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Abstract: There has been limited research on genome-wide association with physical 

activity (PA). This study ascertained genetic associations between PA and 344,893 single 

nucleotide polymorphism (SNP) markers in 8842 Korean samples. PA data were obtained 

from a validated questionnaire that included information on PA intensity and duration. 

Metabolic equivalent of tasks were calculated to estimate the total daily PA level for  

each individual. In addition to single- and multiple-SNP association tests, a pathway 

enrichment analysis was performed to identify the biological significance of SNP markers. 

Although no significant SNP was found at genome-wide significance level via single-SNP 

association tests, 59 genetic variants mapped to 76 genes were identified via a multiple 

SNP approach using a bootstrap selection stability measure. Pathway analysis for these  

59 variants showed that maturity onset diabetes of the young (MODY) was enriched.  

Joint identification of SNPs could enable the identification of multiple SNPs with good 

predictive power for PA and a pathway enriched for PA. 
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1. Introduction 

Physical activity (PA) is any bodily movement produced by skeletal muscles that requires energy 

expenditure [1]. It includes exercise as well as work and recreational activities which involve bodily 

movements. PA can be quantified by metabolic equivalent task (MET) intensity [1,2], and plays an 

important role in the morbidity, mortality, and health care costs of obesity and related chronic diseases [3]. 

The behavior of PA may be determined by genetic factors [4–6]. In particular, between 48%  

and 71% of the variability in adult exercise behavior can be explained by genetic factors [6].  

Indeed, evidence from twin and family studies have suggested that genetic factors contribute to the 

propensity of being sedentary [5]. A novel approach has been proposed to identify genetic variants that 

are related to leisure-time exercise behavior, by conducting Genome-Wide Association (GWA) analyses 

using logistic regression to find genes associated with exercisers and non-exercisers [7]. Recently,  

a genome-wide study with quantitative PA as a phenotype was performed for the Korean population [8]. 

This study revealed how to define phenotypes of PA in genetic association studies, together with 

appropriate statistical methods for their analysis [8]. 

In reporting genetic variants associated with a trait or disease, most traditional GWA studies 

adopted a single-marker approach that identifies single genetic factors one by one. However, this 

method is inefficient in predicting joint effects of multiple genetic variants on the common complex 

trait [9,10]. A multiple-marker approach is the preferred alternative for their joint identification [11]. 

However, multiple linear and logistic regression models are often ill-defined in GWA studies when the 

number of predictor variables is larger than the sample size. In addition, collinearity often occurs 

between predictor variables due to linkage disequilibrium among single nucleotide polymorphisms (SNPs). 

To identify multiple genetic variants for common complex traits or diseases, an elastic-net (EN) 

regularization method had been proposed by Cho et al. [11], along with some consistency measures 

based on bootstrap sampling. The EN regularization method was originally introduced for model 

fitting and variable selection in ill-defined multiple regressions. It has been applied to GWA  

studies [12,13] and provided a better prediction than those based on ordinary regression models [14,15] 

when variables are larger than sample sizes and multicollinearity problems may exist. 

The present study aimed to find genetic variants influencing PA in the Korean population. Single-SNP 

association tests were initially conducted to assess genetic associations between daily PA and various 

SNP markers. We then performed multiple SNP analysis with EN regularization to determine genetic 

variants associated with PA. The SNPs identified provide novel biological evidence to understand the 

genetics of PA through pathway enrichment analysis. 
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2. Results and Discussion 

2.1. Results 

2.1.1. Physical Activity Levels 

Overall, the average daily PA level was 1332 (SD 871) MET·min for the Korean participants. Men 

(mean 1367, SD 887 MET·min·day−1) appeared to be slightly more active than women (mean 1300, 

SD 856 MET·min·day−1). The mean PA level of the Ansung cohort (1678, SD 1046 MET·min·day−1) 

was higher than that of the Ansan cohort (1038, SD 534 MET·min·day−1), suggesting that people in 

the rural community tended to be more active than their city counterparts. Figure 1 shows the box plots 

of self-reported PA by age groups (40–44, 45–49, 50–54, 55–59, 60–64, 65+). Although the median 

PA levels of these six age groups were similar, the PA distributions exhibited substantial variations.  

In particular, the majority of younger participants appeared to sustain low PA levels with the exception 

of a few outliers. For older participants especially those over 65 years, their PA levels varied 

considerably between individuals, as evident from the wide interquartile ranges. 

Figure 1. Box plots of total amount of physical activity (PA) by age group (40–44, 45–49, 

50–54, 55–59, 60–64, 65+). 

 

2.1.2. Individual Single Nucleotide Polymorphism (SNP)-Based Association Analysis 

Single-marker association analysis was performed for individual SNP with sex, age, area, and body 

mass index as covariates. Table 1 presents the results of the single-SNP association tests. The first six 

columns give the SNP information and the remaining columns summarize the regression results. 

Figure 2 further shows the Manhattan plot of 344,893 SNPs, where the y-axis represents the  

log-transformed p-value and the x-axis represents the chromosomes. The horizontal solid line indicates 

p-value = 10−5. Although these SNPs did not achieve the genome-wide level significance, 41 genetic 
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variants (listed in Table 1) emerged among the 344,893 SNPs to have some evidence of association 

with PA under p-value < 10−4, and they were mapped to 27 genes. 

Figure 2. Manhattan plot showing total amount of PA. The horizontal reference line 

represents the genome-wide association (GWA) threshold p-values 10−5. The p-values from 

single SNP association test is indicated in −log10 scale against each chromosome. 

 

Table 1. Single nucleotide polymorphisms (SNPs) associated with physical activity by 

single-SNP association tests (p-value < 10−4). 

rs Number Gene Symbol Location of SNP Cytoband Minor Allele MAF a BETA b p-Value c 

rs7023003 RN7SK, SLC44A1 intergenic 9q31.1d G 0.2522 65.58 4.67 × 10−5 

rs11791649 intergenic 9q31.1b A 0.0681 107.6 1.30 × 10−5 

rs6074898 MACROD2 intronic 20p12.1c C 0.0598 113.9 1.42 × 10−5 

rs17228531 intergenic 9q31.1b A 0.0676 107.1 1.49 × 10−5 

rs10057067 ITGA1 intronic 5q11.2b G 0.4550 −53.42 1.67 × 10−5 

rs12462609 CACNA1A intronic 19p13.13b A 0.1120 −83.29 2.04 × 10−5 

rs7020422 RN7SK, SLC44A1 intergenic 9q31.1d A 0.2350 61.84 2.59 × 10−5 

rs11952141 intergenic 5p15.1a C 0.1833 67.73 2.92 × 10−5 

rs6867384 intergenic 5p15.1a G 0.1838 67.28 3.18 × 10−5 

rs6891956 intergenic 5p15.1a T 0.1839 66.67 3.66 × 10−5 

rs6880596 intergenic 5p15.1a A 0.1767 67.66 3.78 × 10−5 

rs17069951 CITED2 intergenic 6q24.1b T 0.0106 246.8 3.91 × 10−5 

rs10507652 TDRD3 intergenic 13q21.2b T 0.0536 −113.1 3.95 × 10−5 

rs11781985 MFHAS1, CLDN23 intergenic 8p23.1d C 0.0632 105.8 4.23 × 10−5 

rs940031 CLDN23 intergenic 8p23.1d T 0.0822 92.64 4.31 × 10−5 

rs11586310 IRF2BP2 intergenic 1q42.3a G 0.0625 −104.3 4.38 × 10−5 

rs2519580 TFPI2 intergenic 7q21.3a T 0.1466 −71.32 4.62 × 10−5 

rs2519573 TFPI2 intergenic 7q21.3a T 0.1469 −71.19 4.69 × 10−5 

rs2724079 TFPI2 intergenic 7q21.3a A 0.1475 −70.25 5.77 × 10−5 

rs11783707 MFHAS1,CLDN23 intergenic 8p23.1d T 0.0627 103.9 6.10 × 10−5 

rs2093145 CST9 intergenic 20p11.21b A 0.2963 −54.71 6.10 × 10−5 

rs1888286 ASTN2 intronic 9q33.1b G 0.3201 53.33 6.51 × 10−5 

rs11587639 IRF2BP2 intergenic 1q42.3a C 0.0608 −103.2 6.72 × 10−5 

rs11780486 MFHAS1, CLDN23 intergenic 8p23.1d C 0.0625 103.4 6.74 × 10−5 
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Table 1. Cont. 

rs Number Gene Symbol Location of SNP Cytoband Minor Allele MAF a BETA b p-Value c 

rs337999 GALNT17 intronic 4q34.1b G 0.2463 57.03 6.83 × 10−5 

rs2987460 IRF2BP2 intergenic 1q42.3a T 0.0727 −94.17 7.74 × 10−5 

rs337997 GALNT17 intronic 4q34.1b T 0.2458 56.61 7.82 × 10−5 

rs853334 FGD5, C3ORF20 intergenic 3p24.3e A 0.4373 −49.31 7.92 × 10−5 

rs11111767 NT5DC3 intronic 12q23.3a A 0.3923 49.77 8.12 × 10−5 

rs7083122 RHOBTB1 intronic 10q21.2a A 0.1486 68.83 8.67 × 10−5 

rs1928980 ASTN2 intronic 9q33.1b A 0.3152 52.4 8.76 × 10−5 

rs2421930 DDX18 intergenic 2q14.1d G 0.0290 147 8.77 × 10−5 

rs1928984 ASTN2 intronic 9q33.1b C 0.3157 52.33 8.81 × 10−5 

rs3751204 NT5DC3 utr-variant-3-prime 12q23.3a T 0.3783 49.85 8.86 × 10−5 

rs10124001 JAK2, RCL1, MIR101-2 intergenic 9p24.1c A 0.1146 −76.5 9.19 × 10−5 

rs1265074 CCHCR1 intronic 6p21.33a A 0.3225 −51.96 9.23 × 10−5 

rs2493869 CDKAL1 intronic 6p22.3b A 0.3373 −51.44 9.39 × 10−5 

rs10495350 IRF2BP2 intergenic 1q42.3a T 0.0613 −100.4 9.45 × 10−5 

rs2446484 CDKAL1 intronic 6p22.3b G 0.3213 −51.99 9.66 × 10−5 

rs10989864 intergenic 9q31.1b A 0.0428 117.6 9.94 × 10−5 

rs4344422 ADRA2A intergenic 10q25.2b G 0.0910 83.98 1.00 × 10−4 
a MAF stands for Minor allele frequency; b Coefficient from single-marker association test with age, sex, area, 

and body mass index included as covariates; c p-values from single-marker association test indicates  

p-value = 10−5. Although these SNPs did not achieve the genome-wide level significance, 41 genetic variants  

(listed in Table 1) emerged among the 344,893 SNPs to have some evidence of association with PA under  

p-value < 10−4, and they were mapped to 27 genes. 

2.1.3. Multiple SNP-Based Association Analysis 

The multi-stage procedure was applied to identify multiple causal SNPs. After performing  

single-SNP association tests in the first stage, we chose top 1000, top 2000, top 3000, and top 4000 

SNPs that exhibit the strongest individual associations with PA. During the next stage, 639, 1248, 

1760, and 2239 from the respective top SNP groups were jointly identified as PA-related genetic 

variants by the EN regularization method. The elastic-net allows correlation among predictors in 

variable selection, so there can be different selection results according to pre-screened datasets [11].  

At the validation stage, these jointly identified SNPs were further evaluated using the bootstrap 

selection stability (BSS) measure. Since the lists of SNPs were different depending on the number of 

pre-screened SNPs, we focused on the common 457 SNPs that were simultaneously identified from all 

four groups. These commonly selected variants have higher BSS than the variants which are chosen 

only one pre-defined dataset [11]. Table 2 lists the final 59 variants selected with BSS ≥0.95 and 

mapped to 76 known genes. The p-values were calculated using a multiple linear regression model 

with adjustment for sex, age, area, and body mass index. Finally, pathway analysis found one pathway 

enriched in these 76 genes: Maturity onset diabetes of the young (MODY). This pathway includes 

GCK and HES1 genes and has a p-value of 0.076. 
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Table 2. SNPs associated with physical activity with bootstrap selection stability (BSS) ≥95% in top 1000, top 2000, top 3000, and top 4000 

SNPs through a multi-stage approach. 

rs Number Gene Symbol Location of SNP Cytoband Minor Allele MAF a Effect Size (4000) b BSS (4000) c p-Value d (4000) 

rs10849033 CCND2, C12ORF5 intronic 12p13.32a C 0.4886 19.799 99.7 0.00003 

rs4252821 CCNI 
Downstream (500 bp) 

Upstream (5000 bp) 
4q21.1b G 0.1013 15.281 96.9 0.00003 

rs853334 FGD5, C3ORF20 intronic 3p24.3e A 0.4373 −15.166 98.3 0.00009 

rs17099857 ARHGAP26 intergenic 5q31.3e C 0.0763 16.107 99.2 0.00010 

rs4906747 ATP10A intergenic 15q12a G 0.0640 14.613 97.4 0.00010 

rs6030844 RNU6-1, RNU6-2 intergenic 20q13.11b C 0.1729 14.352 97.6 0.00010 

rs10978130 PTPRD intergenic 9p23d C 0.1523 23.022 99.9 0.00013 

rs10507652 TDRD3 intergenic 13q21.2b T 0.0536 −19.779 99.9 0.00015 

rs7649230 HES1 intergenic 3q29c C 0.3382 12.115 96.4 0.00017 

rs13106655 TMEM156 nonsynonymous 4p14c G 0.2674 13.811 98.2 0.00018 

rs16953182 UNC13C intronic 15q21.3b G 0.0165 17.941 99.2 0.00021 

rs7976955 VWF, TMEM16B utr-variant-3-prime 12p13.31e T 0.0230 12.674 95.5 0.00025 

rs2586038 MRPS23 intergenic 17q22d G 0.3314 −14.089 97.1 0.00026 

rs9833833 UBE2E1 intergenic 3p24.3a T 0.3393 16.227 99.3 0.00031 

rs41455146 ADAM12 intergenic 10q26.2a G 0.0726 −12.430 96.5 0.00033 

rs2314612 GPR149, MME intronic 3q25.2c A 0.4665 −20.284 99.6 0.00033 

rs10513868 DLGAP1, FLJ35776 intronic 18p11.31e G 0.2335 13.314 97.6 0.00035 

rs4131468 MBD2, DCC, SNORA30, SNORA37 intergenic 18q21.2c T 0.4954 −15.354 98.8 0.00036 

rs2851651 intergenic 11q22.1a T 0.2047 −15.510 99 0.00039 

rs2728504 ZNF521 intergenic 18q11.2d T 0.2713 −19.259 96.9 0.00042 

rs17339892 MCTP1 intergenic 5q15c T 0.1076 12.451 96.6 0.00051 

rs7997236 FAM155A intergenic 13q33.3a A 0.0498 −20.321 99.7 0.00054 

rs1387243 FAR2, RN5S1, CCDC91 intergenic 12p11.22b C 0.1766 12.015 98.4 0.00056 

rs707586 AJAP1 intergenic 1p36.31b G 0.2672 −18.571 99.7 0.00064 

rs4978521 ZFP37, SLC46A2 intergenic 9q32b T 0.0886 −19.155 96.7 0.00066 

rs2067730 NRXN3 utr-variant-3-prime 14q31.1a C 0.0308 −11.340 96.2 0.00072 
rs16967978 LOC100132540, LOC339047, XYLT1 intronic 16p12.3c A 0.0427 13.550 95.2 0.00073 
rs41351947 EIF2B3 intergenic 1p34.1d C 0.0291 −15.446 99.2 0.00073 
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Table 2. Cont. 

rs Number Gene Symbol Location of SNP Cytoband Minor Allele MAF a Effect Size (4000) b BSS (4000) c p-Value d (4000) 
rs931701 BOC intronic 3q13.2b A 0.3798 −15.920 98.9 0.00077 
rs729239 RNU6-1, RNU6-2 intronic 4q21.1b T 0.0194 −15.186 98.4 0.00080 

rs10020466 RN5S1 intronic 4q34.3d C 0.0739 −13.149 98.4 0.00082 
rs1536053 C13ORF16 intronic 13q34b T 0.0393 −15.016 96.8 0.00083 
rs17553316 RGNEF intergenic 5q13.2c G 0.0192 12.629 96.7 0.00094 
rs445942 C7ORF10, INHBA intronic 7p14.1b C 0.1666 −16.716 99 0.00099 

rs17058450 FAM116A intergenic 3p14.3a T 0.0742 −12.336 96.1 0.00103 
rs11167061 FLJ43860 Upstream (5000 bp) 8q24.3d A 0.2238 −15.508 99.2 0.00112 
rs1453282 intronic 7p12.3b C 0.3057 −16.260 99.5 0.00130 
rs4864029 RNU6-1, RNU6-2 intergenic 4q28.3b G 0.1181 17.370 99.4 0.00134 
rs4620043 LIFR intergenic 5p13.1c A 0.2291 11.716 95.3 0.00153 
rs2140340 CSMD1 intronic 8p23.2c T 0.0826 15.130 98.4 0.00177 
rs3738178 MOSC1 intergenic 1q41d A 0.0966 13.128 96.3 0.00189 
rs7770227 intergenic 6q22.1b T 0.0781 18.199 99.7 0.00192 
rs17730347 MCTP2 intronic 15q26.2a C 0.2599 13.531 96.4 0.00194 
rs11024787 PTPN5 intronic 11p15.1c A 0.0300 −18.894 99.9 0.00200 
rs1605987 EDIL3 intergenic 5q14.3b T 0.1921 −14.930 98.2 0.00204 
rs3802292 CSMD1 intronic 8p23.2d T 0.3660 −15.587 99.8 0.00238 
rs2273635 KIAA1305 intronic 14q12a T 0.0956 13.632 97.8 0.00243 
rs7102454 CFL1, OVOL1, SNX32 intronic 11q13.1d C 0.3163 −13.331 96.8 0.00299 
rs2725795 C15ORF53 intergenic 15q14d G 0.0710 17.092 99.2 0.00323 
rs2280732 PLB1 intergenic 2p23.2b C 0.2716 11.855 97.2 0.00324 
rs3025365 DBH, FAM163B intergenic 9q34.2a C 0.1761 11.904 95.1 0.00326 
rs6979515 NXPH1 intergenic 7p21.3d G 0.3828 −18.242 99.2 0.00364 
rs12332121 RPS17P2 intronic 5q23.1a C 0.1237 −15.236 98.4 0.00445 
rs10046269 EYA4, TCF21 intergenic 6q23.2c C 0.0454 17.753 99.4 0.00484 
rs4921144 MIR146A, ATP10B Upstream (5000 bp) 5q33.3d A 0.0454 −12.473 96.4 0.00495 
rs888053 VIT, STRN intronic 2p22.2b A 0.2656 14.279 96.5 0.00512 

rs1079082 ZNF579, FIZ1 intronic 19q13.42c T 0.1132 13.545 96.4 0.00589 
rs4531650 EGLN3, C14ORF147 intronic 14q13.1c C 0.3818 −14.878 98.3 0.00643 
rs1799884 GCK, YKT6 intergenic 7p13d A 0.1892 −11.829 96.7 0.00724 

a MAF stands for Minor allele frequency; b Effect size obtained from top 4000 SNPs; c BSS in top 4000 SNPs; d p-values from multiple regression. 
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The predictive power of the 2239 SNPs identified from the top 4000 SNPs was next investigated. 

SNPs were ranked in order form smallest to largest and selected using a given BSS cut-off value, 0.95. 

Then, a multiple regression model with the selected SNPs was fitted to compute the corresponding 

adjusted R2 value. Figure 3 compares the adjusted R2 values versus number of SNPs between the 

multiple SNP analysis and the single-marker approach. It is clear that the predictive power increases 

with the number SNP for both approaches, but the multi-stage approach always performs better than 

the single-marker approach for prediction purpose. This shows that multi-stage approach using a BSS 

cut-off value provides a better explanation of phenotype than the single marker approach. 

Figure 3. Phenotype variation between multi-stage approach (solid line) and single-marker 

approach (dashed line). 

 

2.2. Discussion 

The present study investigated genetic factors associated with PA for the Korean population, by 

performing large-scale GWA through single-SNP analysis and multiple SNP analysis via the EN 

regularization method. Single-SNP association tests are appropriate to determine individual 

associations between each SNP and the trait or phenotype. However, if the purpose is to predict the 

phenotype, then the joint identification of genetic factors would be powerful and provide a better 

prediction of the trait when multiple genetic factors exist for a common complex trait. In the presence 

of multicollinearity due to linkage disequilibrium among SNPs, EN regularization with BSS offers 

more accurate identification of multiple SNPs than ordinary multiple regression analysis. 

Our single-marker analysis results showed that, although the most significant SNP did not attain  

the genome-wide significance level (rs7023003, p-value = 4.67 × 10−6), 41 SNPs did exhibit some 

evidence of association with PA at a less stringent significance level (p-value < 10−4). Among the  

27 genes identified, CDKAL1, CDK5 regulatory subunit associated protein 1-like 1, is one of the 

tailanchored protein family and associated with a type 2 diabetes susceptibility gene responsible for 

tRNALys modification [16]. CDKAL1 explores the TCR40/Get3 assisted pathway for insertion of its 
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C-terminal transmembrane domain into the endoplasmic reticulum [16]. It has been reported that this 

gene can influence insulin response and risk of type 2 diabetes [17]. 

TFPI2, tissue factor pathway inhibitor 2, is found to be a tumor suppressor gene and frequently 

inactivated through promoter methylation in several kinds of tumors [18]. In particular TFPI2 

methylation plays a key role in the diagnosis of colorectal cancer and has been demonstrated to exist in 

colorectal cancer patients’ sera [19]. 

CCHCR1, also called coiled-coil alpha-helical rod protein 1, is a candidate gene for Psoriasis which 

is one kinds of chronic inflammatory skin disorder [20]. CCHCR1 gene is found to be expressed in 

psoriatic lesions compared to normal healthy skin or other hyper proliferative skin disorders [21,22]. 

CCHCR1 has been demonstrated to be involved in steroidogenesis of the skin [20]. 

Another gene, RHOBTB1, encodes Rho-related BTB domain-containing protein 1 [23]. The protein 

encoded by this gene belongs to the Rho family of the small GTPase superfamily. It has a GTPase 

domain, a proline-rich region, a tandem of 2 BTB (broad complex, tramtrack, and bric-a-brac) domains, 

and a conserved C-terminal region. The protein plays a role in small GTPase-mediated signal 

transduction and the organization of the actin filament system. Alternate transcriptional splice variants 

have been characterized. It is known that the gene is highly expressed in skeletal muscle, stomach, 

placenta, kidney, and testis. 

The single-marker analysis also identified ASTN2. It encodes a protein that is expressed in the brain 

and may function in neuronal migration, based on functional studies of the related astrotactin 1 gene  

in human and mouse. A deletion at this locus was shown to be associated with schizophrenia [24]. 

Multiple transcript variants encoding different proteins have been identified in this locus. 

Through the multi-stage approach, subsets of multiple SNPs were jointly identified through the EN 

regularization method. Among the 457 common SNPs found, 59 SNPs with BSS values exceeding 

0.95 were mapped to 76 genes. Of these genes, ADAM12 encodes ADAM metallopeptidase domain 12 

and is a disintegrin and metalloproteases family member [25]. ADAM12 is also a multidomain type I 

transmembrane protein that functions both in normal physiology and in diseases [25]. CCNI gene, 

cyclin I, is also identified. CCNI is known to be expressed in human forebrain cortex [26]. CCNI is 

also presented in skeletal muscle, heart, and brain and expressed constantly during cell cycle 

progression [26]. Moreover, PTPN5 encodes protein tyrosine phosphatase, non-receptor type 5 and 

involves in regulating the occurrence of abnormal stress responses underlying depression-related 

disorders [27]. The basal levels of PTPN5 expression in the dorsal hippocampus determine an 

individual’s susceptibility for developing stress-related cognitive and morphological changes [27]. 

Another gene found, NRXN3 (neurexin 3), is a member of the neuroxines protein family that acts in the 

vertebrate nervous system as cell adhesion molecules and receptors [28]. The mutations of NRXN3 are 

related to alcohol and nicotine dependence in patients who suffer from schizophrenia [29,30]. 

Pathway analysis of the 59 SNPs led to the identification of MODY. Its inherence is responsible for 

non-insulin-dependent diabetes typically diagnosed among young people, especially under 25 years of 

age [31,32]. MODY is often referred to as monogenic diabetes, which is thought to be different from 

type 1 and type 2 diabetes [33,34]. MODY is also known to include the GCK gene and the HES1 gene. 

The gene GCK, glucokinase, is one of the frequently causing MODY genes and accounts for 

approximately 35% of cases [33]. HES1, Hairy enhancer of split 1, is one of the highly conversed 
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family of Hairy related basic helix-loop-helix (bHLH) proteins [35]. HES1 is also known to be 

involved specifically in Notch1 signaling in neural cells and in bone narrow [35]. 

The main limitation of our study concerns the self-reporting nature of PA and the questions used 

were not sufficiently detailed. In addition to possible recall error by the participants, the phenotypes of 

total PA level may not be well defined. PA was classified by five categories based on MET intensities 

with average MET assigned to each category. The estimated total PA level may dilute MET intensities 

and lead to a low power for the genetic association study. Furthermore, it is not feasible to compare 

our results with previous studies in the absence of similar genotyped SNPs. Consequently, we adopted 

the bootstrap sampling scheme to obtain replication data sets with appropriate selection stability 

measure to confirm the findings [11]. 

3. Experimental Section 

3.1. Subjects 

Study subjects were selected from an ongoing population-based cohort, as part of the Korean 

Genome and Epidemiology Study (KoGES). Participants were recruited from residents in two cities 

(Ansung and Ansan) in Gyeonggi-do, Korea. We enrolled 10,038 males and females between  

2001–2002 for a baseline study, whose demographics have been reported [8]. The Korean Genome and 

Epidemiology Study was launched in 2007, whereby over 10,000 subjects were recruited from two 

community-based cohorts: the rural Ansung and urban Ansan cohorts in the Gyeonggi of Korea.  

The initial samples included 5018 and 5020 participants aged 40 to 69 years from the two cohorts, 

respectively [36]. Table 3 summarizes the demographic characteristics of the participants. There were 

more female participants in Ansung than Ansan but the Ansung cohort was on average older than the 

Ansan cohort, reflecting the differences between rural and urban areas. This study obtained approval 

from the appropriate institutional review boards of each participating institution, and written informed 

consent was obtained from all participants. 

Table 3. Demographic characteristics of participants in the Korean cohorts. 

Cohort 
Sex (n) Age (Mean ± SD) 

Male Female Both Male Female Both 

Ansung (rural) 1658 2240 3898 55.92 ± 8.66 55.65 ± 8.81 55.77 ± 8.75 
Ansan (urban) 2337 2219 4556 48.56 ± 7.44 49.60 ± 8.22 49.07 ± 7.85 

Total 3995 4459 8454 51.61 ± 7.44 52.64 ± 9.04 52.16 ± 8.92 

3.2. Physical Activity Information 

Information on intensity and duration of daily PA was obtained from each participant using  

a structured questionnaire that included five components on PA: stable (lying down except sleeping), 

sitting (e.g., during typing, playing cards, driving, office work, attending a class), low intensity  

(e.g., walking, doing the laundry, cleaning, leisure time ping pong), medium intensity (e.g., walking, 

carpentering, regular exercise, badminton, swimming, tennis), high intensity (e.g., sports competition, 

climbing, running, logging, farming). For each type of PA, its duration was measured in minutes.  
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Since each question contained multiple PAs with varying MET intensities, the average MET intensity 

was assigned. The total amount of daily PA was then calculated by summing across the products of the 

average MET and the corresponding durations [37]. 

3.3. Genotypes 

Genomic DNA samples were isolated from peripheral blood drawn from the participants.  

The majority of genomic DNAs were genotyped on the Affymetrix Genome-Wide Human SNP array 

5.0 containing 500,568 SNPs. From the total of 10,038 participants, 10,004 available samples were 

genotyped [36] by implementing Bayesian robust linear modeling with the Mahalanobis distance 

(BRLMM) algorithm, and standard quality control procedures were adopted. Samples with high 

missing genotype call rate (>4%, n = 401), high heterozygosity (>30%, n = 11), gender inconsistencies 

(n = 41), and those obtained from individuals who had developed any form of cancer (n = 101), were 

excluded from subsequent analyses, along with related or identical individuals whose computed 

average pairwise identity-by-state value was higher than that estimated from first-degree relatives of 

Korean sib-pair samples (>0.80, n = 601). Samples whose genotype-inferred sex disagreed with 

clinical records were re-tested for sex confirmation using the SNaPshot Multiplex System (Applied 

Biosystems, Life Technologies, Carlsbad, CA, USA). Markers with high missing gene call rate (>5%),  

low Minor Allele Frequency (MAF) (<0.01) and significant deviation from Hardy-Weinberg equilibrium 

(p-value < 1 × 10−6) were excluded, leaving a total of 352,228 markers to be examined among  

8842 individuals. For multiple SNP analysis, reduced information was common due to missing values. 

To get complete genotype data, we imputed missing genotypes using the Fastphase software 

(University of Washington, Seattle, WA, USA) [38]. As a result, a total of 344,893 SNP markers with 

chromosomes 1–22 were obtained for our study. 

3.4. Statistical Analysis 

Single-SNP association analysis was first performed for each of the 344,893 SNPs using linear 

regression analysis with adjustments for sex, age, area, and body mass index. A multi-stage approach [11] 

was next conducted to identify multiple SNPs associated with PA. At the first stage, through  

single-SNP analysis, we selected the top 1000, top 2000, top 3000, and top 4000 SNPs which exhibit 

strong associations with PA for dimensional reduction. At the second stage, multiple-SNP analysis was 

performed with the EN regularization method, by utilizing a subset of SNPs chosen at the first stage. 

At the final stage, the bootstrap selection stability (BSS) measure was computed for each SNP, which 

indicated how consistently a SNP was replicated in bootstrap datasets. SNPs with high BSS values 

tend to have a higher chance of being replicated. More information about a multi-stage approach is 

described in Cho et al. [11]. 

To investigate the biological significance of PA-related genetic variants, we mapped the  

identified SNPs to an exon/intron and performed pathway enrichment analysis. All pathways related  

to the identified genes were investigated via the Kyoto Encyclopedia of Genes and Genomes  

(KEGG) database. Pathways were evaluated by the over-representation statistic and the Expression  

Analysis Systematic Explorer (EASE, Database for Annotation, Visualization and Integrated 

Discovery (DAVID), Frederick, MD, USA) score [39]. EASE calculates over–representation using 
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Fisher’s exact probability with respect to the total number of genes assayed and annotated within each 

system to measure the gene-enrichment in annotation terms [39]. p-values less than 0.1 defined as 

significantly regulated pathway. The single-marker association tests and adopted multi-stage approach 

were conducted using the PLINK [40] and R [41] software. 

4. Conclusions 

In this study, we demonstrated that the joint identification of SNPs could enable the identification 

of multiple SNPs with good predictive power for PA and a pathway enriched for PA. Previous genetic 

studies have focused on the relationship between PA and health (or fitness) [37,42–44]. Future studies 

are recommended to determine pertinent genetic factors that influence health- or fitness-related PA.  

In view of the large population diversities in GWA studies, a systematic comparison is needed between 

our Korean results and those derived from other populations. 

Acknowledgments 

This work was supported by the National Research Foundation of Korea (NRF, Daejeon, Korea) 

grant funded by the Korea government (MSIP) (No. 2012R1A3A2026438, 2008-0062618) and by the 

Consortium for Large Scale Genome Wide Association Study form the National Institute of Health of 

Korea (2009-E73007-00). The data were obtained from the Korean Genome Analysis Project (4845-301), 

which was funded by a grant from the Korea National Institute of Health (Korea Center for Disease 

Control, Ministry for Health, Welfare and Family Affairs, Cheongwon, Korea). The authors thank 

Nam H Cho (Department of Preventive Medicine, Ajou University, Suwon, Korea) and Chol Shin 

(Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Korea) for their contributions 

in generating and providing this valuable data. 

Author Contributions 

J.K., J.K., and T.P. conceived and designed this project. T.P. supervised all aspects of the project. 

J.K., J.K., and S.O. performed all statistical analyses. J.K., J.K., and T.P. wrote the manuscript. H.M., 

Y.K., and A.H. revised the manuscript. All authors read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Ainsworth, B.E.; Haskell, W.L.; Leon, A.S.; Jacobs, D.R.J.; Montoye, H.J.; Sallis, J.F.; 

Paffenbarger, R.S.J. Compendium of physical activities: Energy costs of human movement.  

Med. Sci. Sports Exerc. 1993, 25, 71–80. 

2. Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; 

Bassett, D.R.J.; Schmitz, K.H.; Emplaincourt, P.O. Compendium of physical activities: An update 

of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S516. 



Int. J. Mol. Sci. 2014, 15 12419 

 

 

3. Struber, J. Considering physical inactivity in relation to obesity. Int. J. Allied Health Sci. Pract. 

2004, 2, 1–7. 

4. Bouchard, C.; Malina, R.; Pérusse, L. Genetics of Fitness and Physical Performance; Human 

Kinetics: Champaign, IL, USA, 1997; pp. 323–334. 

5. Rankinen, T.; Roth, S.M.; Bray, M.S.; Loos, R.; Pérusse, L.; Wolfarth, B.; Hagberg, J.M.; 

Bouchard, C. Advances in exercise, fitness, and performance genomics. Med. Sci. Sports Exerc. 

2010, 42, 835–846. 

6. Stubbe, J.H.; Boomsma, D.I.; Vink, J.M.; Cornes, B.K.; Martin, N.G.; Skytthe, A.; Kyvik, K.O.; 

Rose, R.J.; Kujala, U.M.; Kaprio, J. Genetic influences on exercise participation in 37,051 twin 

pairs from seven countries. PLoS One 2006, 1, e22. 

7. De Moor, M.H.; Liu, Y.J.; Boomsma, D.I.; Li, J.; Hamilton, J.J.; Hottenga, J.J.; Levy, S.; Liu, X.G.; 

Pei, Y.F.; Posthuma, D. Genome-wide association study of exercise behavior in dutch and 

american adults. Med. Sci. Sports Exerc. 2009, 41, 1887–1895. 

8. Kim, J.; Oh, S.; Min, H.; Kim, Y.; Park, T. Practical issues in genome-wide association studies for 

physical activity. Ann. N. Y. Acad. Sci. 2011, 1229, 38–44. 

9. Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.;  

McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A. Finding the missing heritability of 

complex diseases. Nature 2009, 461, 747–753. 

10. Visscher, P.M. Sizing up human height variation. Nat. Genet. 2008, 40, 489–490. 

11. Cho, S.; Kim, K.; Kim, Y.J.; Lee, J.K.; Cho, Y.S.; Lee, J.Y.; Han, B.G.; Kim, H.; Ott, J.; Park, T. 

Joint identification of multiple genetic variants via elastic-net variable selection in a genome-wide 

association analysis. Ann. Hum. Genet. 2010, 74, 416–428. 

12. Shi, W.; Wahba, G.; Wright, S.; Lee, K.; Klein, R.; Klein, B. Lasso-pattern search algorithm with 

application ophthalmology and genomic data. Stat. Interface 2007, 1, 137. 

13. Wu, T.; Chen, Y.; Hastie, T.; Sobel, E.; Lange, K. Genome-wide association analysis by lasso 

penalized logistic regression. Bioinformatics 2009, 25, 714. 

14. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 1996, 58,  

267–288. 

15. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 

2005, 67, 201–210. 

16. Brambillasca, S.; Altkrueger, A.; Colombo, S.F.; Friederich, A.; Eickelmann, P.; Mark, M.; 

Borgese, N.; Solimena, M. CDK5 regulatory subunit-associated protein 1-like 1 (CDKAL1) is a 

tail-anchored protein in the endoplasmic reticulum (ER) of insulinoma cells. J. Biol. Chem. 2012, 

287, 41808–41819. 

17. Hu, C.; Zhang, R.; Wang, C.; Wang, J.; Ma, X.; Lu, J.; Qin, W.; Hou, X.; Wang, C.; Bao, Y. 

PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 

are associated with type 2 diabetes in a Chinese population. PLoS One 2009, 4, e7643 

18. Hibi, K.; Goto, T.; Kitamura, Y.H.; Yokomizo, K.; Sakuraba, K.; Shirahata, A.; Mizukami, H.; 

Saito, M.; Ishibashi, K.; Kigawa, G. Methylation of TFPI2 gene is frequently detected in 

advanced well-differentiated colorectal cancer. Anticancer Res. 2010, 30, 1205–1207. 

19. Hibi, K.; Goto, T.; Shirahata, A.; Saito, M.; Kigawa, G.; Nemoto, H.; Sanada, Y. Detection of 

TFPI2 methylation in the serum of colorectal cancer patients. Cancer Lett. 2011, 311, 96–100. 



Int. J. Mol. Sci. 2014, 15 12420 

 

 

20. Tiala, I.; Suomela, S.; Huuhtanen, J.; Wakkinen, J.; Hölttä-Vuori, M.; Kainu, K.; Ranta, S.; 

Turpeinen, U.; Hämäläinen, E.; Jiao, H. The CCHCR1 (HCR) gene is relevant for skin 

steroidogenesis and downregulated in cultured psoriatic keratinocytes. J. Mol. Med. 2007, 85, 

589–601. 

21. Asumalahti, K.L.; Veal, C.; Laitinen, T.; Suomela, S.; Allen, M.; Elomaa, O.; Moser, M.;  

de Cid, R.; Ripatti, S.; Vorechovsky, I. Coding haplotype analysis supports HCR as the putative 

susceptibility gene for psoriasis at the MHC PSORS1 locus. Hum. Mol. Genet. 2002, 11,  

589–597. 

22. Suomela, S.; Elomaa, O.; Asumalahti, K.; Kariniemi, A.L.; Karvonen, S.L.; Peltonen, J.; Kere, J.; 

Saarialho-Kere, U. HCR, a candidate gene for psoriasis, is expressed differently in psoriasis and 

other hyper-proliferative skin disorders and is down-regulated by interferon-γ in keratinocytes.  

J. Investig. Dermatol. 2003, 121, 1360–1364. 

23. Ramos, S.; Khademi, F.; Somesh, B.P.; Rivero, F. Genomic organization and expression profile 

of the small GTPases of the RhoBTB family in human and mouse. Gene 2002, 298, 147–157. 

24. Wang, K.S.; Liu, X.F.; Aragam, N. A genome-wide meta-analysis identifies novel loci associated 

with schizophrenia and bipolar disorder. Schizophr. Res. 2010, 124, 192–199. 

25. Jacobsen, J.; Wewer, U.M. Targeting ADAM12 in human disease: Head, body or tail?  

Curr. Pharm. Des. 2009, 15, 2300–2310. 

26. Nakamura, T.; Sanokawa, R.; Sasaki, Y.F.; Ayusawa, D.; Oishi, M.; Mori, N. Cyclin I: A new 

cyclin encoded by a gene isolated from human brain. Exp. Cell Res. 1995, 221, 534–542. 

27. Yang, C.H.; Huang, C.C.; Hsu, K.S. A critical role for protein tyrosine phosphatase nonreceptor 

type 5 in determining individual susceptibility to develop stress-related cognitive and morphological 

changes. J. Neurosci. 2012, 32, 7550–7562. 

28. Bille, D.S.; Banasik, K.; Justesen, J.M.; Sandholt, C.H.; Sandbæk, A.; Lauritzen, T.; Jørgensen, T.; 

Witte, D.R.; Holm, J.C.; Hansen, T. Implications of central obesity-related variants in LYPLAL1, 

NRXN3, MSRA, and TFAP2B on quantitative metabolic traits in adult Danes. PLoS One 2011,  

6, e20640. 

29. Hishimoto, A.; Liu, Q.R.; Drgon, T.; Pletnikova, O.; Walther, D.; Zhu, X.G.; Troncoso, J.C.;  

Uhl, G.R. Neurexin 3 polymorphisms are associated with alcohol dependence and altered 

expression of specific isoforms. Hum. Mol. Genet. 2007, 16, 2880–2891. 

30. Novak, G.; Boukhadra, J.; Shaikh, S.A.; Kennedy, J.L.; le Foll, B. Association of a polymorphism 

in the NRXN3 gene with the degree of smoking in schizophrenia: A preliminary study. World J. 

Biol. Psychiatry 2009, 10, 929–935. 

31. Tattersall, R.B. Mild familial diabetes with dominant inheritance. Q. J. Med. 1974, 43, 339–357. 

32. Tattersall, R.B.; Fajans, S.S. A difference between the inheritance of classical juvenile-onset and 

maturity-onset type diabetes of young people. Diabetes 1975, 24, 44–53. 

33. Frayling, T.M.; Evans, J.C.; Bulman, M.P.; Pearson, E.; Allen, L.; Owen, K.; Bingham, C.; 

Hannemann, M.; Shepherd, M.; Ellard, S. β-cell genes and diabetes: Molecular and clinical 

characterization of mutations in transcription factors. Diabetes 2001, 50, S94–S100. 

34. Ledermann, H.M. Maturity-onset diabetes of the young (MODY) at least ten times more common 

in Europe than previously assumed? Diabetologia 1995, 38, 1482. 



Int. J. Mol. Sci. 2014, 15 12421 

 

 

35. Tremblay, C.S.; Huang, F.F.; Habi, O.; Huard, C.C.; Godin, C.; Lévesque, G.; Carreau, M. HES1 

is a novel interactor of the Fanconi anemia core complex. Blood 2008, 112, 2062–2070. 

36. Cho, Y.S.; Go, M.J.; Kim, Y.J.; Heo, J.Y.; Oh, J.H.; Ban, H.J.; Yoon, D.; Lee, M.H.; Kim, D.J.; 

Park, M. A large-scale genome-wide association study of Asian populations uncovers genetic 

factors influencing eight quantitative traits. Nat. Genet. 2009, 41, 527–534. 

37. Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; 

Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated 

recommendation for adults from the american college of sports medicine and the american heart 

association. Med. Sci. Sports Exerc. 2007, 39, 1423–1434. 

38. Scheet, P.; Stephens, M. A fast and flexible statistical model for large-scale population genotype 

data: Applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 2006, 

78, 629–644. 

39. Hosack, D.A.; Dennis, G.J.; Sherman, B.T.; Lane, H.C.; Lempicki, R.A. Identifying biological 

themes within lists of genes with EASE. Genome Biol. 2003, 4, R70. 

40. Shaun Purcell. Whole Genome Association Analysis Toolset. Available online: 

http://pngu.mgh.harvard.edu/purcell/plink/ (accessed on 10 October 2011). 

41. The R Project for Statistical Computing. Available online: http://www.r-project.org/ (accessed on 

15 October 2005). 

42. Manson, J.E.; Hu, F.B.; Rich-Edwards, J.W.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; 

Speizer, F.E.; Hennekens, C.H. A prospective study of walking as compared with vigorous exercise 

in the prevention of coronary heart disease in women. N. Engl. J. Med. 1999, 341, 650–658. 

43. Manson, J.E.; Greenland, P.; LaCroix, A.Z.; Stefanick, M.L.; Mouton, C.P.; Oberman, A.;  

Perri, M.G.; Sheps, D.S.; Pettinger, M.B.; Siscovick, D.S. Walking compared with vigorous 

exercise for the prevention of cardiovascular events in women. N. Engl. J. Med. 2002, 347,  

716–725. 

44. US Department of Health & Human Services. Physical Activity and Health: A Report of the 

Surgeon General; National Center for Chronic Disease Prevention and Health Promotion: Atlanta, 

GA, USA, 1996; pp. 135–140. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


