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Abstract: To determine whether there is a correlation between the concentration of Indian 

hedgehog (Ihh) in synovial fluid (SF) and the severity of cartilage damage in the human 

knee joints, the knee cartilages from patients were classified using the Outer-bridge scoring 

system and graded using the Modified Mankin score. Expression of Ihh in cartilage and SF 

samples were analyzed with immunohistochemistry (IHC), western blot, and enzyme-linked 

immunosorbent assay (ELISA). Furthermore, we detected and compared Ihh protein levels 

in rat and mice cartilages between normal control and surgery-induced osteoarthritis (OA) 

group by IHC and fluorescence molecular tomography in vivo respectively. Ihh expression 

was increased 5.2-fold in OA cartilage, 3.1-fold in relative normal OA cartilage, and 1.71-fold 

in OA SF compared to normal control samples. The concentrations of Ihh in cartilage and 

SF samples was significantly increased in early-stage OA samples when compared to 

normal samples (r = 0.556; p < 0.001); however, there were no significant differences 

between normal samples and late-stage OA samples. Up-regulation of Ihh protein was also 
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an early event in the surgery-induced OA models. Increased Ihh is associated with the 

severity of OA cartilage damage. Elevated Ihh content in human knee joint synovial fluid 

correlates with early cartilage lesions. 

Keywords: Ihh; enzyme-linked immunosorbent assay; early cartilage lesions 

 

1. Introduction 

Osteoarthritis (OA) is the leading cause of joint pain and disability in the elderly and characterized 

by progressive articular cartilage degeneration [1,2]. Since the progression of OA is a slow 

degenerative process, early diagnosis is critical for its prevention and treatment. The primary method 

to diagnose and assess OA progression is through radiography. Unfortunately, the relatively large 

errors and poor sensitivity of the method limit its use for early diagnosis and assessment of OA.  

There remains a need to identify patients in the early stages of disease before OA can be detected on 

radiographs so we may better understand the onset, progression and treatment of OA. 

Identification of specific biological markers of articular cartilage metabolism to predict patients at 

risk for OA has received considerable attention [3,4]. Although many biomarkers from synovial fluid 

(SF), serum and urine have been explored, no reliable biomarkers for early diagnosis and identification 

of different OA stages have been validated for use in human [5]. Therefore, finding reliable biomarkers 

that can predict early OA and monitor the progression of the disease remains a challenge for investigators. 

Normal articular cartilage chondrocytes maintain a “maturational arrested state” by molecular 

constraints. Nonetheless, chondrocytes can recapitulate some of the differentiation processes that occur 

in embryogenesis during OA development [6–10]. Some cartilage components that are only secreted 

by differentiating chondrocytes in the developmental growth plate begin to occur and increase in 

articular cartilage during the development of OA. For instance, type X collagen and MMP-13 are 

standard markers for chondrocyte hypertrophy during development, are not present in healthy articular 

cartilage, and their concentrations are increased in OA cartilage [11,12]. 

Indian hedgehog (Ihh) is one of three Hh ligands, specifically expressed by flattened prehypertrophic 

chondrocytes during embryonic development [13,14]. Ihh regulates chondrocyte hypertrophy and 

endochondral ossification [15,16]. Activation of Hh signaling pathways results in a decrease in 

articular cartilage thickness and proteoglycan (PG) content, while inhibiting Hh signaling leads to the 

opposite results in mice [17–19]. Several studies have demonstrated that the presence of Ihh in human 

and mice cartilage samples is positively associated with osteoarthritic cartilage damage [14,18]. Our 

previous study found that Ihh was induced in human OA cartilage and SF, and that the concentration 

of Ihh was associated with the extent of OA cartilage damage [14]. 

Our hypothesis is that monitoring changes in Ihh levels in the SF may provide reliable information 

on cartilage integrity. To test this hypothesis, we obtained SF samples from patients with OA and 

measured the concentration of Ihh by ELISA. We quantified cartilage damage using the Outer-bridge 

scoring system at time of surgery in these patients, and then evaluated the correlation between Ihh 

concentration in SF and cartilage damage. We observed that the levels of Ihh protein in SF were 

positively associated with scores that denoted early stage cartilage damage. We further compared the 
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changes in Ihh protein levels in normal controls and surgically-induced-OA cartilage samples of rat 

and mice. Similarly to the human results, we found up-regulation of Ihh protein in early-stage OA 

cartilage in these animal models, suggesting this finding is conserved among human, rat, and mouse. 

2. Results 

2.1. Validation of Articular Cartilage Lesions in Human Knee Joints Using the Outer-Bridge  

Scoring System 

In order to have uniform criteria for cartilage damage during arthroplasty and arthroscopy,  

the Outer-bridge scoring system was used to score the cartilage lesion of the knee joints (Figure 1). 

Figure 1. Articular cartilage lesion in human knee joint evaluated by arthroscopy with the 

Outer-bridge scoring system: (0) Normal cartilage; (1) Cartilage softened and/or swollen; 

(2) Cartilage fissures forming or already formed, but less than 50% of full thickness;  

(3) Fissures larger than 50%, but subchondrol bone not exposed; (4) Subchondral bone 

exposed or cartilage flakes detached. 

0 1 2 3 4 

2.2. Increased Indian Hedgehog (Ihh) Expression in Human Osteoarthritis (OA) Cartilage Determined 

by Immunohistochemistry (IHC) and Western Blot Analysis 

IHC (Figure 2) showed the expression of Ihh protein increased with the severity of articular 

cartilage damage and that the most intense staining for Ihh was mainly found in the upper clusters of 

cells in Grade III OA cartilage. When compared to OA cartilage, no obvious staining of Ihh was 

observed in the normal cartilage. Western blots (Figure 3) showed that the level of Ihh protein in OA 

cartilage was significantly higher than that in relative normal and normal control cartilages. 

2.3. Increased Ihh Concentration in OA Synovial Fluid (SF) Determined by Western Blot 

SF samples were processed to determine Ihh content by western blot. Ihh concentration was 171% higher 

in SF samples collected from OA patients when compared to that in the normal controls (Figure 4). 

2.4. Ihh Concentration in SF Was Dependent on Cartilage Damage as Determined by the Maximal 

Outer-Bridge Score 

We found that the 122 patients could be divided into three sub-groups based on the modified  

Enshui [20] cartilage damage grading and synovial Ihh concentration (Table 1). The normal group 

included 25 patients with Outer-bridge grades of 0 who demonstrated normal cartilage. 
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Figure 2. Increased Indian hedgehog (Ihh) expression in osteoarthritis (OA) cartilage 

determined by immunohistochemistry (IHC). IHC showed that the expression of Ihh is 

significantly increased in knee OA cartilage (n = 15, seven males, eight females, age 63.4 ± 7.1 

(mean ± SD), range 54–78) compared to resection specimens with normal cartilage (n = 5, 

4 males, 1 females, age 58.6 ± 7.7 (mean ± SD), range 49–69). A strong Ihh staining is 

seen in the upper layer of OA cartilage. Increased Ihh staining is associated with the 

severity of OA cartilage damage as demonstrated by Safranin O stain. In contrast, Ihh 

staining was minimal in normal cartilage. Grade I, Mankin score 0–2; Grade II, Mankin 

score 3–10; Grade III, Mankin score 11–18. 

 

The early-stage OA group included 50 patients with Outer-bridge grades of 1 and 2 who 

demonstrated slight cartilage erosion. The late-stage OA group included 47 patients with Outer-bridge 

grades 3 and 4 who demonstrated extensive cartilage erosion. The analysis showed that Ihh content in 

the SF of the patients from the early-stage OA group (19.03 ± 5.2 pg/mL) was significantly higher than 

that of the normal group (14.04 ± 2.55 pg/mL) (p < 0.001). A significant correlation was found 

between Ihh content and articular cartilage Outer-bridge score of the early-stage and normal groups  

(r = 0.556) (Figure 5). However, SF Ihh content in the late-stage group (15.16 ± 6.28 pg/mL) returned 

to the basal level and no statistically significant difference was detected between late-stage and  

normal groups (p = 0.296). The intra-assay and inter-assay variations of were lower than 8% and  

10%, respectively. 
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Figure 3. OA cartilage damage is associated with the increase of Ihh expression 

determined by western blot in cartilage. (A) Representative Safranin O stain from OA 

cartilage, adjacent relative normal and normal control cartilage, magnification 10×;  

(B) Western blot demonstrates the level of Ihh protein from OA, relative normal and normal 

cartilages, arguing that the increase of Ihh is associated with the severity of cartilage 

damage. Coomassie Blue stain was used to confirm equal loading; (C) Density of the Ihh 

band from Western blot was semi-quantified using the Image Analysis Software  

(Image Lab 3.0, Bio-Rad, Hercules, CA, USA). Bar graphs show the average with SD; n = 3;  

* p < 0.001; p value of less than 0.05 was considered statistically significant. 
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Figure 4. The increase of Ihh concentration found in OA SF. (A) Representative radiographs 

confirmed cartilage damage and joint space narrowing in the OA patients and no joint 

changes in the normal controls; (B) Representative Western blot demonstrates a high level 

of Ihh protein in human OA SF (64-year-old male) compared to normal control (54-year-old 

male healthy control). Coomassie Blue stain was used to confirm equal loading;  

(C) Gray value of Ihh band from Western blot was semi-quantified by Image Analysis 

Software (Image Lab 3.0). Bar graphs show the average with SD, n = 3, * p = 0.008. 

(A) 

(C) (B) 

Table 1. Indian hedgehog (Ihh) concentration in SF. Results are presented as the mean ± SD. 

Group (Based on Outer-Bridge Score) Ihh Concentration (pg/mL) n 

Normal Group 14.04 ± 2.55 25 
Early stage Group 19.03 ± 5.2 50 
Late stage Group 15.16 ± 6.28 47 

Total  122 

n, number; Normal group, articular cartilage Outer-bridge score = 0; Early stage group, articular cartilage 

Outer-bridge score = 1–2; Late stage group, articular cartilage Outer-bridge score = 3–4. 

2.5. The Elevated Ihh Signal Was also Detected in Surgery-Induced OA Models 

Significant increases in Ihh expression were found in surgically-induced OA cartilage samples, 

along with dramatic decreases in cartilage PG staining (Figure 6), which was consistent with  

previous findings [21,22]. 

To further confirm the changes in Ihh after joint injury, Ihh antibody was conjugated to  

Vivo-Tag680™ NIR fluorochrome (PerkinElmer, Waltham, MA, USA) to create a probe for the 

detection of Ihh protein in vivo. We found the Ihh probe has a high specificity as the positive signal 

was only detected in the right knee joint and left belly where the 200 ng Ihh recombinant protein 

injection was performed 24 h previously (Figure 7). No positive signal was detected in the left knee 

joint and right belly where equal amounts of saline were injected as control. The positive signal 
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detected by Ihh probe was found 7 days after partial medial meniscectomy (PMM) surgery in the right 

knee but not in the left control knee (Figure 7, right two mice, n = 5). 

Figure 5. The increase of Ihh concentration in synovial fluid (SF) was correlated to the early 

stage of OA cartilage lesions. There was a significant correlation (r = 0.556; p < 0.001) 

between the Ihh concentration in SF and the articular cartilage Outer-bridge score from early 

stage OA (Outer-bridge 1–2, n = 50) but not in the late stage OA group (Outer-bridge 3–4, 

n = 47) compared to the normal control (Outer-bridge 0, n = 25). The level of Ihh was 

decreased in the late stage OA due to the severity cartilage damage. Spearman’s test was 

used for statistic analysis; p values of less than 0.05 were considered statistically significant. 

 

Figure 6. Elevated Ihh found in surgery-induced OA models. Elevated Ihh was found in a 

rat OA model induced by anterior cruciate ligament transection (ACLT) one month  

after surgery. In this model, there was decreased proteoglycan (PG) staining determined  

by Safranin O (A) compared with sham control (B) one month after surgery; 

immunohistochemistry (IHC) staining revealed increased Ihh in the surgically-induced OA 

cartilage (C) compared to sham (D). The expression of Ihh observed in the model is similar 

to that seen in human OA cartilage. 1m: 1 month after surgery. 

 



Int. J. Mol. Sci. 2014, 15 7257 

 

 

Figure 7. Elevated Ihh was also validated by Fluorescence Molecular Tomography (FMT) 

in our mouse partial medial meniscectomy (PMM) surgery-induced OA model. First, we 

validated whether Ihh-FMT probe can detect Ihh specifically in vivo. Two hundred ng Ihh 

recombinant protein was injected into right knee join and left belly. We found that a strong 

positive signal of Ihh was only detected at right knee and left belly (arrow) respectively but not 

in the saline injected sides (left knee and right belly) 24 h after injection (#371 and #345). A 

positive signal of Ihh was also detected at day 7 after right knee subjected to PMM joint 

injury but not in the left control knee (right two animals: #886 and #347, n = 5); R, right 

knee. 

 

3. Discussion 

Currently, assessment of cartilage lesions mainly depends on the detection of joint space narrowing 

by radiography. This method cannot detect early cartilage damage due to poor sensitivity and a relatively 

large precision error, nor has it been used to associate with symptoms or functional disability [23–25]. 

Thus, the development of assays for biochemical biomarkers using metabolites and degradation 

products of cartilage has potential therapeutic value as a tool to detect early cartilage damage and 

allow early intervention. 

Previous reports found that at least a portion of the chondrocytes in OA cartilage, exit a permanent 

stage and enter differentiation cycle and show hypertrophy-like changes, which resemble those of 

developmental growth plate chondrocytes [26,27]. Chondrocyte differentiation was closely related to 

the very early development of cartilage degeneration occurring in OA [28]. In the developing cartilage, 

Ihh is primarily expressed by prehypertrophic chondrocytes as an initial step during chondrocyte 

differentiation and hypertrophy. Therefore, Ihh expression may be a very early event in the cartilage 

degradation process of OA. Recent findings in human cartilage support this idea [17]. Further, recent 

studies report Hh signaling as involved in mouse OA development [18,29], and increased expression of 

type X collagen, a hypertrophic marker, in human knee joint cartilage with early focal OA-like  

lesions [10,28]. As Ihh is undetectable in healthy articular cartilage [30], monitoring changes in Ihh 

may provide information on the progression of OA. Our study illustrated that Ihh expression was 

positively associated with the severity of cartilage damage (Figure 2), consistent with previous 

findings [14]. This association suggests that Ihh expression in human cartilage may be a candidate 

biomarker for diagnosis of early OA and monitoring of OA progression. Studies are now needed to 

validate its effectiveness longitudinally and to demonstrate cause and effect. 

Ihh is not only expressed by chondrocytes, but also by other cells such as osteoblasts [31]. 

Therefore, the Ihh content of serum and urine may not specifically reflect changes in cartilage 
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metabolism. Metabolites or degradation products secreted by chondrocytes are directly released into 

the SF. As opposed to those in serum and urine, the biomarkers in SF of joints undergoing cartilage 

degeneration directly correlate with pathological changes in cartilage. Detection of the Ihh 

concentration in SF appears to be a promising method to diagnose early OA and monitor progression 

of OA cartilage damage in clinical patients. 

In this study, we detected a significant elevation in Ihh level in the SF samples from OA knee joints 

compared to the control samples by western blot. This result is in agreement with a previous report [14]. 

We then used ELISA to quantity synovial Ihh concentration, and thusly established a positive 

correlation between synovial Ihh content and cartilage damage as graded with the Outer-bridge grading 

system that is considered the “gold standard” for assessment of articular cartilage lesions and is 

repeatable between surgeons [23]. 

The content of Ihh in the knee SF is low when the cartilage surface is intact. However, synovial Ihh 

content is dramatically increased once damage of cartilage surface occurs. This finding suggests that 

the synovial concentration of Ihh could potentially serve as a diagnostic biomarker for early damage of 

articular cartilage. This observation also indicates that cartilage superficial zone may act as the 

“protective screen” for cartilage integrity, and that once superficial zone has fissures, inflammatory 

factors and harmful cytokines may have a direct stimulatory effect on chondrocyte differentiation 

implicated in pathological development of OA cartilage. Consequently, Ihh expression is rapidly 

upregulated with an increase of the hypertrophic chondrocytes marker, type X collagen. 

Interestingly, our study also found that synovial Ihh concentration in late-stage cartilage returned to 

basal levels comparable to those in normal cartilage. Many previous studies have independently 

demonstrated that there is a significant decrease in chondrocyte numbers in articular cartilage during 

aging [32–36], while some other reports found positive correlations between severity of cartilage 

damage and chondrocyte death due to apoptosis [37]. Thus, one possible explanation is that synovial 

Ihh decreases in late-stage OA due to the reduction in chondrocyte numbers and deficient in cartilage. 

In this study, we also found that the level of Ihh protein was up-regulated in rat cartilage with  

ACL transected-induced OA. Increased Ihh expression was also observed in early-stage OA cartilage 

degeneration induced by the PMM in a mouse model, similar to what happens in humans.  

These observations suggest that the Ihh signaling pathway in the joint cartilage is conserved between 

human and animal models. 

In conclusion, the level of the Ihh in the human knee SF could potentially be used as an early 

biomarker to reflect cartilage damage, however it may not be sensitive enough to predict the severity 

and progression of knee articular cartilage damage in the later stages of disease, a point in time at 

which radiographic imaging is sufficient. 

4. Experimental Section 

4.1. Enrollment of Patients 

This study was approved by the Institutional Review Board at the second Hospital of Shanxi 

Medical University (Taiyuan, China; CMTT#: 2013025. Approval 3 June 2013) and informed consent 

was obtained from each donor. The study enrolled 127 patients (62 males and 65 females) with an 
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average age of 40.2 years (40.5 ± 15). Among these patients, 40 received total knee replacement 

because of OA, and 87 underwent arthroscopy because of meniscus injury (n = 30), anterior or 

posterior cruciate ligament injury (n = 30), arthroscopic debridment due to pain and disability from OA 

(n = 21), loose body removal (n = 1), and amputation due to severe trauma (n = 5). OA diagnosis was 

made by clinician’s assessment using American College of Rheumatology (ACR) criteria [38]. Patients 

who had inflammatory joint disease, acute major trauma, malignant tumors or abnormal renal and liver 

function were excluded. Patients who were treated with corticosteroids within the 3 months preceding 

surgery were also excluded. 

4.2. Cartilage Tissue Samples 

Cartilage samples from the tibia obtained during total knee arthroplasty were divided into two 

categories: (1) OA cartilage from the more affected compartment (usually medial); and (2) “relatively 

normal” cartilage from the uninvolved compartment (usually lateral). Age-matched normal cartilage 

samples were also obtained from knee joints immediately following amputation due to severe trauma. 

Absence of cartilage degeneration was confirmed in the normal cartilage samples using Safranin O staining. 

4.3. Synovial Fluid Analysis 

A volume of 0.5–5 mL of SF was aspirated from the knee joint just before total knee replacement or 

arthroscopy. The SF sample was immediately centrifuged for 15 min at 3000 rpm to remove particulate 

material, and the supernatant was aliquoted, rapidly frozen, and stored at −70° C until analysis. Before 

freezing, the SF samples were diluted 1:5 with cell lysis buffer containing proteinase inhibitor (Roche, 

Basel, Switzerland). 

4.4. Animals 

Sections of OA cartilage from a rat OA model induced by anterior cruciate ligament transection 

(ACLT) were a subset of those used previously [22]. In this model, animals showed early OA changes 

one month after surgery [21,22]. The mouse model consisted of 2-month-old C57 BL/6 male mice  

that underwent partial medial meniscectomy (PMM) surgery. These mice underwent Fluorescence 

Molecular Tomography (FMT) 7 days after PMM to study Ihh changes in vivo. All experiments were 

approved by the Animal Care and Use Committee of Rhode Island Hospital. (CMTT#: 0111-12. 

Approval 6 December 2012). 

4.5. Histology 

Full thickness 1 × 1 cm cartilage samples were taken from the OA cartilage and adjacent “relatively 

normal” cartilage samples from each knee joint with a scalpel. The sections (0.2–0.3 g) were fixed in 

10% formalin (Sigma-Aldrich, St. Louis, MO, USA) for 72 h, decalcified in RichmaneGelfand-Hill 

solution, processed in a Tissue-Tek VIP 1000 tissue processor (Miles, Elkhart, IN, USA), and embedded in 

a single block of Paraplast X-tra (Thermo-Fisher, Hampton, NH, USA). Blocks were trimmed to 

expose tissue using a rotary microtome (Leica, Wetzlar, Germany). The slices were then cut into 6-µm 

sections and mounted on slides. Safranin O stain was performed and the severity of cartilage damage 
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was assessed using the modified Mankin grading system [17]. Grade I (Mankin score 0–2) represents 

minimal cartilage damage, while Grades II (Mankin score 3–10) and III (Mankin score 11–18) represent 

more severe cartilage damage. Three independent and blinded observers scored each section, and the 

scores were averaged. Early OA changes from the previous rat ACLT study [21,22] were validated 

using Safranin O stain. 

4.6. Immunohistochemistry (IHC) 

To detect the distribution of Ihh in human cartilage, 6-µm sections were collected and mounted on 

positively charged glass slides (Thermo-Fisher). The sections were dried on a hot plate to increase 

adherence to the slides. IHC was carried out using the Histostain-SP Kits (Zymed-Invitrogen, 

Carlsbad, CA, USA). Slides were deparaffinized and rehydrated through conventional methods and 

blocked in 3% hydrogen peroxide (Sigma-Aldrich, St. Louis, MO, USA) in methanol (Sigma-Aldrich,  

St. Louis, MO, USA) for 30 min. Nonspecific binding was blocked in 15% normal serum (LICOR, 

Lincoln, NE, USA) matched to the secondary antibody species. The sections were digested by 5 mg/mL 

hyaluronidase (HA) in PBS (Sigma-Aldrich) for 20 min. Slides were incubated overnight at 4 °C with 

with a polyclonal antibody against Ihh at 1:500 dilution (sc-1196, Santa Cruz, Santa Cruz, CA, USA). 

The negative control sections were incubated with isotype control (sc-1196-P, Santa Cruz) in PBS. The 

specificity of Ihh antibodies used in this study has been validated by immunofluorescence stain and 

Western blot [14]. Thereafter, the sections were treated sequentially with biotinylated secondary 

antibody and streptavidin-peroxidase conjugate (Zymed-Invitrogen), and then were developed in DAB 

chromogen (Zymed-Invitrogen). The sections were counterstained with hematoxylin (Zymed-Invitrogen). 

Photography was performed with a microscope (BX51, Olympus, Tokyo, Japan). In the rat ACLT 

model, the cartilage degeneration occurs within one month after surgery [21,22]. To test whether there is 

a change of Ihh following ACL injury, the expression of Ihh was determined by IHC one month after 

ACLT in this model as published before [14]. 

4.7. Western Blot 

Total protein in cartilage and SF samples was quantified using the BAC Protein Assay Reagent  

Kit (Pierce, Rockford, IL, USA). Fifty micrograms of total protein was electrophoresed in 10%  

SDS-PAGE under reducing conditions. After electrophoresis, proteins were transferred onto 

Immobilon-Polyvinylidene Difluoride (PVDF) membrane (Beyotime, Shanghai, China) and probed 

with a polyclonal antibody against Ihh (Santa Cruz). The antibody was diluted 1:500 in TBS-T 

containing 1% bovine serum albumin (BSA) (Sigma Aldrich). Horseradish peroxidase-conjugated second 

antibody IgG (Santa Cruz) was diluted 1:1000 in TBS-T. Visualization of immunoreactive proteins was 

achieved by using the ECL Western blot detection reagents (CWBIO Corporation, Beijing, China) and 

by subsequently exposing the membrane to Molecular Imager (Bio-Rad, Hercules, CA, USA).  

Band densities were quantified using Image Acquisition and Analysis Software (UVP, Upland, CA, 

USA). Parallel gels were prepared for Coomassie Blue stain to confirm equal loading of samples. 

Equal amounts of protein were electrophoresed in 10% SDS-PAGE and the gel was prefixed in 50% 

methanol, 10% acetic acid, 40% dH2O for 30 min and then stained with 0.25% Coomassie Brilliant 

Blue R-250 (Beyotime, Shanghai, China) in the above solution for 15 min. The gel was detained in 
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25% methanol, 8% acetic acid, 67% dH2O until background was clear. The detained gel was stored in 

7% acetic acid and a photograph was taken using Molecular Imager (Bio-Rad). 

4.8. Evaluation of Cartilage Damage 

In order to have uniform criteria for cartilage damage during arthroplasty and arthroscopy, we used 

the Outer-bridge scoring system. Articular cartilage lesions were evaluated during arthroscopy or via 

direct surgical observation using the Outer-bridge scoring system [39]. The absence of morphological 

changes on the articular cartilage scores 0 in the Outer-bridge scoring system, and softened or swollen 

articular cartilage scores 1. Once fissures smaller than 1.3 cm appear on the articular cartilage surface, 

a score of 2 is assigned, while fissures larger than 1.3 cm merit a score of 3. When cartilage flakes are 

detached from the articular surface and the subchondral bones are exposed, the Outer-bridge score is 4 [39]. 

Each of the six regions of the knee cartilage (i.e., patellar, femoral groove, medial femoral condyle, 

lateral femoral condyle, medial tibial plateau, and lateral tibial plateau were assigned the appropriate 

Outer-bridge score (Figure 1). The highest score recorded within a knee joint was defined as the  

final grading. 

4.9. Measurement of Synovial Ihh 

The concentration of Ihh in SF was measured with a competitive polyclonal antibody-based ELISA 

kit (CUSABIO Corporation, Wuhan, China). After thawing to room temperature, samples were diluted 

at a 1:4 ratio, and 100 µL of the diluted sample together with 100 µL of biotinylated anti-Ihh antibody 

were added to each well of a 96-well plate. After 2 h incubation at 37 °C, the wells were drained and 

washed 3 times with washing buffer, and 100 µL of streptavidin-HRP solution was then added for 1 h 

incubation at 37 °C. Substrate A and B solutions were added to each well, followed by incubation for 

10 min at 37 °C before the reaction was stopped by 50 µL of sulfuric acid. The absorbance was read by 

a spectrophotometer (Packard FluoroCount BF10000, eBay, San Jose, CA, USA) at 450 nm wavelength. 

All samples were measured in triplicate, and the average reading was recorded. 

4.10. Fluorescence Molecular Tomography (FMT) 

FMT enables real-time 3D detection of fluorochrome distribution in tissues of live animals [40–43]. 

To further confirm the changes of Ihh after joint injury, Ihh antibody was conjugated to Vivo-Tag680™ 

NIR fluorochrome to create a probe for the detection of Ihh protein in vivo in the PMM mouse  

OA model 7 days after surgery. Mice were anesthetized with an intraperitoneal injection of ketamine 

(75 mg/kg) and medetomidine (1 mg/kg), placed in an upright position in the imaging chamber,  

and then imaged with the FMT system (ViSen, Waltham, MA, USA). A Near-infrared (NIR) laser 

diode emitting continuous wave radiation at wavelengths of 670 nm trans-illuminated the lower body 

of each animal from posterior to anterior, and both excitation and emission signals were detected by a 

charge-coupled device (CCD) camera and appropriate band pass filters. Ihh antibody probes in the 

knee joint were determined using Region of Interest (ROI) analysis. 
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4.11. Statistical Analysis 

Differences in Ihh band densities from OA, relatively normal and normal cartilage samples were 

compared using one-way ANOVA. A t-test was also used to compare Ihh band densities from OA SF 

to normal SF at a rejection level of 5% unless otherwise noted. Nonparametric Spearman rank 

correlation coefficient was used to examine the relationships between cartilage erosion and Ihh 

concentration in SF. All data from ELISA are expressed as mean ± SD, and analyzed using SPSS 13.0 

software (SPSS Inc., Chicago, IL, USA). One-way ANOVA was used for among group comparisons.  

p values less than 0.05 were considered statistically significant. 

5. Conclusions 

The level of Ihh in SF from early cartilage damage groups was significantly higher than in the 

control groups, but no significant difference was detected in the level of Ihh among the severely 

damaged cartilage sub-groups. There was a significant correlation between the Ihh concentration in  

the synovial fluid and outer-bridge scores (r = 0.556) from early stage cartilage damage pateints.  

Thus, elevated Ihh level is correlated with early cartilage lesions, but it may not be sensitive enough to 

predict the progression of severity of cartilage damage in the knee joint. 
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