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Abstract: The single-mutation of genes associated with Alzheimer’s disease (AD) increases
the production of Aβ peptides. An elevated concentration of Aβ peptides is prone to
aggregation into oligomers and further deposition as plaque. Aβ plaques and neurofibrillary
tangles are two hallmarks of AD. In this review, we provide a broad overview of the diverses
sources that could lead to AD, which include genetic origins, Aβ peptides and tau protein.
We shall discuss on tau protein and tau accumulation, which result in neurofibrillary tangles.
We detail the mechanisms of Aβ aggregation, fibril formation and its polymorphism. We
then show the possible links between Aβ and tau pathology. Furthermore, we summarize
the structural data of Aβ and its precursor protein obtained via Nuclear Magnetic Resonance
(NMR) or X-ray crystallography. At the end, we go through the C-terminal and N-terminal
truncated Aβ variants. We wish to draw reader’s attention to two predominant and toxic
Aβ species, namely Aβ4−42 and pyroglutamate amyloid-beta peptides, which have been
neglected for more than a decade and may be crucial in Aβ pathogenesis due to their
dominant presence in the AD brain.



Int. J. Mol. Sci. 2014, 15 12632

Keywords: Alzheimer’s disease; amyloid β peptide; amyloid β oligomer; tau protein;
Aβ variants; Aβ polymorphism; pyroglutamate-modified amyloid beta peptides

1. Introduction

Alzheimer’s disease was first recognized by Alois Alzheimer as presenile dementia in 1906. It is
mainly diagnosed in people whose ages are over 65 with the prevalence of Alzheimer’s Disease (AD)
being shown to grow exponentially with age. It is prevalent among 10% of elderly people, which
makes AD an emerging social health issue with the rise of an aging population in the coming decades.
Specially, at the age of 85, 50% of the people face the risk of developing AD [1,2]. However, AD
is not exactly an aging-related disease [3]. In fact, it has been classified into two types. One is the
gene-related heritable AD, known as the early onset familial Alzheimer’s disease (fAD). The clinical
symptoms can appear in a very young age and it accounts for 25% of all AD cases [4]. Another
type is the sporadic Alzheimer’s disease (sAD), which constitutes the vast majority of AD cases and
is also apparently influenced by genetic contributions besides non-genetic environmental factors [5–7].
Several genes have been identified to increase the chance of developing fAD and sAD. However, the
pathological role of the only identified ε4 lipoprotein E (APOE) gene in sAD is still unclear. In addition,
the mutation of APOE ε4 is not necessary to increase the risk of developing sAD [8,9]. Thus, the
late-onset AD degenerative process has been speculated to be polygenic with the involvement of multiple
risk factors [6].

It is well known that the early symptoms of AD include loss of short-term memory, difficulties
in executing daily life activities, and withdrawal from social life. The behavioral symptoms
include progressive decline in memory, spatial reasoning, attention, and languages. AD is mainly
characterized by two pathological hallmarks: the intracellular neurofibrillary tangle (NFT) formed by
hyperphosphorylated tau proteins, and the extracellular amyloid plaque consisting of amyloid β peptides.
Significant selective neuronal degeneration and loss, with neurotransmitter deficits and inflammations
are also evident [10]. In the following section, we first delve into the root of AD by giving a short
review on genetic risk factors. After which, we shall discuss on two focal areas of current AD research.
One involves the intracellular accumulation of tau protein while the other is on extracellular amyloid
aggregation. The former is covered in Section 3 and the latter is addressed in Sections 4–6. In Section 7,
we connect these two aspects of AD research to provide a panoramic view of the generative mechanism
of AD. We briefly discuss on the progression pathway of AD and the possible therapeutic approaches in
Section 8. Finally, we conclude our review in Section 9.

2. Genetic Revelation of AD

With the higher level of gene expression in the brain, the cumulative DNA damage may have a
cascading effect on the transcriptional effectivity and fidelity, and the alteration of DNA conformation
in the hippocampus region has been observed in the brain of AD patients [11,12]. For the two types
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of Alzheimer’s—early onset (a.k.s. familial AD) and later onset (a.k.s. sporadic AD), both have a
genetic connection. Familial AD involves a number of single-gene mutations on chromosomes 1, 14
and 21, which corresponds to the abnormal presenilin 2, presenilin 1 and amyloid precursor protein
production respectively [13–17], and each of these mutations is believed to play a very important role
in the cleavage of APP and thus affect Aβ production. The late-onset AD accounts for the major cases
of AD, notwithstanding a lack of full understanding, the genetic risk factors, such as the definitively
identified apolipoprotein E (APOE) gene on chromosome 19 [18] and the methylenetetrahydrofolate
dehydrogenase 1-like (MTHFD1L) gene on chromosome 6 [19] as well as some other loci [20–23],
are likely to affect the predisposition of AD. Additionally, the genome-wide study of AD cases
also revealed new novel variants, which may modify the age of the AD onset or show gender-linked
susceptibility [24,25].

3. Tau Protein and Tau Accumulation

Tau protein arises from the alternative splicing of the microtubule-associated protein tau (MAPT)
gene, and is abundant within the central and peripheral nervous systems. It is one of the intrinsically
unstructured proteins (IUPs), which exhibit as random coils under physiological conditions, and are
capable of folding into well-defined stable structures, e.g., the neurofibrillary tangles in AD. Normally,
it is the phosphorylation-modified tau protein that stabilizes the axonal microtubules in the central
nervous system (CNS). Moreover, tau protein with actin cytoskeleton and plasma membrane serve
as enzyme anchors, and they are also believed to help in the neurite outgrowth and the transport of
axoplasm. However, under certain circumstances, tau protein may undergo abnormal phoshorylation,
hyperphosphorylation and some other modifications - nitration, ubiquitination, truncation, shift, prolyl
isomerization, which may reduce the binding affinity of tau towards microtube, and thus lead to either
intraneuronal accumulation of tau protein or its binding to other macromolecules [26–29].

The mislocalization and accumulation of tau proteins in dendrites and dendritic spines brings about
a disruption of neuronal cell communication, which precedes neurodegeneration and causes a loss of
memory [30]. Tau self-assemblies of tau proteins forming straight filaments (SFs) and/or paired helical
filaments (PHF) may further aggregate into NFT, which is significantly correlated with the severity of
AD. Electron microscopy of PHFs showed the appearance of two strands twisting around each other
with a cross-over repeat of 75–80 nm and a width of 10–22 nm [31,32]. It has also been further revealed
that β-sheet is the most dominant structure in the PHFs.

4. Amyloid Plaque and Aβ Peptide

4.1. Amyloid Precursor Protein

The amyloid β plaques results from the aggregation of the amyloid β (Aβ) peptides, which is cleaved
by the β- and γ-secreastase from the amyloid precursor protein (APP). The precise biological function of
APP is as yet not well defined even though lots of studies have revealed its biological and physiological
importance in the neurite outgrowth modulation [33], copper homeostasis regulation [34], synaptic
transmission and formation, and synaptic function and activity [35,36]. On the other hand, it has been
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shown that the absence of APP in a mouse model did not cause a significant impairment of cognitive
abilities, but instead led to a decrease in locomotion activity [37].

4.2. Aβ Aggregation Pathway

Neuronal impairment is observed in patients even before Aβ plaque formation during the early onset
AD. It is generally believed that Aβ oligomer is the main culprit of neurotoxicity [38–41]. Due to
these oligomers being easily attached to the membrane or other macromolecules and hard to be isolated
from these structures, conventional experimental studies on them are very difficult [42]. A progress has been
made recently which shows that Aβ dimers can be measured and strongly associated with dementia [43].
Besides the experimental methods, molecular dynamic simulation is a complementary approach for
atomic-level studies of the unstructured monomer aggregation process, structural evolution and toxicity.

4.3. Structural Evolution during Aggregation

In recent decades, Nuclear Magnetic Resonance (NMR) and X-ray have been carried out to determine
the structures of Aβ in water and membrane mimic environment (see Table 1). One general observation
is that Aβ peptides exhibit great polymorphism.

Table 1. Structural data of amyloid beta peptide obtained from experiments.

PDB ID Experimental Technique Resolution Release Date Residue DOI

1AMB [44] SOLUTION NMR - 1994-12-20 1–28 -
1AMC [44] SOLUTION NMR - 1995-01-26 1–28 -
1AML [45] SOLUTION NMR - 1996-01-29 1–40 -
1BA4 [46] SOLUTION NMR - 1998-06-17 1–40 -
1BA6 [47] SOLUTION NMR - 1998-06-17 1–40 10.1021/bi972979f
1BJB [48] SOLUTION NMR - 1998-11-04 1–28 10.1006/jsbi.2000.4267
1BJC [48] SOLUTION NMR - 1998-11-18 1–28 10.1006/jsbi.2000.4267
1HZ3 [49] SOLUTION NMR - 2001-01-31 1–26 10.1002/pro.5560060902
1IYT [50] SOLUTION NMR - 2003-02-11 1–42 10.1006/jsbi.2000.4288
1NMJ [51] SOLUTION NMR - 2003-01-28 1–28 10.1038/7562
1QWP [52] SOLUTION NMR - 1997-07-07 25–35 10.1021/bi961598j
1QXC [52] SOLUTION NMR - 2004-09-14 25–35 -
1QYT [52] SOLUTION NMR - 2004-12-14 25–35 10.1021/jm040773o
1ZE7 [53] SOLUTION NMR - 2005-05-03 1–16 10.1074/jbc.M504454200
2BP4 [53] SOLUTION NMR - 2005-04-21 1–16 10.1074/jbc.M504454200
2LI9 [54] SOLUTION NMR - 2011-07-20 1–16 10.1016/j.bbrc.2011.06.133
2LI9 [54] SOLUTION NMR - 2012-01-18 1–16 -

2M9S [55] SOLUTION NMR - - 1–40 10.1016/j.bbagen.2013.06.031
2Y2A [56] X-RAY DIFFRACTION - 2011-10-26 16–21 10.1073/pnas.1112600108
2Y3J [56] X-RAY DIFFRACTION 1.91 - 30–35 10.1073/pnas.1112600108
2Y3L [56] X-RAY DIFFRACTION 2.1 2011-11-02 35–42 10.1073/pnas.1112600108
2Y3K [56] X-RAY DIFFRACTION 2.1 2011-11-02 35–42 10.1073/pnas.1112600108
3Q2X [56] X-RAY DIFFRACTION 2.1 2011-11-02 27–32 10.1073/pnas.1112600108
3PZZ [56] X-RAY DIFFRACTION 2.1 2011-11-02 29–34 10.1073/pnas.1112600108
3OVJ [57] X-RAY DIFFRACTION 1.8 2011-07-06 16–21 10.1016/j.molcel.2004.06.037
3OW9 [56] X-RAY DIFFRACTION 1.8 2011-08-31 16–21 10.1371/journal.pbio.1001080

SOLUTION NMR - 2004-09-14 25–35 10.1021/jm040773o
SOLUTION NMR - 2012-01-18 1–16 10.1016/j.bpj.2011.11.4006

2OTK [58] 3D NMR - 2013-09-11 1–40 10.1016/j.bbagen.2013.06.031
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In many situations, Aβ is found to easily attach to other protein, or self-assemble into large oligomers
or fibrils. These complex involving Aβ peptides, such as APP, Aβ binding copper ions, Aβ segments
with enzymes as observed in experiment, are cataloged in Table 2.

Table 2. Experimental data of amyloid beta oligomers, fibrills and binding proteins.

PDB ID Experimental Technique Resolution Release Date Residues Count DOI

1AAP [59] X-RAY DIFFRACTION 1.5 1991-10-15 116 -
1BRC [60] X-RAY DIFFRACTION 2.5 1994-05-31 279 10.1006/jmbi.1993.1211
1TAW [61] X-RAY DIFFRACTION 1.8 1997-06-24 281 10.1002/pro.5560060902
1CA0 [61] X-RAY DIFFRACTION 2.1 1997-07-23 590 10.1002/pro.5560060902
1X11 [62] X-RAY DIFFRACTION 2.5 1998-01-14 370 10.1093/emboj/16.20.6141

1MWP [63] X-RAY DIFFRACTION 1.8 2000-03-15 96 10.1038/7562
1OQN [64] X-RAY DIFFRACTION 2.3 2003-08-05 336 10.1074/jbc.M304384200
1OWT [65] SOLUTION NMR - 2003-05-13 66 10.1074/jbc.M300629200
1TKN [66] SOLUTION NMR - 2004-08-03 110 10.1021/bi049041o
1ZJD [67] X-RAY DIFFRACTION 2.6 2005-08-09 294 10.1074/jbc.M504990200
2BEG [68] SOLUTION NMR - 2005-11-22 210 10.1073/pnas.0506723102
2G47 [69] X-RAY DIFFRACTION 2.1 2006-10-24 2060 10.1038/nature05143
2FJZ [70] X-RAY DIFFRACTION 1.61 2007-01-16 59 10.1016/j.jmb.2006.12.041
2FK1 [70] X-RAY DIFFRACTION 1.6 2007-01-16 59 10.1016/j.jmb.2006.12.041
2FK2 [70] X-RAY DIFFRACTION 1.65 2007-01-16 59 10.1016/j.jmb.2006.12.041
2FK3 [70] X-RAY DIFFRACTION 2.4 2007-01-16 472 10.1016/j.jmb.2006.12.041
2FKL [70] X-RAY DIFFRACTION 2.5 2007-01-16 132 10.1016/j.jmb.2006.12.041
2FMA [71] X-RAY DIFFRACTION 0.85 2007-01-16 59 10.1107/S1744309107041139
2IPU [72] X-RAY DIFFRACTION 1.65 2007-10-09 906 10.1073/pnas.0705888104

2R0W [72] X-RAY DIFFRACTION 2.5 2007-10-16 450 10.1073/pnas.0705888104
2OTK [58] SOLUTION NMR - 2008-02-12 182 10.1073/pnas.0711731105
2ROZ [73] SOLUTION NMR - 2008-07-22 168 10.1074/jbc.M803892200
3BAE [74] X-RAY DIFFRACTION 1.59 2008-04-15 474 10.1016/j.jmb.2007.12.036
3BKJ [74] X-RAY DIFFRACTION 1.59 2008-04-15 492 10.1016/j.jmb.2007.12.036
3DXC [75] X-RAY DIFFRACTION 2.1 2008-09-16 350 10.1038/embor.2008.188
3DXD [75] X-RAY DIFFRACTION 2.2 2008-09-16 350 10.1038/embor.2008.188
3DXE [75] X-RAY DIFFRACTION 2.0 2008-09-16 350 10.1038/embor.2008.188
3GCI [76] X-RAY DIFFRACTION 2.04 2009-03-10 126 -
3IFL [77] X-RAY DIFFRACTION 1.5 2009-11-17 448 10.1074/jbc.M109.045187
3IFN [77] X-RAY DIFFRACTION 1.5 2009-11-17 481 10.1074/jbc.M109.045187
3IFO [77] X-RAY DIFFRACTION 2.15 2009-11-17 904 10.1074/jbc.M109.045187
3IFP [77] X-RAY DIFFRACTION 2.95 2009-11-17 1808 10.1074/jbc.M109.045187
3JQ5 [76] X-RAY DIFFRACTION 2.03 2009-09-29 127 -
3JQL [76] X-RAY DIFFRACTION 1.2 2009-09-29 125 -
2WK3 [78] X-RAY DIFFRACTION 2.59 2009-11-03 2122 10.1016/j.jmb.2009.10.072
3KTM [79] X-RAY DIFFRACTION 2.7 2010-02-23 1528 10.1073/pnas.0911326107
3L81 [80] X-RAY DIFFRACTION 1.6 2010-06-02 308 10.1016/j.devcel.2010.01.015
3JTI [81] X-RAY DIFFRACTION 1.8 2010-07-21 127 -
3L33 [82] X-RAY DIFFRACTION 2.48 2010-09-22 1104 10.1074/jbc.M110.171348

3MOQ [83] X-RAY DIFFRACTION 2.05 2011-02-16 504 10.1523/JNEUROSCI.4259-10.2011
3MXC [84] X-RAY DIFFRACTION 2.0 2011-05-11 110 10.1016/j.jmb.2011.09.046
3NYJ [85] X-RAY DIFFRACTION 3.2 2011-06-01 207 10.1021/bi101846x
3NYL [86] X-RAY DIFFRACTION 2.8 2011-07-13 210 10.1016/j.molcel.2004.06.037
2Y3J [87] X-RAY DIFFRACTION 1.99 2011-11-02 48 10.1073/pnas.1112600108
2Y3K [87] X-RAY DIFFRACTION 1.9 2011-11-02 64 10.1073/pnas.1112600108
3AYU [88] X-RAY DIFFRACTION 2.0 2011-08-03 177 10.1074/jbc.M111.264176
2LMN [89] SOLID-STATE NMR - 2011-12-28 480 10.1021/bi051952q
2LMO [89] SOLID-STATE NMR - 2011-12-28 480 10.1021/bi051952q
2LMP [90] SOLID-STATE NMR - 2011-12-28 720 10.1073/pnas.0806270105
2LMQ [90] SOLID-STATE NMR - 2011-12-28 720 10.1073/pnas.0806270105
2LNQ [91] SOLID-STATE NMR - 2012-02-08 320 10.1073/pnas.1111305109
2LOH [92] SOLUTION NMR - 2012-05-23 86 10.1016/j.febslet.2012.04.062
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Table 2. Cont.

PDB ID Experimental Technique Resolution Release Date Residues Count DOI

2LP1 [93] SOLUTION NMR - 2012-06-06 122 10.1126/science.1219988
2LLM [94] SOLUTION NMR - 2012-06-20 43 PMCID: PMC3347594
3U0T [95] X-RAY DIFFRACTION 2.5 2012-01-11 894 10.1016/j.jmb.2011.11.047

3UMH [96] X-RAY DIFFRACTION 2.0 2012-01-25 211 10.1016/j.jmb.2011.12.057
3UMI [96] X-RAY DIFFRACTION 2.4 2012-01-25 211 10.1016/j.jmb.2011.12.057
3UMK[96] X-RAY DIFFRACTION 2.6 2012-01-25 211 10.1016/j.jmb.2011.12.057
3SV1 [97] X-RAY DIFFRACTION 3.3 2012-07-11 612 10.1093/jmcb/mjs033
4HIX [98] X-RAY DIFFRACTION 2.2 2013-03-13 475 10.1038/srep01302
2M4J [99] SOLUTION NMR - 2013-09-25 360 10.1016/j.cell.2013.08.035
2LZ3 [100] SOLUTION NMR - 2013-10-02 56 -
2LZ4 [100] SOLUTION NMR - 2013-10-02 56 -

The central amyloidogenic step of the oligomerization process is the transition from α-helix rich
(starting from the conformation of APP before being cleavaged) to β-sheet rich structures. All atom
simulation of Aβ37−42 reveals the polymorphism of Aβ oligomers [101]. Replica exchange molecular
dynamics simulations were conducted to study the short peptide Aβ10−35 [102] and Aβ16−22 [103]
dimer and trimer formations as well as the Aβ16−35 monomer and dimer structure and thermodynamics
properties [104]. A coarse-grained model of Aβ1−42 was used to study the structural diversity of
the dimer [105] in aqueous environment. A single Aβ40 peptide was used to study its structural
diversity [106] and the relevant effects of insertion depth and ionic strength in the DPPC membrane
environment [107]. Further study shows that the thermodynamics and dynamics of Aβ oligomerization
are sequence dependent [108].

Aβ has two alloforms: one is Aβ1−40, the other is Aβ1−42. Both have distinct effects and pathways
during oligomerization [109,110]. It is generally believed that Aβ1−40 peptides are non-amyloidogentic
while Aβ1−42 are amyloidogentic. Recent studies have shown that Aβ peptides produced in the area
with elevated level of cholesterol pose a great risk of Alzheimer’s disease [111] and those genes
associated with the cholesterol regulation play a significant role in the predisposition of AD. Here, it
raises the question on the effect of cholesterol binding to Aβ peptide and the associated mechanisms
of Aβ aggregation in the membrane environment. Recent studies done by our group show that
cholesterol molecules compete with the intra-action of Aβ oligomers by binding directly with Aβ
peptides. This implies that monomeric Aβ and/or small Aβ aggregations prefer to locate within
cholesterol-rich membranes [111–113]. Furthermore, Aβ structure evolution in the presence of small and
macro- molecules, such as curcumin [114,115], heme [116], resveratrol [115,117], mitoxantrone and
pixantrone [118], derivatives of Congo Red [119], 1,4-naphthoquinon-2-yl-L-tryptophan inhibitor [120],
EGCG [115,121], NqTrp [115], and inflammation protein complex [122], are also studied. In these
studies, Aβ aggregation behaviour is found to be either inhibited or promoted.

The single mutation of Aβ are also performed to study the mutation effect on Aβ oligomerization
process. A2V mutation in Aβ1−28 shows that the intrinsic disorder are reduced with a completely
different free energy landscape [123]. D7N mutation on the Aβ40 and Aβ42 exhibits a notable change
in secondary structure, final topology and salt bridge compared with wild type [124]. D23N mutation
also causes a distinct dimerization pathways compared with wild type in Aβ1−42 and Aβ1−40 [110].
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The detailed fibril nucleation and oligomerization are further probed from kinetics and thermodynamics
aspect via computational method [125].

5. Amyloid Fibril Formation and Polymorphism

Since the end of the 20th century, much effort has been made to understand the structure of amyloid
fibrils and the mechanism of its formation. With the development of measurement techniques, such as
NMR and X-ray crystallography, the polymorphic structures of amyloid fibril have been revealed. The
main contribution to the distinct structures of the fibril is the sensitivity of the fibril growth towards
the surrounding conditions [126–128]. Despite the multiple differences in their overall structures, there
exists a common a well-characterized antiparallel β-sheets within the fibrils [127]. Molecular dynamics
simulations have been employed to investigate the detailed mechanisms of the Aβ fibril formation
by adding monomers into the structured oligomers [129]. It was found that the incorporation of the
monomers into the oligomers occurs in two distinct stages: the first stage is a rapid conformational
change of the monomers from a disordered structure to one with a significant amount of beta-strand
content. The second stage is a relatively slow process, namely the docking of the monomer which has
adjusted itself into a well-registered antiparallel structure.

6. Aβ Isoforms — Variants of Aβ

The amyloid-cascade hypothesis holds a stronghold in the research of AD. It posits that the process of
Aβ aggregation into oligomers and final deposition as plaques is the central pathological events in AD.
As stated earlier, Aβ40 and Aβ42 are two well-recognized isoforms of Aβ being produced. Meanwhile,
with the conduct of intensive research in this area, several C-terminal truncated isoforms, such as
Aβ43 [130,131], Aβ1−15/16 [132], and carboxyterminally truncated Aβ peptides 1 − 37/38/39 [133],
have been revealed and they are suggested to play a crucial role in the AD pathogenesis. In particular,
experimental data obtained from both sporadic and familial AD shows that Aβ43 is more prevalent than
Aβ40 in plaque core [130].

Interestingly, in AD brains there are a significant proportion of N-terminal truncated Aβ variants,
such as Aβ2−17, Aβ3−17 [134], Aβn−40/42 with n ranges from 2 to 11 [135], pyroglutamate-modified
amyloid beta (Aβ3(pE)−42) and Aβ11(pE)−42 peptides [136]. Among them the pyroglutamate-modified
amyloid beta appears to be the predominant components [137–139]. The earliest report of the
pyroglutamate-modified amyloid beta-peptides dates back to 1997 and earlier [140,141]. After a
decade of inactivity following 1997 and only within the recent five years have some researchers
begun to understand their formation [142], structure [143], oligomerization [144], intracellular
accumulation [145], and its potential as therapeutic target [138]. At the same time, the first reported
peptide in Aβ plaque, the Aβ4−42 peptide, has received no attention even though it is as toxic as
pyroglutamate-modified amyloid beta peptides and Aβ42 [135].
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7. Aβ Oligomers and Tau Protein: Relationship and Link

There are various means by which Aβ oligomers are distributed among cells. These are: diffusion
or spread within extracellular parenchymas as oligomers or deposited plaques; adsorption on membrane
surface or incorporation into membrane structure forming pores or channels; and accumulation within
the neuronal structure. On the other hand, the tau protein is mainly distributed within the intracellular
neuron. One possible direct link between the intraneuronal Aβ and tau protein involves the modulation
effect between Aβ and tau pathologies [146].

Studies have shown that intracellular accumulation appears earlier than amyloid plaque and NFT, and
have suggested that intraneuronal Aβ accumulation initiates the caspase-cleavage of tau and precedes
the Aβ plaque and NFT formation [147,148]. Meanwhile, tau hyperphosphorylation signal transduction
pathways may also be linked indirectly to Aβ oligomers. Recent reviews on the relationship between
Aβ pathway and tau pathology can be accessed from references [146,149].

8. AD Progression Pathway and Current Therapeutic Strategies

Mild cognitive impairment (MCI) has been used to prescribe the transitional stage between healthy
brain and dementia. One impairment subtype is amnesic mild cognitive impairment (aMCI), which may
increase the risk of progression to AD. Due to a variation in definitions of MCI based on different clinical
criteria, the pathology of aMCI still lacks a strong characteristic profile. In terms of the intermediate
stages towards AD, MCI shares a lot of similarity with AD, i.e., an increase of NFT in the medial
temporal lobe (namely, hippocampus) amygdala.

In the last few years, donepezil, rivastigmine, and galantamine are prescribed drugs for AD patients
to target acetylcholinesterase that inhibits the breaking down of acetylcholine. Another drug memantine
has been used to block glutamate receptors against excitotoxicity as a means to cure AD. To date,
the acetylcholinesterase inhibitors are the most widely used AD drug and have been to some extent
successful in slowing down the process of cognitive impairment [150].

9. Conclusions

Alzheimer’s disease is a complex and progressive neuro-degenerative disease. There are numerous
studies from different points of view on the pathology of AD, such as those mentioned in this review,
which involve genetic and environmental factors, tau protein and neurofibrillary tangles, the variety of
its isoforms as well as amyloid beta peptides and oligomers. However, all of these issues are not isolated.
In all likelihood, the actions among extracellular amyloid β peptides and intracellular tau proteins are
closely related to each other through a series of complicated, but essentially important, processes and
events. Despite the strong links between Aβ and tau protein that have been reported so far, a panorama
study of these deeply connected roadmap is still missing. In order to explore the whole landscape of
AD, a step by step strategy is of paramount importance, such as the uncovering of the mechanism of
Aβ peptide aggregation, which will help to decipher the whole story on the pathogenesis of AD.
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