
 

 

Int. J. Mol. Sci. 2014, 15, 13768-13801; doi:10.3390/ijms150813768 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Review 

Small-Molecule Inhibitors of the Receptor Tyrosine Kinases: 
Promising Tools for Targeted Cancer Therapies 

Mohammad Hojjat-Farsangi 

Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), 

Karolinska University Hospital Solna and Karolinska Institute, Stockholm 17176, Sweden;  

E-Mail: mohammad.hojat-farsangi@Ki.se; Tel.: +46-517-74308; Fax: +46-517-75897 

Received: 3 July 2014; in revised form: 31 July 2014 / Accepted: 5 August 2014 /  

Published: 8 August 2014 

 

Abstract: Chemotherapeutic and cytotoxic drugs are widely used in the treatment of 

cancer. In spite of the improvements in the life quality of patients, their effectiveness is 

compromised by several disadvantages. This represents a demand for developing new 

effective strategies with focusing on tumor cells and minimum side effects. Targeted 

cancer therapies and personalized medicine have been defined as a new type of emerging 

treatments. Small molecule inhibitors (SMIs) are among the most effective drugs for 

targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine 

kinases (RTKs) i.e., tyrosine kinase inhibitors (TKIs) in the clinical oncology imply the 

increasing attention and application of these therapeutic tools. Most of the current 

approved RTK–TKIs in preclinical and clinical settings are multi-targeted inhibitors with 

several side effects. Only a few specific/selective RTK–TKIs have been developed for  

the treatment of cancer patients. Specific/selective RTK–TKIs have shown less deleterious 

effects compared to multi-targeted inhibitors. This review intends to highlight the importance 

of specific/selective TKIs for future development with less side effects and more manageable 

agents. This article provides an overview of: (1) the characteristics and function of RTKs  

and TKIs; (2) the recent advances in the improvement of specific/selective RTK–TKIs in 

preclinical or clinical settings; and (3) emerging RTKs for targeted cancer therapies by TKIs. 
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1. Introduction 

Cancer is a complex disorder of the uncontrolled proliferation of cells. Currently, eight hallmarks 

explain the typical capabilities acquired by tumor cells in the process of tumorigenesis [1]. These properties 

are sustaining proliferation, evading growth suppressors, resisting cell death, enabling replicative 

immortality, activating invasion, metastasis, evading from the immune system, and reprogramming energy 

metabolism [1,2]. Recently, other features including epigenetic alterations have been introduced [3]. 

Multiple cytotoxic drugs and combination regimens have resulted in significant improvement of 

prognosis and survival of cancer patients. However, their therapeutic uses have been blunted by 

several disadvantages. This represents a request for developing more specific drugs. 

Currently, rapid clinical application of targeted cancer therapy agents has dominated drug development. 

Targeted cancer therapy agents have significantly progressed during recent years by developing and 

receiving approval from authorities for use in cancer treatment. The aim of targeted cancer treatment is to 

destroy cancer cells by targeting tumor-specific (TSA) or -associated antigens (TAA) without affecting 

normal cells. In fact, tumor cells of different origins display unusual molecules that are either 

inappropriate for normal cells and their environment or are usually present during the organogenesis. 

For instance, receptor tyrosine kinase-like orphan receptor 1 (ROR1), a recently identified oncofetal 

protein, expresses in neuronal cells and other fetal tissues during embryogenesis. However, this 

receptor tyrosine kinase (RTK) has been found to be over-expressed in various tumors but not in 

normal adult cells [4–9]. 

For targeted cancer therapies, monoclonal antibodies (mAbs) and small-molecule inhibitors  

(SMIs) of tyrosine kinase activity (TKIs) are ideal candidates which target tumor cells via binding to  

cell-surface antigens and intracellular molecules, respectively [10]. 

An SMI is a type of compound that interferes with specific molecules required for tumor cell 

growth and function. SMIs selectively target molecules with a unique structure and are different  

from the non-specific destruction associated with traditional chemotherapy. They have been used for 

the treatment of a wide range of diseases, including infectious diseases, as well as autoimmune and 

malignant disorders. 

Among the various targets for SMIs, receptor tyrosine kinases (RTKs) have attractive features. 

RTKs have distinct structural and biological properties that make them capable of transducing 

extracellular signals into the intracellular compartments [11]. Most oncogenic RTKs have no or low 

activity and expression in normal tissues, but are hyperactivated or upregulated in malignant cells [12]. 

Targeting RTKs by TKIs (RTK–TKIs) are under intensive research. 

Most of the current RTK–TKIs are multi-targeted and inhibit a variety of molecules in a  

non-specific manner. Multi-targeted inhibition has been shown to have several disadvantages due to 

targeting various RTKs compared to selective/specific TKIs [13]. Only a few specific/selective TKIs 

have been approved by authorities for cancer treatment or are in preclinical and clinical settings. 

In recent years, there has been a significant progress in developing specific/selective TKIs for 

targeted cancer therapy. Due to the lack of cumulative data on selective/specific TKIs, this review 

summarizes the recent findings regarding more specific/selective RTK–TKIs that are approved by 

authorities or are in preclinical and clinical settings. Moreover, approaching RTKs that might be 

proper candidates for targeted therapy will also be overviewed. 
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2. Receptor Tyrosine Kinases’ (RTKs’) Function and Structure 

The term “oncogenic addiction” established by Weinstein [14] described that tumor cells may exhibit 

addiction on an activated oncogenic signaling pathway to sustain their survival and proliferation. Several 

oncoproteins, including tyrosine kinases, are known to be essential for the oncogenic process. 

Protein kinases are enzymes that are involved in phosphorylation and transfer of a phosphate group 

from adenosine 3 phosphates (ATP) to tyrosine, serine or threonine residues. Protein phosphorylation 

is one of the most important events in regulating cell activities. Some oncoproteins need phosphorylation 

for regulation and activation [2]. 

Among different protein kinases, RTKs comprise a well-known group and consist of a transmembrane 

receptor linked to the intracellular kinase domain. These proteins have emerged as key pharmacological 

targets in oncology [15]. Phosphorylation of other RTKs, as well as intracellular intermediates by these 

kinases, is critical for signal transduction, regulation of cellular activity and function [16]. Among  

58 known RTKs, 30 of them have been shown to be necessary for oncogenesis in various tumors [14]. 

Similar to transmembrane proteins, RTKs’ structure consists of three different parts: extracellular, 

transmembrane and cytoplasmic regions [17]. The extracellular part is preceded by a cleavable signal 

sequence and holds the binding sites that interact with ligands [18]. The extracellular domain is 

involved in the dimerization of RTKs, a process that is critical for the activation of intrinsic tyrosine 

kinase (TK) activity [19]. 

The cytoplasmic region contains tyrosine residues that are phosphorylated upon ligand binding and 

activation, regulate catalytic function, and also serve as docking sites for SRC Homology 2 (SH2) 

domain-containing proteins [20]. 

Deregulation of RTK activity is the major mechanism by which tumor cells escape from 

physiological constraints on survival and growth [2]. Aberrant RTK activation due to receptor  

over-expression, chromosomal translocation, gene amplification, mutations, and impaired receptor 

downregulation contribute to the development of various forms of cancer in human [21,22]. Some 

examples of these RTKs that are under investigation are listed in Table 1. 

Identifying new oncogenic RTKs that are over-expressed by tumor cells and regulate the growth, 

survival, invasion, and communication of tumor cells with their microenvironment have facilitated the 

development of new anti-cancer agents and have revolutionized treatment options. Therefore, due to 

the interesting biological features, RTKs are of the main focus for developing new TKIs for 

therapeutic interventions in cancer patients. 

3. Tyrosine Kinase Inhibitors (TKIs) 

TKIs, as well as other small inhibitors, are low molecular weight organic compounds. A cut off at 

500 Daltons is recommended based on the observation that clinical attrition rates are significantly 

reduced when the molecular weight falls below 500 Daltons (Tables 2 and 3) [23,24]. The upper 

molecular weight is approximately 900 Daltons [25]. 
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Table 1. Oncogenic receptor tyrosine kinases in cancer. 

Oncogenic RTK (Examples) Chromosome Location Cancer (Examples) Approved Selective TKI for Treatment 

ALK 2p23 NSCLC, colorectal cancer, breast cancer − 

AXL 19q13.1 Lung, colon, breast, AML, CML − 

CCK4 (PTK7) 6p21.1 small cell lung cancer, breast cancer, gastric and colon cancer, AML − 

DDR1 6p21.33 NSCLC, breast cancer, AML, ovarian cancer − 

DDR2 1q23.3 NSCLC, lung cancers, CML, breast cancer − 

EGFR1 (ERBB1/HER1) 7p11.2 Breast cancer, hepatocellular carcinoma + 

EGFR2 (ERBB2/HER2) 17q12 Breast cancer, gastric adenocarcinomas + 

EGFR3 (ERBB3/HER3) 12q13.2 Breast cancer, ovarian cancer, Squamous cell lung cancer + 

EGFR4 (ERBB4/HER4) 2q34 Breast cancer, melanoma + 

EPHA1 7q35 NSCLC, prostate cancer − 

EPHA2 1p36.13 Hepatocellular carcinoma. colorectal cancer, breast cancer − 

EPHA3 3p11.1 Glioblastoma, lung cancer, melanoma, ALL − 

EPHA4 2q36.1 NSCLC, gastric cancer − 

EPHA5 4q13.1 Breast cancer, hepatocellular carcinoma, ALL − 

EPHB1 Xq13.1 NSCLC, cervical cancer, ovarian Cancer − 

EPHB2 13q33.3 Cervical cancer, breast cancer − 

EPHB3 3q27.1 NSCLC, breast cancer, colorectal cancer − 

EPHB4 7q22.1 Breast cancer, melanoma, glioma − 

FGFR1 8p12 Squamous cell lung cancer, breast cancer − 

FGFR2 10q26 Squamous cell lung cancer, breast cancer, thyroid cancer − 

FGFR3 4p16.3 Bladder cancer, squamous cell carcinoma − 

FLT3 13q12.2 AML, acute promyelocytic leukemia − 

IGF1R 15q26.3 CLL, breast cancer, pancreatic cancer − 

IGF2R 6q25.3 breast cancer, prostate cancer, colorectal carcinoma − 

INSR 19p13.2 Colorectal cancer, prostate cancer − 

INSRR 1q23.1 Neuroblastoma − 

KIT 4q12 AML, melanoma, ovarian carcinoma − 

LTK 15q15.1 Gastric cancer, lymphomas and leukemias − 
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Table 1. Cont. 

Oncogenic RTK (Examples) Chromosome Location Cancer (Examples) Approved Selective TKI for Treatment 

MER 2q13 Glioblastoma, hepatocellular carcinoma − 
MET 7q31.2 Hepatocellular carcinoma, CLL, breast cancer − 

MUSK 9q31.3 Ovarian cancer − 
NTRK1 (TrkA) 1q21-22 Colorectal cancer, breast cancer − 
NTRK2 (TrkB) 9q22.1 Neuroblastoma, astrocytoma − 
NTRK3 (TrkC) 15q25 Neuroblastoma, breast cancer − 

PDGFRA 4q12 Lung adenocarcinoma, gastrointestinal stromal tumors − 
PDGFRB 5q32 gastrointestinal stromal tumors, glioblastoma − 

RET 10q11.2 NSCLC, medullary thyroid carcinoma − 
RON (MST1R) 3p21.31 Pancreatic cancer, breast cancer, NSCLC − 

ROR1 1p31.3 CLL, ALL, AML, MCL, HCL, melanoma − 
ROR2 9q22.31 Melanoma, hepatocellular carcinoma, colon cancer − 
ROS1 6q22 NSCLC, ovarian cancer − 
RYK 3q22.2 CML, ovarian cancer − 
TIE 1p34.2 Glioblastoma, breast tumor − 
TEK 9p21.2 Bladder cancer, glioblastoma, AML − 

TYRO3 15q15.1 Colon cancer, melanoma, thyroid cancer, breast cancer − 
VEGFR1 (FLT1) 13q12.3 Ovarian cancer, NSCLC, colorectal carcinoma + 

VEGFR2 (KDR) 4q12 Renal cell carcinoma, breast cancer + 

VEGFR3 (FLT4) 5q35.3 Thyroid carcinoma, breast cancer + 

ALK: anaplastic lymphoma receptor tyrosine kinase, NSCLC: non-small cells lung carcinoma, AML: acute myeloid leukemia, CML: chronic myeloid leukemia,  

DDR: Discoidin domain receptor, EGFR: epidermal growth factor receptor, EPHA: ephrin type-A receptor, ALL: acute lymphoid leukemia, EPHB: ephrin type-B 

receptor, FGFR: fibroblast growth factor receptor, FLT3: Fms-like tyrosine kinase 3, IGFR: insulin growth factor receptor, CLL: chronic lymphocytic leukemia,  

INSR: insulin receptor, LTK: leukocyte tyrosine kinase, NTRK: neurotrophic tyrosine kinase, PDGFR: platelet-derived growth factor receptor, ROR: receptor tyrosine 

kinase-like orphan receptor, VEGFR: vascular endothelial growth factor receptor. 
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Table 2. Current specific/selective tyrosine kinase inhibitors (TKIs) targeting receptor tyrosine kinases (RTKs). 

Name Trade/Code Name Mol. Mass (g/mol) Selective Target IC50 (nM/L) * FDA Approved Cancer (Examples) 

Afatinib Gilotrif 485.94 HER2, EGFR 0.5, 14 + NSCLC, squamous cell carcinoma of the head and neck, breast cancer 

Canertinib CI-1033 485.94 EGFR, HER2, 4 0.8,19, 7 − Head and neck, breast, and NSCLC, ovarian cancer 

Cediranib Recentin 450.5 VEGFRs <1 − NSCLC, kidney and colorectal cancer 

CP-673451 – 417.5 PDGFRs <1 − NSCLC, colon carcinomas, glioblastoma 

Crizotinib Xalkori 450.34 MET 11 + NSCLC, anaplastic large cell lymphoma, neuroblastoma 

Crenolanib CP-868-596 443.54 MET, ALK, FLT3, PDGFRα,β 11, 24, 0.74, 1, 0.4 − AML, gastrointestinal stromal tumor, glioma 

Dacomitinib PF-00299804 469.94 EGFR 6 − NSCLC, gastric, head and neck cancer, glioma 

Erlotinib Tarceva 393.43 EGFR 2 + NSCLC, pancreatic cancer 

EMD1214063 – 492.57 MET 3 − NSCLC 

EMD1204831 – – MET 9 − NSCLC 

Gefitinib Iressa 446.9 EGFR <57 + NSCLC, AML 

Icotinib Conmana 391.15 EGFR 5 + NSCLC 

KW-2449 – 332.4 FLT3 6.6 − AML 

Lapatinib  Tykerb 581.06 HER-2, EGFR 9.2, 10.8 + Breast cancer 

Lenvatinib E7080 426.85 VEGFR2, 3 <4 + Approved for thyroid cancer in Japan 

LY2801653 – 552.53 Met, RON <2 − NSCLC 

Neratinib HKI-272 557.04 EGFR, HER2 92, 59 − NSCLC, breast cancer 

PD-173074 – 523.67 FGFRs <25 − NSCLC, gastric carcinoma, breast cancer 

Quizartinib AC220 560.67 FLT3 <4.2 − AML 

R428 BGB-324 506.64 AXL 14 − AML, NSCLC, breast cancer 

Tandutinib MLN518/CT53518 562.7 FLT3 <100 − RCC, CML 

Tivantinib Arqule/ARQ-197 369.42 MET 4 − RCC, breast cancer 

Tivozanib AV-951 454.86 VEGFR1, 2, 3 0.21, 0.16, 0.24 − RCC, breast cancer 

Vatalanib PTK787/ PTK/ZK 346.81 VEGFR2 37 − NSCLC, DLBCL, colorectal adenocarcinoma 

* Half maximal inhibitory concentration (IC50) values are the measure of the effectiveness of TKIs in inhibiting the RTKs in biochemical assays, HER: human epidermal 

receptor, EGFR: epidermal growth factor receptor, NSCLC: non-small cells lung carcinoma, VEGFR: vascular endothelial growth factor receptor, PDGFR:  

platelet-derived growth factor receptor, ALK: anaplastic lymphoma receptor tyrosine kinase, FLT3: Fms-like tyrosine kinase 3, AML: acute myeloid leukemia,  

CML: chronic myeloid leukemia, RCC: renal cell carcinoma, DLBCL; Diffused large B-cell lymphoma. 
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Table 3. Multi-targeted tyrosine kinase inhibitors (TKIs) targeting RTKs and intracellular kinases. 

Name Trade/Code Name Mol. Mass (g/mol) Target Molecules (Examples) IC50 (nM/L) * FDA Approved Cancer (Examples) 

Amuvatinib MP470 447.51 
ALK, MER, KIT, RET, PDGFRs, 

FLT3, RAD 51 
<100 − NSCLC 

Axitinib Inlyta 386.5 VEGFRs, PDGFRs, KIT <1.7 + RCC 

Cabozantinib 

(XL184) 
Cometriq 501.51 

VEGF, RET, MET,  

NTRKB, TIE2, AXL 
<15 + 

Medullary thyroid cancer, progressive metastatic 

medullary thyroid cancer 

Dasatinib Sprycel 488.01 
BCR-ABL, SRC, KIT,  

PDGFRs, EPH, CSK 
<10 + CML, ALL 

Foretinib – 632.65 VEGFR2, MET 0.9, 0.4 − NSCLC, breast, gastric, papillary renal cancer 

Golvatinib E7050 633.69 VEGFR2, MET 16, 14 − Gastric cancer, HCC, glioblastoma, melanoma 

Imatinib Gleevec 589.7 ABL, KIT, PDGFRs 0.6, 0.1, 0.1 + Gastrointestinal stromal tumor, leukemias 

MGCD-265 – 517.6 MET, VEGFRs, TIE2, RON <7 − NSCLC 

Nilotinib Tasigna 529.5 
BCR-ABL, KIT, LCK,  

EPHA3, 8, DDR1, 2 
<30 + CML 

Pazopanib Votrient 437.51 PDGFRs, VEGFRs <150 + 
Advanced renal cell carcinoma,  

advanced soft tissue sarcoma 

Ponatinib Iclusig 532.56 
BCR-ABL, PDGFRα, SRC,  

KIT, FGFR, VEGFRs 
<6 + CML, philadelphia chromosome positive ALL 

Regorafenib Stivarga 482.82 TIE2, PDGFRs, RET, KIT, B-RAF <25 + Metastatic colon cancer 

Sorafenib Nexavar 464.8 VEGFRs, PDGFRs, B-RAF,MEK, ERK <100 + 
Advanced renal cell carcinoma,  

hepatocellular carcinoma 

Sunitinib Sutent 532.56 
VEGFR2, PDGFRβ, KIT,  

RET, CSF1R, FLT3 
<100 + Renal cell carcinoma, gastrointestinal stromal tumor 

Vandetanib Caprelsa 475.35 EGFR, VEGFRs, RET, Tie-2, FGFR1 <500 + Metastatic medullary thyroid cancer 

* Half maximal inhibitory concentration (IC50) values are the measure of the effectiveness of TKIs in inhibiting the RTKs in biochemical assays, ALK: anaplastic 

lymphoma receptor tyrosine kinase, FLT3: Fms-like tyrosine kinase 3, PDGFR: platelet derived growth factor receptor, EGFR: epidermal growth factor receptor, NSCLC: 

non-small cells lung carcinoma, VEGFR: vascular endothelial growth factor receptor, VEGF: vascular endothelial growth factor, NTRK: neurotrophic tyrosine kinase, 

EPHA: ephrin type-A receptor, DDR: Discoidin domain receptor, CML: chronic myeloid leukemia. 
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Proper TKIs are usually selected by high-throughput screening (HTS) methods that detect the most 

proper TKI candidates among a large library of compounds. An optimal TKI should have particular 

characteristics for further development. Absorption, distribution, metabolism, excretion, and toxicity 

(ADMET) of a drug candidate are the most important elements that should optimize for in vivo use [26]. 

Based on these properties, there are several challenges in front of the selection of effective inhibitors. 

Membrane permeability, inactivation due to metabolism of the drug, decreasing due to non-specific 

interactions with other intracellular components or rapid excretion, toxicity and lack of distribution 

into appropriate cellular compartment are the major problems behind TKI discovery [26]. 

TKIs prevent and block vital pathways through targeting signaling molecules which are necessary 

for cell survival. TKIs can translocate through the plasma membrane and by interacting with the 

cytoplasmic domain of RTKs and inhibit the catalytic activity of the TK domain by interfering with the 

binding of ATP or its substrates (Figure 1) [27]. 

Figure 1. Targeting receptor tyrosine kinases by tyrosine kinase inhibitors (TKIs). Blocking 

small molecule inhibitors of kinase domain (TKIs) prevents the phosphorylation of the 

receptor at TK domain and interferes with cell proliferation, differentiation, migration, and 

survival and induces cell apoptosis. Phosphate groups are denoted as yellow circles. 
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TKIs are classified into three main groups. Most of the current TKIs are ATP-competitive inhibitors 

and are classified as type I inhibitors. Due to the highly conservative ATP-binding sites in TK domains 

and a high rate of competition with intracellular ATP, several difficulties obstruct the development of 

specific/selective TKIs of type I. Therefore, TKIs might target other kinases, thereby suggesting that 

the anti-tumor effects may be due to the effects on other signaling molecules. Types II and III are  

non-ATP competitors and act through induction of structural changes in the RTKs. The conformational 

shifts modify the TK domain in a way that the TK domain loses its kinase activity [28]. Moreover, 

these inhibitors can bind to residues within the TK domain and prevent tyrosine phosphorylation. Most 

of the TKIs that have been described in this review are type I inhibitors (Tables 2 and 3). 

4. Specific/Selective TKIs Targeting RTKs 

Most of the FDA approved TKIs for the treatment of cancer are multi-targeted inhibitors of several 

intracellular tyrosine kinases (Table 3), and a few specifically inhibit the members of a family. Here, 

the most specific/selective TKIs that target the members of a specific RTK family are discussed (Table 2). 

5. Epithelial Growth Factor Receptor (EGFR) Family and Specific/Selective TKIs 

EGFR (ErbB) is a family of four structurally related RTKs: ErbB-1/ EGFR, ErbB-2/HER2/neu, 

ErbB-3/HER3, and ErbB-4/HER4. This family plays critical roles in the regulation of normal cell 

proliferation, differentiation and survival. Under physiologic circumstances, specific soluble ligand (EGF) 

binds to the extracellular region of EGFR and following homo/heterodimerization with other members 

lead to phosphorylation at specific tyrosine residues within the intracellular domain [29]. 

EGFR members are abnormally activated by several mechanisms like receptor over-expression, 

mutation, ligand-dependent receptor dimerization, ligand-independent stimulation, and are associated 

with the development of tumors of epithelial origin, including non-small cell lung cancer (NSCLC) [30], 

breast [31], colorectal [32], and pancreatic cancer [33]. Moreover, EGFR expression has been shown 

to be associated with a poor prognosis in most malignancies [34,35]. Therefore, specific/selective 

inhibition of EGFR is an ideal approach to cancer treatment. 

5.1. Gefitinib and Erlotinib 

Gefitinib (ZD1839, Iressa) [36] and erlotinib (OSI-774, Tarceva) [37] belong to the first generation 

of TKIs and are selective EGFR–TKIs that were approved on May 2003 and November 2004 for the 

treatment of NSCLC patients, respectively (Table 2) [30,38]. 

Erlotinib has also been approved for the treatment of patients with metastatic pancreatic cancer in 

combination with gemcitabine (2 November 2005) [39]. Anti-tumor effects of gefitinib and erlotinib 

have been investigated in other EGFR+ tumors, including gastric [40], gastroesophageal, esophageal [41], 

cervical [42], renal cell carcinoma [43], and hepatocellular carcinoma [44]. With a few exceptions, 

most trials have failed to show potent clinical effects in the majority of patients. Erlotinib has been 

shown to be effective as first-line treatment in gastroesophageal cancer, but it has shown no clinical 

benefits in gastric cancer [40]. 
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There are several reviews on the preclinical and clinical studies of these two EGFR–TKIs and will 

therefore not be described more in this article [45,46]. 

5.2. Icotinib Hydrochloride 

Icotinib hydrochloride (BPI-2009H) is a specific/selective EGFR–TKI that is approved for the 

treatment of NSCLC patients in China (Table 2). This TKI was developed in China and has similar 

structure, mechanism and therapeutic effects to gefitinib and erlotinib [47]. Icotinib has emerged as a 

promising TKI with clinical effects for the treatment of NSCLC patients [47]. 

Preclinical studies have demonstrated significant activity of icotinib on tumor cells. Icotinib blocks 

EGFR phosphorylation (IC50 = 45 nM) in A431 cell line and inhibits tumor cell proliferation.  

In vivo studies showed that Icotinib has dose-dependent anti-tumor effects in nude mice carrying 

human tumor-derived xenografts. The drug was well tolerated at doses up to 120 mg/kg/day in mice [48]. 

Pharmacokinetic analysis has shown that the mean half-life of icotinib was 6 h. The most frequent 

side effects were acnei-form dermatitis, diarrhea and a decrease in white blood cells [49]. 
Currently, several phase I, II and III clinical trials are ongoing in patients with NSCLC and head 

and neck squamous cell carcinoma [48,50]. 

5.3. Afatinib and Neratinib 

Afatinib (Gilotrif) and neratinib (HKI-272) are the second generation of EGFR–TKIs that were 

studied in clinical trials either as monotherapy or in combination with other drugs (Table 2) [30]. 

These EGFR–TKIs are dual-inhibitors of EGFR and HER2. They bind to the EGFR and HER2 

receptors and reduce autophosphorylation in cells by targeting a cysteine residue (Cys) in the  

ATP-binding pocket of the receptors. 

The activity of gefitinib and erlotinib has been shown to be impressive in patients with EGFR 

mutations. However, most patients have developed acquired resistance to these TKIs. To overcome the 

problem, afatinib was developed as an irreversible EGFR–TKI. 

Afatinib has been investigated as a first-line treatment for patients with EGFR mutation-driven 

NSCLC and as a second- or third-line treatment in patients with NSCLC, who have received prior 

treatment with an EGFR–TKI [51]. It has been shown that afatinib is an irreversible inhibitor of HER4 

and covalently binds to the cysteine in position 803 [52]. 

Preclinical studies have shown the promising activity of neratinib in NSCLC and breast cancer.  

Cell lines transformed with HER2 have shown to be resistant to the erlotinib; however, these cells as 

well as NSCLC cell line, Calu-3, over-expressing HER2, were highly sensitive to the neratinib [53]. 

Moreover, HER2 over-expressing BT474 cells xenografts also showed high sensitivity to the  

neratinib [54]. Currently, neratinib is under investigation as monotherapy or in combination with other 

drugs in clinical trials (ClinicalTrials.gov). 

5.4. Lapatinib 

Lapatinib (GW572016, Tykerb) is a reversible inhibitor of EGFR/HER2 and was developed in 2002 

for dual-targeted therapies (Table 2) [55]. Lapatinib binds covalently to the Cys 773 of EGFR and Cys 
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805 of HER2 with increased efficacy against mutant cell lines resistant to erlotinib and gefitinib [56]. 

It inhibits EGFR and HER2 tyrosine phosphorylation at the TK domain and prevents the activation of 

ERK1/2 and AKT followed by apoptosis of tumor cells in vitro and in vivo in xenografted mice with 

cell lines over-expressing EGFR and HER2 [55,57]. In the first preclinical studies of lapatinib, the 

effects were evaluated in human cell lines over-expressing EGFR or HER2 including HN5 (head and 

neck), A-431 (vulva), BT474 (breast), CaLu-3 (lung), and, N87 (gastric) cell lines. Lapatinib showed 

inhibition of cell growth following dephosphorylation of EGFR, HER2, AKT, and inhibited tumor 

xenograft growth of the HN5 and BT474 cells in mice [57]. 

Phase I clinical studies started at 2002 and the safety, tolerability and pharmacokinetics were 

assessed in healthy controls [58]. Biological effects on tumor cells were studied in patients with 

metastatic cancers over-expressing HER2 and EGFR [59]. Data showed variable effects on 

downregulation of ERK and AKT from biopsies of treated patients and few side effects as well as 

some evidence of clinical activity. 

In combination with capecitabine, lapatinib has shown anti-tumor activity and prolongation of the 

time to progression of the disease in breast cancer patients who have previously been treated with 

trastuzumab, an anthracycline and a taxane [60]. Lapatinib was approved by the FDA on 13 March 

2007 as the second-line treatment of breast cancer. Lapatinib was also approved as first-line therapy 

for treatment of postmenopausal women with estrogen/HER2 receptor-positive breast cancer in 

combination with an aromatase inhibitor. 

5.5. Canertinib 

Canertinib (PD183805/CI-1033) is an irreversible EGFR–TKI with activity against EGFR. It has 

shown anti-tumor activity against A341 and H125 cell lines in vivo in xenografted mice. It has been 

tested in phase I trials in patients with head and neck, breast and NSCLC cancer. The water-soluble 

analog of canertinib has been shown to inhibit EGFR activity in vitro and suppressed human A431 

cells xenografts in nude mice [61]. 

Canertinib has been demonstrated to increase the anti-proliferative effects of vemurafenib in the 

BRAF mutant melanoma cell lines, but little or no enhanced effect was noted with the combination 

treatment in the wild type melanoma cell lines [62]. 

Canertinib decreased the phosphorylation of an ErbB kinase signaling target p70S6-kinase T389 in a 

dose-dependent manner as well as inactivation of downstream signaling molecules in ALL cell lines. 

Canertinib also increased the expression of the pro-apoptotic protein BIM, caspase-3 cleavage followed 

by apoptosis, abrogated proliferation and increased sensitivity to BCR/ABL-directed TKIs [63]. 

Several clinical trials are testing the anti-tumor activity of canertinib in metastatic breast cancer [64], 

NSCLC [65] and advanced ovarian cancer [66]. 

Currently, a few other selective EGFR–TKIs, including PKI-166, are under investigation in 

preclinical and clinical settings [67]. 

5.6. Dacomitinib 

Dacomitinib (PF-00299804, PF299) is a selective, quinazalone-based irreversible pan-EGFR–TKI 

and is a proper candidate for the treatment of NSCLC (Table 2). Preclinical studies have shown that it 
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inhibited the kinase activity of wild-type EGFR similar to gefitinib, erlotinib and canertinib. In contrast 

to gefitinib and erlotinib, it also inhibits HER2 and HER4 activity [68]. LCK and SRC were the only 

other kinases inhibited by dacomitinib, but the IC50 is >10-fold higher than that against EGFR [69].  

In vitro assays have shown that dacomitinib is active in gefitinib-sensitive and gefitinib-resistant cells as 

well as EGFR and HER2 mutated NSCLC cell lines with or without MET amplification. Dacomitinib 

inhibited EGFR phosphorylation and downstream signaling molecules, including AKT and ERK1/2, and 

induced apoptosis in the EGFR T790M-containing H3255 GR cell line at 10 nmol/L concentration. 

In xenografted nude mice using HCC827 GFP and HCC827 Del/T790M cells, either gefitinib or 

dacomitinib effectively inhibited the growth of HCC827 GFP xenografts. However, HCC827 Del/T790M 

xenografts were resistant to gefitinib, whereas dacomitinib was more effective at inhibiting growth of 

this xenograft model [69]. 

Dacomitinib irreversibly inhibited EGFR autophosphorylation in the A431 squamous cell carcinoma 

cell line with IC50 of 15.1 nmol/L alone or in the presence of EGF. In contrast, the reversible EGFR 

inhibitor erlotinib or gefitinib did not show the same inhibitory activity [70]. 

This TKI effectively prevented tumor growth in H125, SKOV3 and A431 cells of xenografted mice 

models and its therapeutic activity ranged from delayed progression to complete regressions [70]. 

SKOV3 xenografts, over-expressing HER2, EGFR, HER3, and HER4 exhibited an average tumor 

growth delay that ranged from 17.1 days (15 mg/kg) to 41.2 days (30 mg/kg) after treatment with 

dacomitinib and complete tumor regressions at doses as low as 15 mg/kg. At the maximum tolerated 

dose of 30 mg/kg, there were six of six complete tumor regressions seen with dacomitinib.  

HER2 phosphorylation at tyrosine residue (Tyr) 1248 was also inhibited with an average of 67%, 99% 

and 65% at 6, 24 and 48 h after dosing with 30 mg/kg of dacomitinib, respectively. In experiments 

using the A431 human squamous cell carcinoma xenografted model which over-expresses EGFR, 

HER2 and HER3, the anti-tumor effects were seen with an average tumor growth delay of 21 days at 

doses as low as 1.2 mg/kg [70]. 

Moreover, dacomitinib showed significant effects in vitro and in vivo against NCI-H1975 cells 

containing the EGFR L858R, T790M mutation. These preclinical models suggest that dacomitinib may 

be quite effective against lung cancer that becomes resistant to gefitinib or erlotinib via acquisition of  

a T790M mutation in EGFR [70]. 

The preliminary data of a phase II clinical trial as a first-line agent in squamous cell carcinoma of 

the head and neck showed a median progression-free survival (PFS) of 2.8 months and overall survival 

(OS) of 8.3 months. The most common side effects were diarrhea (16%), fatigue (9%), acnei-form 

dermatitis (7%), and hand–foot reaction (4%) [68]. 

A phase II study compared dacomitinib with erlotinib as second- or third-line therapy for patients 

with NSCLC [68]. The median PFS was 2.86 months in the dacomitinib arm and 1.91 months in the 

erlotinib arm (hazard ratio (HR) = 0.66; 95% confidence interval (CI) = 0.47–0.91; p = 0.012). 

Regarding the subgroup of patients with EGFR mutations, 19 patients received dacomitinib and  

11 received erlotinib. The PFS (median) was 7.44 months in both arms (HR = 0.46; 95% CI = 0.18–1.18;  

p = 0.098). The most side effects in the dacomitinib arm were diarrhea and acnei-form dermatitis [68]. 

Based on the results of this study, a phase III trial (ARCHER study) of second- or third-line 

dacomitinib versus erlotinib has been started in patients with NSCLC and KRAS wild-type NSCLC 

(ClinicalTrials.gov, NCT01360554) [69]. 
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Currently, a phase II trial to evaluate dacomitinib in first-line treatment for advanced lung 

adenocarcinoma is ongoing in patients with EGFR mutations (ClinicalTrials.gov, NCT00818441) [71]. 

Dacomitinib has also advanced to several phase III clinical trials. 

6. Vascular Endothelial Growth Factor Receptor (VEGFR) and Anti-Angiogenesis TKIs 

The VEGF family (VEGF-A (usually referred to VEGF), VEGF-B, VEGF-C, VEGF-D, and 

placental growth factor (PGF)) are over-expressed by various solid tumors and bind to its receptors 

(VEGFRs: VEGFR1, VEGFR2 and VEGFR3) on the vascular endothelium and induce angiogenesis. 

Angiogenesis is a regulated process responsible for the development of new blood vessels from a  

pre-existing vascular network. 

At present, various selective VEGFR–TKIs, including vatalanib, tivozanib, cediranib, and 

lenvatinib, are under investigation for the treatment of various solid tumors. 

6.1. Vatalanib 

Vatalanib (PTK787 or ZK222584) has been shown to inhibit tumor angiogenesis and has been 

studied for the treatment for several types of cancer (Table 2) [72]. It selectively inhibited all VEGF 

receptors, but also inhibited other class III kinases, including platelet-derived growth factor receptor 

(PDGFR) β and KIT in higher concentrations. Several studies have shown that vatalanib induced 

apoptosis of CLL cells both in vitro and in vivo [73]. 

Preclinical investigations have shown that vatalanib inhibited growth and reduced microvasculature 

in subcutaneously implanted human tumor xenografts in nude mice [74]. It inhibited VEGF-induced 

autophosphorylation of VEGFRs, endothelial cell proliferation, migration, invasion, and survival  

in vitro. In concentrations up to 1 μM, vatalanib did not have any cytotoxic or anti-proliferative  

effect on cells that do not express VEGFR. It induced dose-dependent inhibition of VEGF-induced 

angiogenesis in a growth factor implanted and a tumor cell-driven angiogenesis model. Moreover,  

it inhibited the growth of various human carcinomas in nude mice as well as a murine renal carcinoma 

and its metastases in a syngeneic, orthotopic model. Microvessel formation has revealed to be inhibited 

by vatalanib in the interior of the tumor [74]. 

Anti-tumor and anti-angiogenic activity of vatalanib have been demonstrated in a murine renal cell 

carcinoma model. Treatment of mice with vatalanib showed no changes in extravasation, whereas a 

significant decrease in vessel permeability was noted. Moreover, an increase in partial blood volume 

was observed in the vatalanib-treated mice, although vessel density was reduced. Reduction in vessel 

density was shown to be due to the loss of microvessels [75]. 

Dual-inhibition of VEGF by prevention of VEGF production and VEGFR signaling has shown 

synergistic anti-tumor effects. In vitro effects of vatalanib and everolimus on cell proliferation, cell 

cycle, apoptosis, and signal transduction have been investigated in gastric cancer cell lines [76]. 

Results showed that everolimus but not vatalanib decreased gastric cancer cell proliferation with no 

effects on apoptosis. Vatalanib eliminated endothelial cell tube formation, but it was incomplete by 

everolimus. In vivo analysis showed that the combination of vatalanib and everolimus was more 

effective than single agent treatments and it reduced tumor size in vivo. Moreover, lower vascular 
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density and proliferation was observed for combination treatment. Current data showed that vatalanib 

anti-tumor activity may be augmented in combination with other drugs including everolimus [76]. 

6.2. Tivozanib 

Tivozanib (AV-951, KRN-951) is an oral quinoline urea derivative that suppresses angiogenesis by 

being selectively inhibitory against the VEGFR family. Although it might target other kinases with high 

concentration, it is highly specific for VEGFR with picomolar potency to each VEGFR member (Table 2). 

Tivozanib has shown anti-tumor effects in human breast, colon, liver, lung, ovarian, pancreas, and 

prostate cancer and in brain xenografted models [77]. Tivozanib inhibited VEGF-induced VEGFR2 

phosphorylation in endothelial cells at in vitro and inhibited VEGF-mediated migration of human 

umbilical vein endothelial cells. Athymic rats treated with tivozanib have been shown to decrease the 

microvessel density within xenografts. Tivozanib attenuated VEGFR2 phosphorylation in tumor 

endothelium and displayed anti-tumor activity against a wide variety of human tumor xenografts. 

Dynamic contrast-enhanced magnetic resonance imaging has revealed reduction in tumor vascular 

hyper-permeability that is associated with the tivozanib anti-tumor activity [78]. The effects have been 

evaluated in a rat colon cancer RCN-9 syngeneic model in which the tumor cells have been 

transplanted into the peritoneal cavity of F344 rats. Treatment of RCN-9 transplanted mice decreased 

angiogenesis, the formation of tumor nodules and the accumulation of malignant ascites. Furthermore, 

this TKI displayed regression of vascularization in newly formed tumor and increased the survival of 

rats even with more advanced-stage tumors [79]. 

Several clinical trials in phases II and III have shown benefits for patients with renal cell carcinoma [80] 

and breast cancer [81], and other clinical trials are ongoing for the treatment of different cancers using 

tivozanib alone or in combination [77,82]. 

6.3. Cediranib 

Cediranib (Recentin, AZD2171) is an indole-ether quinazoline that is a highly potent VEGF-signaling 

inhibitor and IC50 value of <1 nmol/L in vitro (Table 2) [83]. In human endothelial cells, cediranib has 

been shown to inhibit VEGF-induced phosphorylation of VEGFR2 and VEGFR3 at concentrations of less 

than one nmol/L. It inhibited activation of downstream signaling molecules, including AKT, ERK1/2 and 

CREB. Cediranib also inhibited VEGFR3-mediated endothelial cell function and lymphangiogenesis, 

VEGF-induced proliferation, survival and migration of vascular endothelial cells followed by angiogenesis. 

It also inhibited lymphangiogenesis in NMRI nu/nu mice [83]. 

In a pilot study, combined imaging, microcomputed tomography and histologic tumor evaluation 

with a xenografted model of breast cancer cell line, cediranib induced significant prevention of tumor 

growth and regression of MCF7–VEGF cells (transfected with VEGF) in xenografted athymic mice. 

Moreover, blood flow and microvessel density and proliferation have been shown to decrease 

significantly in MCF7–VEGF tumors [84]. 

Several preclinical studies demonstrated the significant reduction of tumor growth in various 

cancers including kidney, breast, lung, prostate, ovarian, colorectal cancer, sarcomas, glioblastoma, 

renal cell carcinoma, and NSCLC [85]. Based on the promising results, several clinical trials have  

been started from 2007. However, most phase III clinical trials failed to show significant benefits  
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from treatment with cediranib as monotherapy or in combination in NSCLC, glioblastoma, kidney,  

and colorectal cancer [86,87]. 

7. Platelet-Derived Growth Factor Receptor (PDGFR) and Specific/Selective TKIs 

PDGFRs belong to the type III tyrosine kinase family. They are not expressed in normal tissues  

but only in fibroblasts, smooth muscle cells in lungs and pericytes of the vascular wall. PDGFR  

over-expression leading to constitutive PDGFR activation has been reported in a number of 

malignancies, including NSCLC and gliomas [88]. PDGFRs stimulate MAPK, PI3K and PLC-γ signaling 

pathways that are involved in multiple cellular and developmental responses [89]. 

All approved PDGFR–TKIs are multi-targeted and a few specific/selective inhibitors are in 

preclinical and clinical settings. 

7.1. CP-673451 

CP-673451 is a highly selective benzimidazole, reversible and ATP-competitive inhibitor of 

PDGFR. This TKI is 450–5000-fold more selective for PDGFRβ compared with other angiogenic 

RTKs [90]. In vitro experiments have demonstrated that CP-673451 inhibited cell growth of 

mesenchymal-like NSCLC cell line H1703 with high expression of PDGFRα, but not in the epithelial 

cell line H292 lacking PDGFR [91]. 

The anti-tumor efficacy has been investigated in tumor xenografted athymic mice, including lung and 

colon carcinomas and glioblastoma. This TKI inhibited PDGFR phosphorylation, PDGF-BB-stimulated 

angiogenesis in vivo and causes significant tumor growth inhibition in xenografted models [90]. 

CP-673451 decreased cell proliferation through dephosphorylation of PDGFR, AKT, GSK-3α, 

GSK-3β, and impaired rhabdosphere-forming capacity in both RD and RUCH2 rhabdomyosarcoma 

cells [92]. It decreased proliferation, tumor growth and stromal cell infiltration in xenografted mice 

with RD and RUCH2 cell lines with high expression of PDGFR, whereas no effects were observed in 

PDGFR negative cell line RMS [92]. 

CP-673451 has shown proper and selective inhibition of PDGFR in preclinical settings, but more 

investigations on various PDGFR over-expressing tumors are necessary. 

7.2. Crenolanib 

Crenolanib (CP-868596) is a selective inhibitor of PDGFR. It is 100-fold more selective for 

PDGFR than for other kinases like VEGFR2 and fibroblast growth factor receptor (FGFR) 2 [93]. 

Crenolanib has been evaluated in a phase I, open-label, dose-escalation study designed to evaluate 

the safety, tolerability and pharmacokinetics. A dose of 100 mg twice daily with food was shown to be 

well tolerated [93]. 

The activity of crenolanib has been compared with imatinib in a panel of mutated PDGFRα 

expressing cell lines [88]. Crenolanib displayed strong anti-proliferative activity in BaF3 D842V and 

EOL-1 cell lines with PDGFRα-dependent growth. Data indicated that crenolanib was significantly 

more potent than imatinib in inhibiting the kinase activity of imatinib-resistant mutated PDGFRα 

including D842I, D842V, D842Y, DI842-843IM, and deletion I843. It showed to be 135-fold more 
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potent than imatinib against primary gastrointestinal stromal tumors cells expressing PDGFRα with 

D842V deletion and IC50 of approximately 10 nmol/L [88]. 

8. Fibroblast Growth Factor Receptor (FGFR) 

The FGFR family includes four members (FGFR1-4). Upon ligand binding, FGFRs activate mainly 

the mitogen-activated protein kinase (MAPK) and the phosphoinositide-3-kinase (PI3K)/AKT 

signaling pathways. These pathways are two major signaling cascades and play significant roles in 

tumor cell proliferation, angiogenesis, migration, and survival [94]. 

Most FGFR–TKIs are multi-targeted inhibitors, and only a few specific/selective TKIs are in 

preclinical settings. PD173074 has been developed years ago and has not been approved for the 

treatment of cancer. Other FGFR–TKIs, including masitinib mesylate (AB1010), are multi-targeted 

and selectively inhibit angiogenic pathway. 

PD173074 

PD173074 was developed in 1998 to stop blood vessels forming around tumors. It is a selective and 

potent inhibitor that binds to the TK domain of the FGFR family (Table 2). PD173074 showed  

(>100-fold) selective inhibition of human umbilical vein endothelial cell growth at 10 nM 

concentration and inhibited the formation of micro-capillaries on matrigel-coated plastic. Preclinical 

studies in mice have revealed that oral administration of PD173074 (25–100 mg/kg) generated  

dose-dependent inhibition of angiogenesis [95]. 

This TKI-inhibited oligodendrocyte progenitor cell proliferation has been stimulated by  

FGF2 [96]. It suppressed the inhibitory effects of FGF2 on pro-oligodendrocytes differentiation  

into oligodendrocyte in culture. Moreover, it prevented PDGF-mediated MAPK activation of 

oligodendrocyte progenitor cells and downregulation of myelin genes (such as CNP, MBP) and 

resulted in upregulation of these proteins following treatment. Collectively, data suggest that 

PD173074 is highly effective at selectively abolishing FGF-mediated responses of both oligodendrocyte 

progenitors and differentiated oligodendrocyte [96]. 

9. MET Oncogene 

The MET oncogene is a heterodimer (α and β) RTK [97] and is required for the normal 

development [98]. MET expresses in a variety of adult tissues, but the expression is very low and 

restricted to cells of epithelial or mesenchymal origin [99]. The expression of MET and its ligand 

hepatocyte growth factor (HGF) is associated with several functions, including embryogenesis, cell 

proliferation, survival, differentiation, invasion, and tissue repair [100]. 

Deregulation of MET in cancer is due to several mechanisms, including activating mutations, gene 

amplification, over-expression, and increased autocrine or paracrine ligand-mediated stimulation [101]. 

MET over-expresses in breast cancer [102], NSCLC [103], gastric cancer [104] and several other solid 

tumors as well as in hematologic malignancies [105,106]. MET expression and function is associated 

with increased metastasis, tumor aggressiveness and poor prognosis [107]. 
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As a MET ligand, binding of HGF/SF to the extracellular domain of MET results in receptor 

dimerization that induces the transphosphorylation of Tyr 1234 and 1235 residues within the kinase 

domain and causes a structural change within the receptor. Phosphorylation of Tyr 1349 and 1356 residues 

at carboxy-terminal domain are also necessary for MET signaling [108]. Mutations flank the critical 

Tyr 1234 and 1235-induced constitutive receptor activation in patients with hereditary papillary renal 

carcinoma [109]. MET oncogene uses PI3K/AKT, RAS/RAF/MEK/ERK and SRC/FAK signaling 

pathways for signal transduction. Activation of these pathways results in increased cell growth, 

proliferation, survival, motility, and angiogenesis [110]. 

MET has a significant role in tumor cell growth, thus providing a strong rationale for targeted 

therapy in cancer. Based on the structure and function of MET and its association to survival signaling 

pathways, there has been successful development of several MET–TKIs. 

9.1. EMD1214063 and EMD1204831 

EMD1214063 and EMD1204831 are two selective and ATP-competitive MET–TKIs that were 

identified recently [111]. EMD1214063 and EMD1204831 have an average IC50 of 3 and 9 nmol/L, 

respectively, when tested in the presence of recombinant human MET kinase domain and a 

biotinylated peptide substrate. Oral administration of EMD1214063 resulted in a strong inhibition of 

MET-driven tumor xenografts in mice. Several clinical trials are ongoing to check the effects of these 

TKIs in patients with solid tumors [112]. 

EMD1214063 and EMD1204831 have been noted to inhibit HGF-induced MET phosphorylation in 

A549 cells with an average IC50 of 6 and 15 nmol/L, respectively, and induced regression of human 

tumors in xenografted mice [111]. Both TKIs have shown similar anti-tumor effects in preclinical 

studies. They decreased MET autophosphorylation as well as dephosphorylation of downstream 

signaling proteins (AKT, ERK 1/2 and PLCγ) in cell lines with MET activation mutation [113,114]. 

EMD1214063 induced MET-dependent cell-cycle progression in cell lines expressing drug-sensitive 

forms of the MET receptor, V1238I, M1268T and H1112L MET mutated variants by 57%, 47% and 

43%, respectively, and no effects in cells with MET mutant variant Y1248H and L1213V has been 

observed. In a xenograft tumor model mice bearing NIH3T3 cells, EMD1214063 treatment resulted in 

a complete regression of the sensitive H1112L mutant-derived tumors, but not in mice with L1213V 

tumors [113]. 

Inhibition of MET activity by EMD1214063 induced autophagy in gastric adenocarcinoma cell  

lines and inhibition of autophagy in combination with MET inhibition led to significant cell death [115]. 

The effects of EMD1214063 have been tested in neuroblastoma cell lines in vitro and in vivo [116].  

All tested cell lines showed to be sensitive to EMD1214063 with IC50 values ranging from 2.4 to 8.5 nM. 

It induced apoptosis of cells and specifically inhibited HGF-mediated MET phosphorylation followed by 

MEK dephosphorylation in neuroblastoma cells. This TKI reduced neuroblastoma tumor growth in 

immunocompromised xenografted mice [116]. It should be considered that as these MET–TKIs are 

selective in nM concentrations, they might inhibit other targets with higher concentrations. 
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9.2. Tivantinib 

Tivantinib (Arqule, ARQ-197) is an oral non-ATP competitive inhibitor and a staurosporine 

derivative that is a highly selective MET inhibitor through binding to dephosphorylated MET and 

preventing MET autophosphorylation (Table 2) [117]. Tivantinib was developed in 2010, and preclinical 

studies showed promising in vitro and in vivo results, including growth inhibition across a range of  

cancers [118]. Treatment of MET-expressing cancer cell lines with tivantinib inhibited cell proliferation, 

induction of caspase-dependent apoptosis and growth inhibition of tumor cells in xenografted mice [118]. 

The first clinical evaluation of tivantinib started in 2010 and the safety and tolerability, dose-limiting 

toxicities (DLT) and maximum tolerated dose (MTD), anti-tumor activity, pharmacokinetic, and 

pharmacodynamic profiles were evaluated in patients with advanced or metastatic solid tumors [110]. 

A maximum tolerated dose was not reached. It showed to be well tolerated and only mild to moderate 

toxicities were observed, including leukopenia, neutropenia, thrombocytopenia, vomiting, and dehydration. 

The rate of absorption was 2 to 4 h after initial dosing. Of 79 patients, 3.8% achieved a partial response 

and 50.6% had stable disease for a median time of 19.9 weeks [110]. 

Several phase II and III clinical trials are ongoing in patients with solid tumors and promising 

results have been achieved [119]. 

9.3. LY2801653 

LY2801653 was developed in China in 2013 and is a type II MET/RON–TKI (Table 2) [120].  

The mean IC50 value of LY2801653 for inhibition of MET autophosphorylation in HGF-stimulated 

H460 and S114 cells was shown to be 35.2 ± 6.9 and 59.2 nM, respectively. This TKI shows more  

anti-proliferative activity in cells with MET over-expression e.g., H1993 than the cells without MET 

gene amplification. It strongly inhibited MET phosphorylation and tumor growth in S114, U-87MG 

and NCI-H441 xenografted mice models [120]. 

This TKI inhibited NSCLC cell lines and patient-derived tumor xenografts. It prevented the 

constitutive activation of MET signaling and NCI-H441 cell proliferation, anchorage-independent 

growth, migration, and invasion. Treatment of the NCI-H441 orthotopic model significantly inhibited 

both primary tumor growth and metastasis. Moreover, treatment of tumor-bearing mice showed a 

significantly higher survival time compared to controls [121]. 

LY2801653 inhibited the growth of NSCLC cell lines A549, H1703 and H1993 at the IC50 of 627.6, 

72.9 and 9.28 nmol/L, respectively. It also prevented the growth of A549 and H1993 tumor xenografts 

in nude mice and growth of A549-luc-C8 lung orthotopic tumor xenografts in SCID mice [122]. 

Currently, several specific MET–TKIs, including lSOMCL-863 [123], SOMG-833 [124], 

Yhhu3813 [125], and BMS-777607 [126] are under evaluation in preclinical phases. 

10. Fms-Like Tyrosine Kinase 3 (FLT3) 

FLT3 belongs to the class III RTKs and is a cytokine receptor. It expresses in several hematopoietic 

progenitor cells and its signaling is necessary for the normal development of hematopoietic and  

other progenitor cells [127]. The FLT3 gene is the most frequent gene mutation in acute myeloid  

leukemia (AML) and its expression is associated with a worse prognosis [128]. Several FLT3–TKIs 
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have been developed as attractive therapeutic drugs, especially in AML patients with FLT3 mutations. 

The primary preclinical and clinical evaluation of the first generation of FLT3–TKIs did not show 

proper selectivity and pharmacokinetic properties. The second generation of these TKIs, however, has 

better selectivity and activity against tumor cells in vitro and in vivo. Similar to other drugs, patients 

have shown resistance to these TKIs. Currently, a few of them, including tandutinib, quizartinib,  

KW-2449 and crenolanib, have shown high selectivity. 

10.1. Tandutinib 

Tandutinib is a relatively selective FLT3–TKI (Table 2). It is a potent inhibitor of FLT3 internal 

tandem duplication (ITD)-transformed cell lines and human AML cell lines expressing the mutant 

FLT3. ITD is the most common FLT3 mutation found in up to 30% of AML patients [129]. 

Preliminary in vitro experiments showed that tandutinib inhibited wild-type FLT3 and its mutants with 

IC50 values of 30–100 nM and cell growth and proliferation were inhibited with IC50 values of 10–30 nM. 

Tandutinib has been shown to increase the survival of xenografted mice with AML tumor cells [129]. 

A phase I trial examined the use of tandutinib in AML patients. Data showed promising anti-tumor 

activity and decreased tumor cells in peripheral blood and bone marrow [130]. In a phase II study, 

patients with FLT3/ITD AML who were refractory, relapsed or ineligible for chemotherapy were 

selected for treatment [131]. Of 15 patients, two of them showed stable disease and six showed a 

decrease in peripheral blood and bone marrow blast cells [131]. 

10.2. Quizartinib 

Quizartinib (AC220) was designed as a selective FLT3–TKI (Table 2). This TKI has been evaluated 

in several clinical trials. In a phase I study, quizartinib was tested in patients with relapsed or 

refractory AML. FLT3 phosphorylation was shown to be inhibited and of 17 FLT3/ITD AML patients, 

nine showed proper response [131]. In a phase II study, two cohorts of AML patients with FLT3/ITD 

were enrolled. In the first group, involving 92 patients with relapsed or refractory to front-line therapy 

showed overall response rate (ORR) in 72%. In the second cohort with 99 FLT3/ITD AML patients 

with relapsed or refractory to two lines of therapy ORR was 68% [132]. Results show that this TKI is 

highly effective against FLT3 in AML patients. 

10.3. KW-2449 

KW-2449 is a selective FLT3–TKI and is under investigation for the treatment of different  

cancers, including AML (Table 2) [131]. It inhibited MOLM-13 cell growth with FLT3 mutations  

and prevented phosphorylation of FLT3/STAT5, G1 arrest and apoptosis in vitro and in vivo in  

FLT3-mutated xenografted model with minimum bone marrow suppression. Furthermore, KW-2449 

has been demonstrated to increase the frequency of cells in the G1 phase of the cell cycle and reduced 

the percentage of cells in the S phase, followed by the cell apoptosis [133]. 

Treatment of FLT3-mutated xenografted model displayed dose-dependent and significant tumor 

cell growth inhibition. Furthermore, KW-2449 showed anti-proliferative activity on primary AML 

cells and imatinib-resistant cells [134]. 
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10.4. Crenolanib 

Crenolanib is also a selective type I pan-FLT3 inhibitor with inhibitory effects on other TKs with higher 

concentrations (Table 2) [135]. Crenolanib has shown promising results against AML FLT3/ITD mutant 

isoforms, cell lines, primary human AML cells and mice models. It is strongly active against FLT3 

containing ITD and D835- or F691-activating mutations and showed to inhibit the growth of MV4-11 

AML cell line in xenografted mice. It has shown anti-tumor activity against Ba/F3 cells harboring 

FLT3/ITD mutant and MOLM-13 cells that are resistant to sorafenib both in vitro and in vivo [135]. 

Overall, a few selective FLT3–TKIs have been developed and have shown promising activity 

against leukemic cells of AML patients. More investigations in clinical trials and on the other 

malignancies are necessary to explore the potential anti-tumor activity of FLT3–TKIs. 

11. TAM RTK Family: AXL and MER Inhibitors 

AXL and MER RTKs belong to the TAM family, including TYRO-3, AXL and MER. The TAM 

receptors are defined by the presence of two Ig-like domains and two fibronectin type III repeats in  

the extracellular part and a cytoplasmic domain with kinase activity [136]. The vitamin K-dependent 

protein (Gas6) is the AXL ligand [137] and induces AXL autophosphorylation at Tyr 702 and 703 and 

MER autophosphorylation at Tyr 749, 753 and 754 within the activation loop [138,139]. Tyr 779, 821 

and 866 in AXL and Tyr 872 in MER have been reported to be phosphorylated and provide docking 

sites for interaction with intracellular signaling molecules [140]. AXL is expressed in various normal 

organs and cells and over-expressed in several cancers [141,142]. AXL expression was found to be 

correlated with cancer poor prognosis [139]. 

Currently, among a few selective AXL–TKIs, R428 has shown encouraging results in preclinical 

assays and might be a proper AXL–TKI for treatment. 

R428 

R428 (BGB324) is a first-in-class, highly selective AXL–TKI and has been tested in preclinical and 

clinical settings. R428 dephosphorylates AXL in a dose-dependent manner and prevents the invasion 

of both human MDA-MB-231 and murine 4T1 breast cancer cell lines in vitro [143]. 

In mice models, R428 showed acceptable plasma stability and pharmacologically proper doses have 

been achieved in oral administration. It inhibited breast cancer cell metastasis and angiogenesis 

following inhibition of AKT and ERK phosphorylation. R428 has shown proper activity in combination 

with cisplatin to inhibit liver and lung metastases in a breast cancer mouse model [143]. 

The effects of R428 have been tested on NSCLC cells in vitro and xenografted models,  

both in combination with other TKIs or chemotherapeutic agents. R428 has shown a synergistic  

anti-proliferation effect on NCI-H1299 (mesenchymal, EGFR wild-type, erlotinib-resistant) human 

NSCLC cells in combination with erlotinib. In NCI-H1299 cells xenografted mice R428 has 

significantly enhanced the anti-tumor activity of Docetaxel. Moreover, treatment of A549 NSCLC cell 

line with R428 and in combination with either erlotinib or anti-VEGF human antibody bevacizumab 

displayed additive anti-tumor activity. Treatment of HCC827 xenografted model with R428 has 
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delayed the development of resistance to erlotinib [144]. R428 seems to be a good candidate for 

targeted cancer therapy and further development in clinical settings [143]. 

12. Targeting Receptor Tyrosine Kinase Receptor (ROR1) 

ROR1 belongs to ROR–RTK family and is evolutionarily conserved between different species [15]. 

ROR1 consists of four extracellular parts: an Ig-like domain, cysteine-rich domain (CRD), kringle 

domain (KNG) and an intracellular TK domain. ROR1 over-expresses in several cancers [4,6,7,9,145] 

and is constitutively phosphorylated at Tyr 641, 645 and 646 within the TK domain [146,147]. 

There is little information about ROR1–TKIs and they are presently under intensive investigation in 

preclinical settings. 

IN0439365 and KAN0438063 

Biochemical studies have shown that ROR1–TKIs IN0439365 and KAN0438063 are highly selective 

and killed leukemic CLL cells with high specificity. Among several compounds, the best (IN0439365) 

killed 50 times more CLL cells than normal blood lymphocytes, dephosphorylated ROR1 and 

inactivated PI3K/AKT/mTOR proteins [148,149]. KAN0438063 has been shown to kill CLL cells 

with an efficacy index value of 40. This compound induced PARP, caspase 8 and 9 cleavage and 

downregulated MCL-1. The selective apoptosis effect of this compound has been compared with other 

SMIs targeting non-ROR1 structures in CLL. This ROR1–TKI has shown to be significantly more 

effective (p ˂ 0.001) compared to PCI-32765, CAL-101, R406, R788, STK-156485 and STK-156133 

inhibitors [148,149]. 

Similar effects were observed on pancreatic adenocarcinoma cell lines. Incubation of PaCa2 and 

PANC1 cells with IN0439365 induced a significant cell death following dephosphorylation of ROR1 

and inactivation of SRC, PI3K, AKT, mTOR, and CREB [149,150]. 

Several TKIs have been developed against other oncogenic RTKs, including anaplastic lymphoma 

kinase (ALK), EPHA/B, IGF2R, KIT, among others (Table 1). Most of TKIs against these RTKs are 

not specific and more efforts are necessary to develop specific/selective RTK–TKIs. 

13. Tumor Cell Resistance to Targeted-Cancer Therapy Agents 

Resistance to the current targeted therapies, including SMIs, can be divided into the intrinsic and 

acquired resistance [151]. Intrinsic resistance includes the factors that exist before treatment (e.g., the 

presence of cancer stem cells) and acquired type develops during treatment of tumor cells which have 

been sensitive to the initial treatment [152]. Acquired drug resistance is caused by post-treatment 

changes, including alteration in drug targets, alteration in the structure and biological properties of 

drugs in cancer cells and activation of compensatory survival signaling pathways [153,154]. Moreover, 

alteration in drugs after administration, including drug inactivation, increased rates of drug efflux, 

changes in drug metabolism [155] and alteration of the local tumor microenvironment [156], all of 

which have also been identified as important factors in increasing the rate of drug resistance. 

Drug resistance has been shown in various malignancies. Resistance to BCR–ABL-targeted 

therapies (imatinib) has been noted in AML and is associated with the intrinsic resistance of leukemic 
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stem cells [157]. Unexpectedly, most patients with an initial good response have shown drug resistance 

in the first year of treatment [151]. Recent studies suggest that the long-term treatment with more than 

one drug (combination therapy) might reduce the abundance of cancer-associated stem cells in some 

patients and reduce patient relapse [151]. 

Dual blockade of extra- and intra-cellular parts of RTKs or targeting more than one RTK by mAbs 

and TKIs is likely to represent improvement in the treatment and decrease the rate of drug resistance. 

A combination of trastuzumab and lapatinib in xenografted mice with HER2-over-expressing cells  

has shown remarkable inhibition of tumor growth and survival [87]. Dual targeting of EGFR using 

cetuximab and gefitinib has displayed synergic effects on inhibition of tumor cell proliferation and 

prevented drug resistance in colon cancer cell lines [88]. A combination of trastuzumab and lapatinib 

has also been investigated in different trials. This dual treatment had more significant clinical activity 

than either agent alone in vivo or in vitro [89,90]. 

14. Conclusions 

Most of the available targeted cancer therapy agents have significantly improved patients’ 

progression-free survival, but none of them has yet proven to cure the disease. Several RTK–TKIs and 

other inhibitors have been developed. Despite the considerable efforts from screening to clinical trials, 

which are expensive and time-consuming, only a few TKIs have entered clinical trials or have been 

approved by authorities for cancer treatment. Moreover, most TKIs as research tools or in the clinic  

are multi-targeted drugs. Multi-targeted property has several disadvantages, including side effects,  

a complication of the interpretation of results, and inducement of early resistance. Therefore, developing 

more specific/selective TKIs are necessary to overcome the current problems. On the other hand, tumor 

cells and their microenvironments are more complicated than in normal situations. Tumor cells 

simultaneously over-express several RTKs Targeting a specific RTK using a specific/selective TKI 

might give us a better understanding of the mechanism of tumor cell resistance. This may lead to select 

proper agents or prevent second-line of resistance. Therefore, identification and development of more 

specific SMIs will be critical for the successful treatment. To achieve this goal, several factors are 

required to be considered, including: (1) proper knowledge of the effects and characteristics of each 

TKI in preclinical studies; (2) TKIs with the highest selectivity and specificity are preferred to prevent 

or delay side effects and drug resistance; (3) developing more type II and III inhibitors than type I 

inhibitors; (4) using different animal models for preclinical in vivo studies; (5) a deeper understanding 

of the tumor heterogeneity in different individuals and the role of cancer stem cells; and (6) developing 

specific RTK–TKIs to target cancer stem cells. All factors are crucial to a better understanding of the 

nature of tumors and the raise of drug resistance. 
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