a co-activator  

of PPARα [69–71]. Thus, AMPK activation of desaturase expression could be mediated by PPARα. 

Epigenetic mechanisms could also be considered, as AMPK is also known to mediate transcription by 

inhibiting histone deacetylases [72,73] or by directly phosphorylating histone H2B [74]. 

6. Fatty Acid Abnormalities and Pathophysiology 

As detailed above, there are clear alterations in PUFA metabolism associated with loss of CFTR 

function that account for the consistent changes in PUFA levels seen in CF. However, the role and 

significance of these changes in CF disease pathophysiology remain open questions. There are at least 

three lines of evidence suggesting a connection between metabolism and pathology. 

First, PUFA abnormalities correlate with disease severity. Early studies showed that fatty acid 

alterations, particularly LA and POA levels, were most abnormal in patients with severe pancreatic 

disease [20,22,23,30]. Strandvik et al. [16], showed that patients with CFTR mutations associated with 

more severe disease exhibited lower serum LA and DHA levels than those with other mutations. 

Furthermore, there appears to be a weak, but statistically significant association between fatty acid 

levels and pulmonary function [17,18,24,75]. 

Second, PUFAs and PUFA-derived metabolites play important roles in physiologic pathways of 

known significance in CF. This was first suggested in two animal models of EFAD that showed  

CF-like abnormalities in pulmonary immunity and/or inflammation [76,77]. Among the pathways 

known to be involved in CF are those that metabolize PUFAs to bioactive lipids. These included 

eicosanoid metabolites of AA, including prostaglandins (PGs), leukotrienes (LTs), and lipoxins (LXs), 

and docosanoid metabolites of EPA and DHA, the resolvins and protectins. 

PG production is increased in CF patients and models [39,78–82] and PG levels correlate with disease 

severity [78,82,83]. LTs are also increased [39,84,85], especially in acute pulmonary exacerbation [86]. 

Furthermore, suppression of LT production by corticosteroids appears to be impaired in leukocytes from 

CF patients [87]. LXs, which suppress inflammation, are decreased in CF [88,89]. There is also increased 

expression of the metabolic enzymes involved in these pathways in CF patient tissues [90,91] and 
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cultured cells [39,81]. These pathways are particularly important in the regulation of inflammation, 

which is hyperactive in CF [92], but they likely also play a role in intestinal pathology, which may 

influence motility [93,94]. 

Another possibility is that changes in fatty acid metabolism could alter the biophysical properties of 

epithelial cell membranes, altering the function of membrane proteins. This hypothesis is supported by 

recent studies indicating that PUFAs can modulate the activity of CFTR and other anion channels [95–98]. 

It should be noted that significant abnormalities have also been documented in sphingolipid and 

cholesterol metabolism in CF [99–101]. Although beyond the scope of this review, these changes 

could also have significant effects on membrane biology in epithelial cells lacking CFTR. 

Lastly, reversal of PUFA abnormalities in a mouse model ameliorates CF-related pathology. The 

CFTRtm1/UNC mouse carries a nonsense mutation in exon 10 in the CFTR gene, completely eliminating 

CFTR expression in the homozygous mouse [102]. These mice exhibit pathologic features similar to 

those of CF patients, especially in the intestines and pancreas [102,103]. As indicated above, these mice 

show typical PUFA abnormalities, which are reversed by dietary supplementation with DHA [32,34].  

In addition, this supplementation ameliorated many of the CF-like pathologic features, including 

reduction of ileal villus hypertrophy, reversal of pancreatic duct dilation, and suppression of stimulated 

pulmonary inflammation [32,104]. Particularly intriguing is that this effect in the lungs was 

accompanied by a significant reduction in PG levels, again suggesting that they may mediate the 

pathphysiologic effects of PUFA abnormalities in CF [104]. The impact of DHA may have genetic and 

time components, as the effects on CF-related pathology were not seen in congenic (as opposed to 

mixed background) mice treated for longer time periods [105]. 

While not definitive, these studies provide evidence to suggest that abnormal fatty acid metabolism 

plays a pathologic role in the development of CF. Furthermore, they suggest that correction of the fatty 

acid defect could potentially impact the clinical course of the disease. 

7. Clinical Implications 

The data described above demonstrate the consistent and integral connection between CF and fatty 

acid metabolism. There are at least four areas in which this knowledge may be applied to the care of 

CF patients. 

First, fatty acids and their metabolites have potential use in the diagnosis and clinical monitoring  

of CF. The current standard for diagnosis is screening at birth by a blood test for immunoreactive 

trypsinogen [IRT], followed by sweat chloride measurement [106]. If positive, the diagnosis is 

confirmed by genetic testing. However, this approach has challenges, including a high false positive 

rate of IRT and technical difficulties of sweat chloride [107]. Batal et al. [28] demonstrated that the 

product of serum LA and DHA levels (LA × DHA) is significantly lower in CF patients than in healthy 

controls. Furthermore, using a blinded approach, they showed that this test could distinguish CF 

patients from healthy controls with sensitivity that is comparable to sweat chloride without the 

associated technical challenges. However, specificity was lower, suggesting that a combined approach 

may be required. 

Another area of need in CF clinical care is relevent biomarkers to track the course of disease. 

Current approaches rely heavily on pulmonary function tests, sputum cultures, and other measurements 
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to diagnose pulmonary exacerbation and monitor response to therapy. However, these measurements 

suffer from technical challenges and are not adequately sensitive and specific to optimally guide 

patient care [108]. Thus, there is a significant need to develop clinically and biologically relevant 

biomarkers that can be measured in blood. There is some preliminary evidence that fatty acid testing 

could fill that role. As indicated above, fatty acid changes in CF correlate with clinical severity. 

Furthermore, CF treatment may improve fatty acid status. CF patients successfully treated with lung 

transplant exhibited absolute fatty acid concentrations similar to healthy controls and significantly 

different than an age-matched CF population without transplant [109]. Recently, Wojewodka et al. [110] 

demonstrated that PUFAs, in particular AA and DHA, varied during the course of a pulmonary 

exacerbation, improving with therapy. While these results are suggestive, much more data is required 

to determine the extent to which fatty acids may serve as relevant clinical biomarkers. 

Understanding the mechanisms of fatty acid abnormalities and their connection to CF pathophysiology 

may also be relevant to dietary therapy. Current recommendations suggest a high-calorie, high-fat diet to 

maintain body mass in CF patients [111], but they are not specific as to the sources or types of fat, 

which is an area of increasing concern [112]. Unfortunately, the typical modern western diet has a 

much higher ratio of n-6 to n-3 PUFAs compared with historic controls [113,114]. Because CF cells 

have higher LA to AA metabolism, particularly in the setting of high n-6/n-3 ratios [115], the typical 

CF diet may exacerbate already high levels of AA production, potentially increasing pro-inflammatory 

PGs and LTs. This concern was confirmed in mouse and cell culture studies showing that LA 

supplementation increased AA and PG production, leading to increased inflammatory cytokine generation 

and airway inflammation [116]. Human studies of LA supplementation have given mixed results. 

Depending on the study, LA-rich dietary supplements have resulted in either no change [21,117,118]  

or significant increase [119] in blood AA levels. However, tissue AA levels were not measured. LA 

supplementation appears to have decreased PGF2a production, while increasing PGE2 levels in two 

small studies [117,120]. However, LA supplementation does appear to improve weight gain in CF 

infants [118]. While these data suggest that attention should be paid to dietary FA content, and that a 

lower n-6/n-3 ratio might be beneficial to CF patients, further human studies are required to completely 

understand the relationship between diet and inflammation. 

Finally, these data may suggest a therapeutic approach to CF using PUFAs. As described above, 

high-dose DHA supplementation reversed some of the CF-related pathology in a mouse model [32].  

A number of clinical trials have attempted to assess whether similar supplementation might be 

effective in CF patients (reviewed in [8,121]). Most of these studies demonstrated improvement in 

fatty acid levels and decreases in inflammatory markers. Only three studies [122–124] showed 

improvement in clinical performance, such as improvement in pulmonary function tests or decreased 

exacerbations. However, most of these studies were small (no more than 20 participants) and short (1 year 

or less). Thus, more extensive clinical trials will be required to definitively assess the potential of this 

approach to CF therapy. 

8. Conclusions 

Alterations in fatty acid levels are a consistent feature of CF and have been validated both in 

patients and in multiple models of the disease. Recent studies show that abnormalities in PUFA 
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metabolism underlie these changes and that they may be connected to CFTR mutations via the AMPK 

signalling pathway. Although not definitive, there is compelling evidence suggesting that these 

abnormalities may play a role in the development of this disease and that understanding the underlying 

mechanisms may improve understanding of CF pathophysiology. This opens up multiple possibilities for 

clinical application, from improved diagnosis and clinical monitoring to better nutritional recommendations 

and therapy. 
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