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Abstract: Notch signaling plays a critical role in the maintenance of intestinal homeostasis. 

The aim of the present study was to investigate the role of Notch signaling in the apoptosis of 

intestinal epithelial cells after intestinal ischemia reperfusion (I/R) injury. Male C57BL/6 

mice were subjected to sham operation or I/R injury. Intestinal tissue samples were collected 

at 12 h after reperfusion. TUNEL (terminal deoxynucleotidyl transferase-mediated 

dUTP-biotin nick end labeling) staining showed that intestinal I/R injury induced 

significantly increased apoptosis of intestinal epithelial cells. Meanwhile, the mRNA 

expression of Jagged1, DLL1, Notch2, and Hes5, and protein expression of NICD2 and Hes5 

were increased significantly after I/R injury in intestinal epithelial cells. In an in vitro IEC-6 

culture model, flow cytometry analyses showed that inhibition of Notch signaling by 

γ-secretase inhibitor DAPT and the suppression of Hes5 expression using siRNA both 

significantly increased the apoptosis of IEC-6 cells under the condition of hypoxia/ 

reoxygenation (H/R). In conclusion, the Notch2/Hes5 signaling pathway was activated and 

involved in the regulation of intestinal epithelial cells apoptosis in intestinal I/R injury. 
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1. Introduction 

Intestinal ischemia/reperfusion (I/R) injury may lead to the development of systemic inflammatory 

response syndrome, sepsis, and multiple organ dysfunction syndrome (MODS). The loss of intestinal 

barrier function is considered to be the initial triggering event that turns the gut into the “motor” of 

MODS [1]. It is known that cell apoptosis is a significant contributor to increased intestinal permeability 

and there is clear evidence of cell apoptosis in intestinal mucosa after intestinal I/R injury [2–4]. Several 

signaling pathways, such as PI3K/Akt, ERK1/2, and HIF-1, have been reported to be involved in the 

apoptosis of intestinal epithelial cells after I/R injury [5–7]. However, the precise molecular mechanisms 

of this process are still not fully understood.  

Studies have shown that the Notch signaling pathway plays critical roles in intestinal epithelial  

cell homeostasis [8]. In mammals, there are four transmembrane Notch receptors (Notch1–4), two 

Jagged-like ligands (Jagged1, Jagged2), and three Delta-like ligands (DLL1, DLL3, DLL4) [9,10]. The 

interaction of these five ligands with Notch receptors will activate their proteolytic cleavage at two sites. 

The cleavage releases the Notch intracellular domain (NICD), which translocates to the nucleus and 

forms an activated transcriptional complex. The complex then activates the transcription of target genes, 

such as Hes (Hairy/Enhancer of split) and Hey (Hes-related with YRPW motif), which are two families 

of basic helix-loop-helix genes [11]. Importantly, the second Notch receptor cleavage is mediated by  

the γ-secretase complex, and inhibition of this proteolytic activity will block the activation of Notch 

receptors [12]. 

In hepatic I/R injury, interruption of Notch signaling resulted in increased intracellular ROS and 

increased apoptosis of hepatocytes. Notch2 signal protected hepatocytes from I/R injury by Hes5 

dependent activation of STAT3, leading to the scavenging of ROS [13]. Notch signaling protects 

myocardial cell, endothelial cell, and lymphocyte from apoptosis after injury [14–16]. Notch signaling 

was also reported to protect neuron and non-parenchymal cells from apoptosis in I/R injury [17,18]. 

After intestinal I/R injury, intestinal epithelial cells undergo proliferation and apoptosis [2–4]. In our 

previous published study, we detected increased expression of Notch signaling components in 

intestinal epithelium after intestinal I/R injury and showed that Notch signaling was involved in the 

proliferation of intestinal epithelial cells [19]. However, little is known about the role of Notch signaling 

in the apoptosis of intestinal epithelial cells after intestinal I/R injury. The purpose of the present study 

was to investigate the role of Notch signaling pathway in the apoptosis of intestinal epithelial cells after 

intestinal I/R injury. 

2. Results  

2.1. Intestinal I/R Injury Increased Apoptosis of Intestinal Epithelial Cells  

We built the intestinal I/R model through occlusion of superior mesenteric artery (SMA) for 20 min 

in mice. Jejunum of mice were excised at 12 h after reperfusion. TUNEL examination was carried out 
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to examine the apoptosis of intestinal epithelial cells after intestinal I/R injury. TUNEL staining results 

showed that the TUNEL-positive cells could be observed in the intestinal epithelial cells of sham 

operated mice. Importantly, I/R (12 h) significantly increased the number of TUNEL-positive cells 

compared with sham operation (Figure 1A,B). The TUNEL-positive cells increased 18.6-fold in the I/R 

(12 h) group compared with the sham group (Figure 1B). However, in the negative control group there 

was no TUNEL-positive cell (Figure 1A). This shows that all the TUNEL results are credible.  

Figure 1. TUNEL-positive cells were increased in intestinal epithelial cells after I/R  

(12 h). (A) TUNEL-positive cells (brown staining with diaminobenzidine) tended to be 

observed in the intestinal epithelial cells (original magnification ×200). Magnified view of 

the squared area is shown in the right side of the original picture (original magnification 

×400); (B) Graphic representation of relative number of TUNEL-positive cells. Data are 

given as the means ± SDs (n = 7). ** p < 0.01 vs. sham group. 

 

2.2. The Notch Signaling Was Activated in a Mouse Model of Intestinal I/R 

To investigate the expression of Notch signaling components in intestinal epithelium after I/R, we 

generated a mouse model of intestinal I/R by occlusion of the SMA for 20 min. The clamps were 

removed, and I/R mice were killed at 12 h after reperfusion. According to published studies, Notch 

signaling components were expressed in intestine of mouse, including four ligands (Jagged1, Jagged2, 

DLL1, and DLL4), four Notch receptors (Notch1, 2, 3, and 4), and four Hes genes (Hes1, Hes5, Hes6, 

and Hes7) [20]. In our experiment, real-time PCR analysis was applied to screen the intestinal 

epithelium genes for ligands, Notch receptors (Notch1, 2, 3, and 4) and target genes. As shown in 

Figure 2A, the mRNA levels of Jagged1, DLL1, Notch2, and the target gene Hes5 were increased after 

I/R injury compared to the sham operation group. The mRNA expression of Jagged1, DLL1, Notch2 and 

Hes5 increased 2.44-, 1.84-, 1.94-, and 3.32-fold, at 12 h after I/R compared to sham operation, 

respectively (Figure 2A, p < 0.01, I/R 12 h vs. Sham). At this point, the other Notch signaling 

components, such as Notch1, 3, and 4, exhibited no significant changes statistically (data not shown). 

Based on the mRNA expression of Notch signaling components, we focused on the protein expression of 

NICD2 and Hes5 during the following experiments. 
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The protein level of Hes5 also increased after I/R injury (Figure 2B,C). The protein expression of 

Hes5 was increased 3.27-fold after I/R injury, respectively (Figure 2C, p < 0.01, I/R 12 h vs. Sham). As 

cleavage of Notch2 is the indicator of Notch signal activation, then we investigated NICD2 protein 

expression. Western blot analyses showed a significant increase in the NICD2 level at 12 h after I/R, 

indicating the activation of Notch signaling (Figure 2B,C). Quantification of the Western blot  

results revealed a 2.32-fold increase of NICD2 compared with the sham operated mice (Figure 2C,  

p < 0.01, I/R 12 h vs. Sham).  

Figure 2. The transcripts and protein levels of Notch signaling components were increased 

in intestine after I/R injury. (A) The I/R and sham operated mice were sacrificed at 

indicated times, mRNA of intestinal mucosa was collected, and real-time PCR was 

performed to detect mRNA levels of Jagged1, DLL1, Notch2, and Hes5. GAPDH was used 

to verify equivalent loading. Data are given as the means ± SDs (n = 7). ** p < 0.01 vs. 

sham group; (B) Western blot was performed to detect protein expression of NICD2 and 

Hes5. GAPDH was used to verify equivalent loading; (C) Graphic representation of 

relative expression of NICD2 and Hes5 normalized to GAPDH. Data are given as the 

means ± SDs (n = 7). ** p < 0.01 vs. sham group.  

 

2.3. Effects of DAPT on the Apoptosis of IEC-6 Cells  

In order to investigate the functional role of the Notch2 signaling pathway in intestinal epithelial cells, 

we used a culture system with IEC-6 cells receiving 4 h hypoxia, followed by 4 h reoxygenation (H/R), 

as reported previously [21].  

First, we examined if this culture system mimics the in vivo I/R model, we investigated the mRNA 

expression of Jagged1, DLL1, Notch2, and Hes5 and the protein expression of NICD2, and Hes5. The 

real-time PCR results showed that H/R up-regulated the mRNA expression of Jagged1, DLL1, Notch2, 

and Hes5 by 1.94-, 3.95-, 1.84-, and 5.82-fold compared to the control group, respectively (p < 0.01,  

H/R vs. Control) (Figure 3A). In accordance with the in vivo real-time PCR results, at this point, the 

other Notch signaling components of IEC-6 cells, such as Notch1, 3, and 4, also exhibited no 

significant changes statistically (data not shown). Western blot results showed that H/R up-regulated 
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the protein expression of NICD2 and Hes5 by 1.7- and 4.43-fold compared to the control group, 

respectively (p < 0.01, H/R vs. Control) (Figure 3B,C). These results indicated that the IEC-6 culture 

system mimics the in vivo I/R model. 

Figure 3. The mRNA and protein expressions of Notch signaling components for IEC-6 

cells under a hypoxia condition followed by reoxygenation (H/R). (A) mRNA expression 

of Jagged1, DLL1, Notch2, and Hes5 detected by real-time PCR. The mRNA expression 

was increased in the H/R group compared to the control group. Data are shown as the 

means ± SDs (n = 5). ** p < 0.01 vs. control group; (B) Protein was extracted from IEC-6 

cells. Western blot analyses was performed to detect the protein expressions of NICD2 and 

Hes5. GAPDH was used as the loading control; (C) Quantitative analyses of Western blot 

results were performed for NICD2 and Hes5. Data are shown as the means ± SDs (n = 5). 

** p < 0.01 vs. control group.  

 

DAPT is one type of γ-secretase inhibitor that inhibits the activation of Notch signaling. DAPT was 

used to stimulate the IEC-6 cells to investigate the function of Notch signaling in intestinal epithelial 

cells. After DAPT was added to the culture medium of IEC-6 cells for 12 h, IEC-6 cells received H/R or 

not. After H/R, cell protein was extracted and western blot was applied to examine the the effect of 

DAPT on the signal transduction of IEC-6 cells. The Western blot results showed that DAPT 

down-regulated the protein expressions of NICD2 and Hes5 (Figure 4A,B). Furthermore, we examined 

the effects of DAPT on the apoptosis of IEC-6 cells receiving H/R or not with flow cytometry. The flow 

cytometry results showed that H/R increased the early and late apoptosis of IEC-6 cells compared to 

control group (Figure 4C). Statistically, DAPT had no effect on the apoptosis rate of IEC-6 cells. 

However, DAPT and H/R together increased the apoptosis rate of IEC-6 cells significantly, especially 

the early apoptosis of IEC-6 cells (Figure 4C). The results above showed that down-regulation of Notch2 

signaling by γ-secretase inhibition contributed to IEC-6 cells apoptosis under an H/R condition  

(Figure 4A–C). The Notch2-Hes5 signaling was up-regulated in intestinal epithelial cells under an H/R 

condition and promoted the survival of IEC-6 cells.  
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Figure 4. Inhibition of Notch signaling by DAPT increased cell apoptosis of IEC-6 cells 

receiving H/R. (A) IEC-6 cells were plated onto a 6-well culture plate and DAPT (20 μM) 

was added. Protein was extracted from IEC-6 cells and protein expression of NICD2 and 

Hes5 was examined by Western blot. GAPDH was used as the loading control;  

(B) Graphic representation of relative expression of NICD2 and Hes5 normalized to 

GAPDH. Data are given as the means ± SDs (n = 5). ** p < 0.01 vs. control group;  

* p < 0.05 vs. control group; (C) Flow cytometry was applied to examine the apoptosis of 

IEC-6 cells with apoptosis markers (FITC-Annexin V and PI). In the apoptosis map, 

FITC-Annexin V+/PI+ indicates late apoptosis, FITC-Annexin V+/PI− indicates early 

apoptosis, and FITC-Annexin V−/PI− indicates normal live cells. H/R and DAPT + H/R 

increased the early apoptosis and late apoptosis of IEC-6 cells compared to control group. 

Data are given as the means ± SDs (n = 5). ** p < 0.01 vs. control group; * p < 0.05 vs. 

control group. 

 

Apoptosis rate (%) Control DAPT H/R DAPT + H/R 

Early apoptosis 3.13 ± 0.37 3.15 ± 0.33 9.72 ± 0.89 ** 27.52 ± 2.15 ** 
Late apoptosis 0.65 ± 0.27 0.75 ± 0.36 1.36 ± 0.34 * 2.79 ± 0.31 ** 

2.4 Effects of Silencing RNA for Hes5 on the Apoptosis of IEC-6 Cells 

To further investigate the effect of Notch signaling on intestinal epithelial cell apoptosis, IEC-6 cells 

were transfected with siRNA for Hes5. Western blot results showed that the siRNA for Hes5 

significantly down-regulated the protein expression of Hes5 (Figure 5A,B). Then flow cytometry was 

applied to examine the effect of siRNA for Hes5 on the apoptosis of IEC-6 cells receiving H/R or not. 

The results showed that suppression of Hes5 expression increased the apoptosis of IEC-6 cells. 

Importantly, under the H/R condition siRNA for Hes5 further increased the apoptosis of IEC-6 cells 

significantly, especially the early apoptosis of IEC-6 cells (Figure 5C). The results above confirmed that 

protein expression of Hes5 could promote the survival of intestinal epithelial cells under the condition  

of H/R. 
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Figure 5. siRNA for Hes5 increased apoptosis of IEC-6 cells receiving H/R. (A) Cells 

were plated onto 6-well plates. Inhibition of Hes5 with siRNA was carried out as 

mentioned in the materials and methods part. After 48 h of culture, protein was extracted 

from IEC-6 hcells plated on 6-well plates. Western blot analysis showed that siRNA for 

Hes5 down-regulated protein expression of Hes5 compared to the si-NC or control group. 

GAPDH was used as loading control; (B) Graphic representation of relative expression of 

Hes5 normalized to GAPDH. Data are given as the means ± SDs (n = 5). ** p < 0.01 vs. 

control group; (C) Flow cytometry was applied to examine the apoptosis of IEC-6 cells 

with apoptosis markers (FITC-Annexin V and PI). In the apoptosis map, FITC-Annexin 

V+/PI+ indicates late apoptosis, FITC-Annexin V+/PI− indicate early apoptosis, and 

FITC-Annexin V−/PI− indicate normal live cells. SiRNA1 and siRNA2 all increased the 

apoptosis rate of IEC-6 cells receiving H/R significantly. ** p < 0.01 vs. control group.  

 

Apoptosis rate (%) Control siNC siRNA1 siRNA2 H/R + siNC H/R + siRNA1 H/R + siRNA2 

Early apoptosis 3.49 ± 0.41 3.55 ± 0.32 9.88 ± 0.91 ** 9.22 ± 0.87 ** 9.96 ± 0.95 ** 33.76 ± 2.78 ** 31.69 ± 2.55 ** 

Late apoptosis 0.38 ± 0.25 2.23 ± 0.24 ** 6.87 ± 0.74 ** 7.35 ± 0.76 ** 6.79 ± 0.76 ** 5.82 ± 0.51 ** 6.49 ± 0.65 ** 

3. Discussion 

In this study, we found that intestinal I/R stress caused increased apoptosis of intestinal epithelial 

cells. The mRNA and protein expression of Notch signaling components were significantly increased in 

intestinal epithelial cells after I/R injury. Our findings also demonstrated that the Notch2/Hes5 signaling 

pathway was involved in the protection of intestinal epithelial cells from intestinal I/R injury. 

Intestinal I/R injury, which is associated with trauma, hemorrhage, and other shock states, is 

characterized by epithelial apoptosis, necrosis, and mucosal barrier dysfunction. Studies have shown 

that intestinal epithelial cell apoptosis is a significant contributor to mucosal barrier dysfunction. 



Int. J. Mol. Sci. 2014, 15 7890 

 

 

Immediate early genes, such as c-fos and c-jun are involved in the apoptosis of intestinal epithelial  

cells [22,23]. Some other factors, such as p38 MAPK, IL-6, HGF, and KGF, were also reported to be 

involved in the apoptosis of intestinal epithelial cells after I/R injury [24–27]. However, the precise 

molecular mechanisms that accompany I/R within the intestinal epithelial cells need further investigation. 

The Notch signaling pathway plays critical roles in the maintenance of intestinal homeostasis [8]. 

Mutations in the Notch pathway components, such as the Notch DNA binding protein RBP-J or Notch 

receptors will disturb the normal differentiation of intestinal epithelial cells [28–30]. Inhibition of Notch 

signaling activation by γ-secretase inhibitors also lead to disturbed intestinal homeostasis [28–30]. The 

published studies have shown that the PCNA-positive cells increased at 1 to 6 h after reperfusion and 

TUNEL-positive cells increased later than PCNA-positive cells in a rat I/R model [22,23,31]. Our 

previous studies have investigated the role of Notch signaling in the proliferation of intestinal epithelial 

cells [19,32]. In our previous study by our group, we showed that Notch signaling was activated  

and increased the proliferation of intestinal epithelial cells through 6 h after reperfusion [19]. However, 

in our previous study we did not investigate the Notch signaling expression later than 6 h after 

reperfusion. It is also not clear whether Notch signaling was involved in the apoptosis of intestinal 

epithelial cells after intestinal I/R injury. Thus, in this study we further investigated the function of 

Notch signaling in the apoptosis of the intestinal epithelial cells after I/R injury. 

In our study, real-time PCR analysis was firstly applied to screen the intestinal epithelium genes  

for ligands, Notch receptors (Notch1, 2, 3, and 4) and target genes after intestinal I/R injury. 

Physiologically, Jagged1 and DLL1 were normally localized in the intestinal epithelial cells [20,33].  

In this study, we detected increased expression of Jagged1 and DLL1 after I/R injury. To confirm the 

activation of Notch signaling pathway, we further detected increased expression of Notch2 and Hes5. 

real-time PCR and Western blot results showed that the expressions of Notch2 and Hes5 increased 

significantly 12 h after I/R injury. However, the other Notch signaling components, such as Notch1, 3, 4, 

exhibited no significant changes statistically. Thus, in the following experiments we focused on the 

expression of Jagged1, DLL1, Notch2, and Hes5. Accompanied with activated Notch2 signaling, the 

apoptosis of intestinal epithelial cells also increased significantly. From the above, we aimed to 

investigate whether Notch2 signaling was involved in the regulation of intestinal epithelial cells 

apoptosis after intestinal I/R injury. 

To further investigate the functional role of Notch2 signaling in the regulation of intestinal epithelial 

cell apoptosis, an IEC-6 cells culture system was applied. In some instances, it may be inappropriate to 

extend in vitro results to in vivo conditions; The results showed that the mRNA expression of Jagged1, 

DLL1, Notch2, and Hes5 and the protein expression of NICD2 and Hes5 were up-regulated in IEC-6 

cells under the H/R condition. The results above suggested that the in vitro IEC-6 cells culture system 

could mimic the in vivo I/R model upon activation of Notch2/Hes5 signaling pathway. Next, the 

γ-secretase inhibitor DAPT, which inhibits γ-secretase activation of Notch receptors, was used to 

investigate the function of Notch2 signaling on the apoptosis of IEC-6 cells receiving H/R or not. The 

results showed that the protein expressions of NICD2 and Hes5 were down-regulated significantly. The 

apoptosis of IEC-6 cells was increased significantly when Notch2 signaling was suppressed by DAPT. 

Next, siRNA for Hes5 was used to suppress the expression of Hes5 and examine the role of Hes5 in the 

apoptosis of IEC-6 cells. The results showed that suppression of Hes5 with siRNA significantly 
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increased the apoptosis of IEC-6 cells. All these results suggested that the NICD2/Hes5 signaling was 

involved in the regulation of intestinal epithelial cells apoptosis after intestinal I/R injury. 

In summary, our study showed that the Notch2/Hes5 signaling pathway was activated and involved in 

the regulation of intestinal epithelial cells apoptosis after intestinal I/R injury. Further studies are needed 

to gain a more precise understanding of the molecular mechanisms of intestinal epithelial cells apoptosis 

after intestinal I/R injury. 

4. Experimental Section  

4.1. Animals 

Male, 6–8 week-old, specific pathogen-free, C57BL/6 mice were purchased from the Experiment 

Animal Center at Daping Hospital of Third Military Medical University, Chongqing, China. All the 

animal experiments were performed in compliance with the University’s Guidelines for the Care and 

Use of Laboratory Animals. The protocol was approved by the ethics committee of Xinqiao Hospital, 

Third Military Medical University, Chongqing, China. Mice were randomly divided into two groups: 

control group (sham operation, n =7) and experimental group (I/R, n =7). For the I/R group, the superior 

mesenteric artery (SMA) was occluded using an atraumatic microvascular clamp for 20 min. Then, we 

removed the clamps and closed the incisions [19]. Mice were sacrificed at 12 h after reperfusion. The 

jejunums of mice were quickly removed and processed for histological evaluation, RNA extraction, or 

protein extraction. The control mice received identical operation procedures without occlusion of  

the SMA. 

4.2. Cell Culture 

The intestinal epithelial cell line IEC-6, originally purchased from the American type culture 

collection (Manassas, VA, USA), were grown in Dulbecco’s modified Eagles medium (DMEM, 

Hyclone, Thermo Fisher, Rockford, IL, USA) supplemented with 10% fetal calf serum (Sigma-Aldrich, 

St. Louis, MO, USA), 100 μg/mL streptomycin and 100 IU/mL penicillin and cultured overnight for 

adHesion. Once grown, the IEC-6 cells were cultured at 37 °C in either normoxic (20% O2 and 5% CO2) 

or hypoxic (1% O2 and 5% CO2 in a hypoxia chamber) conditions (Thermo Fisher, Rockford, IL, USA). 

The γ-secretase inhibitor DAPT was added to the medium for 12 h, and the apoptosis of IEC-6 cells were 

investigated with flow cytometric analysis. Total protein was also obtained for Western blot analysis.  

4.3. Real-Time PCR Analysis 

Total RNA was extracted following a standard isothiocyanate/chloroform extraction method using 

Trizol (Takara Co., Ltd., Dalian, China), and reverse transcription into first-strand cDNA was performed 

using the First Strand cDNA Synthesis Kit (FSK-100, TOYOBO CO., Ltd., Osaka, Japan) in the 

presence of the RNase inhibitor diethylpyrocarbonate (DEPC) (Roche Diagnostics GmbH, Mannheim, 

Germany) [32]. The amplified cDNA was used as the template DNA for PCR performed with specific 

primers. In the in vivo experiments, the following primers were used: Jagged1 forward, 

5'-CTTGGGTCTGTTGCTTGGTGA-3' and reverse, 5'-ACATTGTTGGTGGTGTTGTCCTC-3'; 

DLL1 forward, 5'-CGGCTTCTATGGCAAGGTCTG-3' and reverse, 5'-TGTAGCCTCCGTCA 
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GGGTTATCT-3'; Notch2 forward, 5'-GCGAGCACCCATACCTGACA-3' and reverse, 5'-TGGG 

CTGGTGGTCACATCTG-3'; and Hes5 forward, 5'-AAGCTGGAGAAGGCCGACA-3' and reverse, 

5'-CAGGAGTAGCCCTCGCTGTAGT-3'; GAPDH forward, 5'-AGAAGGTGGTGAAGCAGGCA-3' 

and reverse, 5'-AGGTGGAAGAGTGGGAGTTGC-3'. In the in vitro experiments the following  

primers were used: Jagged1 forward, 5'-CGCCGTGCCCTTTGTGGAG-3' and reverse, 5'-GGGCCA 

GACTGCAGGATAAAC-3'; DLL1 forward, 5'-AGAGGGGCCAACGCTACATGTG-3' and reverse, 

5'-GGCGGAGGCTGGTGTTTCTG-3'; Notch2 forward, 5'-GGGGGGACCTGCTCTGACTAC-3'  

and reverse, 5'-ACGTGCCGCCATTGAAACAGGAG-3'; and Hes5 forward, 5'-GAAGCCGG 

TGGTGGAGAAG-3' and reverse, 5'-CGGCGAAGGCTTTGCTGTG-3'; GAPDH forward, 

5'-GGGGCCAAAAGGGTCATCATCTC-3' and reverse, 5'-AGGGGCCATCCACAGTCTTC-3'; 

Real-time PCR was performed as previously described [27]. The standard conditions used for real-time 

PCR were as follows: 94 °C for 10 min, 30 s at 94 °C, 30 s at 60 °C, and 45 s at 72 °C for 45 cycles. 

4.4. Western Blot Analysis 

Tissues and cells were homogenized in cold RIPA buffer (PBS, 1% NP-40, 0.5% sodium 

deoxycholate, 0.1% SDS, 1 μg/mL PMSF, 1.0 mM sodium orthovanadate, and 1× mammalian protease 

inhibitor cocktail; Sigma-Aldrich, Shanghai, China). Protein was quantified by the Bradford method 

using the BCA assay reagent (Beyotime, Shanghai, China). Equal amounts of protein were loaded into 

SDS-polyacrylamide gels and transferred onto PVDF-Plus membranes. After blocking in 5% fat-free 

milk for 1 h at room temperature, the membranes were incubated overnight at 4 °C with the following 

primary antibodies: NICD2 (ab-52302, Abcam, UK), Hes5 (sc-25395, Santa Cruz, Dallas, CA, USA), 

and GAPDH (sc-32233, Santa-Cruz, Dallas, CA, USA). The primary antibodies were detected with 

horseradish peroxidase-conjugated goat anti-rabbit IgG, or goat anti mouse IgG secondary antibody for 

1 h at room temperature and detected by the use of a chemiluminescence system (Beyotime, Shanghai, 

China) and imaging system (Kodak Gel Logic 4000R Imaging System, Carestream, Rochester, NY, 

USA). A semiquantitative densitometry analysis of the bands were performed using the Kodak Gel 

Logic 4000R Imaging System (Carestream, Rochester, NY, USA). Protein expression was normalized 

to the same sample’s expression of GAPDH. 

4.5. Silencing Hes5 Using siRNA and in Vitro Transfection 

To inhibit the Notch signaling pathway, an in vitro transfection to silence Hes5 expression was 

performed. siRNA were chemically syntHesized by Ribobio (Guangzhou, China). The sequences of the 

siRNAs targeting Hes5 were as follows: siRNA1, sense 5' GCAUUGAGCAGCUGAAACU dTdT 3'  

and antisense 3' dTdT CGUAACUCGUCGACUUUGA 5'; siRNA2, sense 5' GCAGAUGAAGCUGC 

UUUAC dTdT 3'and antisense 3' dTdT CGUCUACUUCGACGAAAUG 5'. 

After IEC-6 cells were cultured to 50%–60% confluency in 6-well plates, they were transfected with 

siRNA at a concentration of 50 nmol for each well using the Lipofectamine 2000 reagent (Invitrogen, 

Shanghai, China) in antibiotic-free and serum-free Opti-MEM medium, according to the manufacturer’s 

instructions [19]. An unrelated control siRNA (si-NC) was used in the experiment as the negative 

control. After 6 h, the medium was replaced with normal IEC-6 cell medium, and the cells were cultured 

for 48 h. Then, protein was extracted from the cells, and Western blot analysis was performed to detect 
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the protein expression of Hes5. Flow cytometric analysis was applied to investigate the effect of siRNA 

on the apoptosis of IEC-6 cells.  

4.6. Detection of Epithelial Apoptosis 

Tissues were fixed with 4% paraformaldehyde, and 5 μm paraffin-embedded sections were prepared. 

Intestinal epithelial apoptosis was investigated through terminal deoxynucleotidyl transferase mediated 

dUTP nick-end labeling (TUNEL) staining using an in situ cell death detection POD kit (Roche, 

Penzberg, Germany) in accordance with the manufacturer’s instructions. As a predealing process, the 

slides were incubated with 20 µg/mL proteinase K (pH 7.6) for 15 min at room temperature. Then slides 

were incubated with 0.1% Triton X-100 for 8 min and rinsed with phosphate buffered saline (PBS). 

Endogenous peroxidase activity was blocked with 3% H2O2 and methanol. Rinse slides with PBS, add 

50 μL TUNEL reaction mixture on sample and incubate for 60 min at 37 °C. Rinse slides three times 

with PBS and examine the samples under a fluorescence microscope. After this pilot evaluation, the 

slides were stained by DAB coupling. All slides were counterstained with hematoxylin. As a negative 

control, the terminal transferase was omitted. The TUNEL-positive cells were counted under a  

light microscope. 

In order to detect the apoptosis of IEC-6 cells, flow cytometric analysis was applied with Annexin 

V-FITC Apoptosis Detection Kit (KeyGEN Biotech, Nanjing, China) according to the manufacturer’s 

instructions. IEC-6 cells were cultured as above. Double staining for FITC-Annexin V binding and 

cellular DNA using propidium iodide (PI) was performed as previously described [34]. The acquisition 

and analysis were performed using MoFlow (Beckman Coulter, Atlanta, GA, USA).  

4.7. Statistical Analysis 

All the results are presented as the means. The Student’s t test was used for the comparisons of the 

mean values between two groups. ANOVA was used for comparisons of more than two groups. All 

statistical analyses were carried out using SPSS13.0 software (SPSS, Chicago, IL, USA). p < 0.05 was 

considered significant. 

5. Conclusions 

In this study, we found that intestinal I/R injury caused increased apoptosis of intestinal epithelial 

cells. The mRNA and protein expressions of Notch signaling components were significantly increased in 

intestinal epithelial cells after I/R injury. Our findings also demonstrated that the Notch2/Hes5 signaling 

pathway was involved in the protection of intestinal epithelial cells from intestinal I/R injury. 
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