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Abstract: Recent experiments have explored the impact of Wnt/β-catenin signaling and 

Substance P (SP) on the regulation of osteogenesis. However, the molecular regulatory 

mechanisms of SP on the formation of osteoblasts is still unknown. In this study, we 

investigated the impact of SP on the differentiation of MC3T3-E1 cells. The osteogenic 

effect of SP was observed at different SP concentrations (ranging from 10−10 to 10−8 M). 

To unravel the underlying mechanism, the MC3T3-E1 cells were treated with SP after the 

pretreatment by neurokinin-1 (NK1) antagonists and Dickkopf-1 (DKK1) and gene 

expression levels of Wnt/β-catenin signaling pathway components, as well as osteoblast 

differentiation markers (collagen type I, alkaline phosphatase, osteocalcin, and Runx2), 

were measured using quantitative polymerase chain reaction (PCR). Furthermore, protein 

levels of Wnt/β-catenin signaling pathway were detected using Western blotting and the 

effects of SP, NK1 antagonist, and DKK1 on β-catenin activation were investigated by 

immunofluorescence staining. Our data indicated that SP (10−9 to 10−8 M) significantly  
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up-regulated the expressions of osteoblastic genes. SP (10−8 M) also elevated the mRNA 

level of c-myc, cyclin D1, and lymphocyte enhancer factor-1 (Lef1), as well as c-myc and  

β-catenin protein levels, but decreased the expression of Tcf7 mRNA. Moreover, SP  

(10−8 M) promoted the transfer of β-catenin into nucleus. The effects of SP treatment were 

inhibited by the NK1 antagonist and DKK1. These findings suggest that SP may enhance 

differentiation of MC3T3-E1 cells via regulation of the Wnt/β-catenin signaling pathway. 
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1. Introduction 

Neurons not only innervate skeletal muscles, but also function as a network innervating cancellous 

bone [1]. They contain a variety of peripherally released neurotransmitters, whose functional receptors 

have been found in bone cells [2,3]. Substance P (SP) is a neuropeptide present in primary sensory 

neurons and the central, as well as peripheral nervous systems [4–7]. SP is a member of the tachykinin 

family. This group of peptides consists of five subtypes: neuropeptide K, neurokinin A, neurokinin B, 

neuropeptide C, and SP. Thus far, three receptor subtypes have been identified for that group of 

peptides (NK-1, -2, and -3 receptor) [8]. SP is a mediator in many physiological and pathological 

processes. Recent studies have revealed function of SP in neurokinin-1 receptor (NK1-Rs) dependent 

modulation of osteoblastic bone formation [9]. Furthermore, SP is associated with bone metabolism, 

including osteoblastic bone formation and osteoclastic bone absorption. SP stimulates the proliferation 

and differentiation of bone marrow stromal stem cells [4,10–12]. 

Stability and localization of β-catenin is crucial for signal transduction in the Wnt/β-catenin 

pathway [13,14]. Canonical Wnts bind to the 7-transmembrane domain-spanned frizzled (Fz) receptor 

and low-density lipoprotein 5 and 6 (LRP5/6) co-receptors. This complex recruits the scaffolding 

protein Dishevelled (Dvl) and initiates a cascade of events. Dvl interacts with the destruction complex 

consisting of the scaffold protein Axin, adenomatous polyposis coli (APC) and glycogen synthase 

kinase-3 (GSK-3) [15,16]. Disruption of this complex leads to phosphorylation of GSK-3β and 

stabilization of β-catenin through dephosphorylation. Subsequent translocation of β-catenin into the 

nucleus leads to interaction with Tcf/Lef transcription factors and up-regulation of Wnt-responsive 

genes, including cyclin D1, c-jun, c-myc, and fra-1 [17–19]. Wnt signaling is tightly regulated by 

secreted regulatory proteins, such as Dickkopf (Dkk), which antagonizes LRP5/6 [20]. Over the past 

few years the Wnt/β-catenin-signaling pathway has been shown to be an important component of bone 

mass accrual, regulation, and maintenance [21–23]. However, the link between SP and the canonical 

Wnt/β-catenin signaling pathway in the case of osteogenic process has not been clarified. 

Recent reports showed that calcitonin gene-related peptide, another neurotransmitter released by 

peripheral nerve system, promoted the differentiation of MC3T3-E1 osteoblast-like cells [24]. 

However, the effect of SP on the differentiation of pre-osteoblastic cell line and the related mechanism 

are still unknown. We hypothesized that SP may stimulate the differentiation of MC3T3-E1 cells via 

regulation of Wnt/β-catenin signaling pathway. In this study, the mice pre-osteoblastic cell line 

MC3T3-E1 was used as an in vitro model with osteogenic properties and fast growth. Our findings 
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revealed that SP enhanced the differentiation of MC3T3-E1 cells and activated the Wnt/β-catenin 

signaling pathway. 

2. Results and Discussion 

2.1. Results 

2.1.1. Isolation, Screening, Alkaline Phosphatase (ALP) and Alizarin Red Staining of  

MC3T3-E1 Cells 

To show the osteoblastic features of the MC3T3-E1 line, cells were used for alkaline phosphatase 

(ALP) and Alizarin red staining before exposure to the differentiation medium. ALP activity and 

presence of Ca deposits in extracellular matrix indicate that the MC3T3-E1 cells possess osteogenic 

properties (Figure 1). 

Figure 1. Growth and morphologic characteristics of MC3T3-E1 cells. (A) Cells grew in 

triangular and polygonal shapes; (B) Alizarin red staining for Ca deposits, extracellular 

matrix Ca deposits for matrix mineralization was measured using Alizarin red dye which 

bound with Ca; and (C) staining for alkaline phosphatase (ALP), cells were cultured in  

6-well plates and incubated in AS-MX phosphate solution as substrate with Fast Red salt as 

stain, with matrix ALP activity shown as red stain. 

MC3T3-E1 cells 

(A) 

Alizarin Red staining 

(B) 

ALP staining 

(C) 

2.1.2. Influence of Substance P (SP) at Different Concentrations on Differentiation of the MC3T3-E1 

Cells into Osteoblasts 

The impact of SP at different concentrations on the differentiation of MC3T3-E1 cells  

into osteoblasts was assessed by testing the osteoblastic gene expressions (collagen type I,  

alkaline phosphatase, osteocalcin, and Runx2) using quantitative polymerase chain reaction (qPCR). 

Collagen type I and alkaline phosphatase were selected as early markers of osteoblastic differentiation. 

Osteocalcin was selected as a late marker of that process. Furthermore, the expression of Runx2,  

a transcription factor crucial in osteoblast differentiation, was examined. Three different concentrations 

of SP (10−8, 10−9, and 10−10 M) were tested in MC3T3-E1 cells at days 4, 7, and 14 in the 
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osteoinductive medium. SP (10−8 M) significantly increased the level of alkaline phosphatase and 

collagen type I mRNA at day 4, significantly increased the levels of osteocalcin and Runx2 mRNA at 

days 4 and 7. SP at concentration of 10−9 M, significantly increased the levels of alkaline phosphatase 

and Runx2 mRNA at days 4 and 14, significantly increased the level of osteocalcin mRNA at days  

4, 7, and 14 and collagen type I mRNA at day 4. Treatment with 10−10 M SP resulted only in elevated 

collagen type I and osteocalcin mRNA level at day 4 compared with the control group (group 4) (Figure 2). 

Figure 2. Effects of substance P (SP) treatment at days 4, 7, and 14 (10−8, 10−9 and 10−10 M) 

on gene expressions in MC3T3-E1 cells measured by qPCR for (A) alkaline phosphatase; 

(B) collagen type I; (C) osteocalcin; and (D) Runx2 mRNA levels. The values reported are 

the mean ± SEM of three independent experiments. * p < 0.05 versus Control; ** p < 0.01 

versus Control; and *** p < 0.001 versus Control. 

 (A) 

 (B) 
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Figure 2. Cont. 

 (C) 

 (D) 

2.1.3. Impact of SP, Neurokinin-1 (NK1) Antagonist and Dickkopf-1 (DKK1) on the Differentiation of 

MC3T3-E1 Cells into Osteoblasts 

qPCR revealed that SP (10−8 M) significantly increased the expression of alkaline phosphatase and 

collagen type I mRNA at day 4 compared with the control group (group D) and also significantly 

increased the levels of osteocalcin and Runx2 mRNA on days 4 and 7 (Figure 3). Pretreatment of the 

cells with NK1 antagonist and DKK1 significantly inhibited the elevated expression of those genes 

upon SP treatment (Figure 3). 
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Figure 3. Effects of SP, SP + NK1 (neurokinin-1) antagonist, SP + DKK1 (Dickkopf-1) 

and the same amount of phosphate-buffered saline (PBS) on days 4, 7, 14 on gene 

expressions in MC3T3-E1 cells measured by quantitative polymerase chain reaction 

(qPCR). (A) alkaline phosphatase; (B) collagen type I; (C) osteocalcin; and (D) Runx2 

mRNA. Results are representative of 3 independent experiments. * p < 0.05 versus SP;  

** p < 0.01 versus SP; and *** p < 0.001 versus SP, respectively. 

(A) 

(B) 

(C) 
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Figure 3. Cont. 

(D) 

2.1.4. Impact of SP, NK1 Antagonist and DKK1 on the Expression of Genes of the Wnt/β-Catenin 

Signaling Pathway 

To examine the potential mechanism of SP-induced osteoblast differentiation in MC3T3-E1 cells, 

gene expression of Wnt/β-catenin signaling pathway (c-myc, cyclin D1, Lef1, Tcf7 and β-catenin) was 

evaluated by qPCR. The addition of SP (10−8 M) to the osteoinductive medium significantly increased 

the expression of c-myc and Lef1 on days 4, 7, and 14 compared with the control group (group D). 

Moreover, it significantly increased the expression of cyclin D1 on days 4 and 7 but decreased the 

expression of Tcf7 on days 4 and 7. These effects of SP were significantly inhibited by the 

pretreatment with NK1 antagonist and DKK1. SP also significantly increased the expression of  

β-catenin mRNA on day 4 but, instead of down-regulating the expression of β-catenin mRNA, the 

pretreatment with NK1 antagonist and DKK1 increased the expression of β-catenin mRNA compared 

with the SP group (group A) (Figure 4). 

2.1.5. Impact of SP, NK1 Antagonist and DKK1 on the Protein Levels of the Wnt/β-Catenin  

Signaling Pathway 

The addition of SP (10−8 M) to the osteoinductive medium increased the level of c-myc and  

β-catenin protein on days 4, 7, and 14 compared with the control group (group D). Pretreatment with 

NK1 antagonist and DKK1 inhibited the SP induced c-myc and β-catenin protein level increase on 

days 4, 7, and 14 (Figure 5). 
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Figure 4. Effects of SP, SP + NK1 antagonist, SP + DKK1 and the same amount of PBS 

on days 4, 7, 14 on gene expressions in MC3T3-E1 cells measured by qPCR. (A) c-myc 

mRNA; (B) cyclin D1 mRNA; (C) Lef1; (D) Tcf7; and (E) β-catenin mRNA. Results are 

representative of 3 independent experiments. * p < 0.05 versus SP; **p < 0.01 versus SP; 

and *** p < 0.001 versus SP, respectively. 

 (A) 

 (B) 

 (C) 
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Figure 4. Cont. 

 (D) 

 (E) 

Figure 5. Effects of SP, SP + NK1 antagonist, SP + DKK1 and the same amount of PBS 

on days 4, 7, and 14 on β-catenin protein and c-myc protein expressions in MC3T3-E1 

cells measured by Western blot analysis. *** p < 0.001 versus SP. 
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Figure 5. Cont. 

 

2.1.6. Impact of SP, NK1 Antagonist and DKK1 on β-Catenin Activation in MC3T3-E1 Cells 

We next examined whether the effect of SP on the activation of Wnt/β-catenin signaling was 

associated with an increase in β-catenin translocation to the nucleus. Immunolabeling and fluorescence 

microscopy of β-catenin in revealed low level of β-catenin in the nucleus of the MC3T3E1 cells from 

the control group (group D). Addition of SP (10−8 M) to the osteoinductive medium resulted in transfer 

of β-catenin (green) into the nucleus (blue). Pretreatment with NK1 antagonist and DKK1 prevented 

the SP induced transfer of β-catenin into the nucleus (Figure 6). 

2.2. Discussion 

In this study we explored the osteogenic effects of SP treatment on MC3T3-E1 osteoblast-like cells. 

We found that SP significantly promoted the differentiation of MC3T3-E1 cells. The osteoblastic 

differentiation in vitro is marked by expressions of osteoblastic genes, including collagen type I, 

alkaline phosphatase, osteocalcin, and Runx2. The role of SP in osteoblastic differentiation was 

investigated by detection of those four genes expression. Treatment of MC3T3-E1 cells with SP  

(10−9–10−8 M) led to an increase in osteoblastic gene expression including collagen type I,  

alkaline phosphatase, Runx2, and osteocalcin on day 4 and to a less extent on day 7. The role of SP 

was in turn inhibited by the NK1 receptor antagonist and DKK1, the antagonist of Wnt/β-catenin 

signaling pathway. SP treatment significantly increased the expressions of genes and levels of proteins 

associated with activation of the Wnt/β-catenin signaling pathway, but down-regulated the genes 

associated with inhibition of the Wnt/β-catenin signaling pathway on days 4, 7, and 14. The NK1 

receptor antagonist and DKK1 inhibited these effects of SP. These findings indicate that SP may 

stimulate the differentiation of MC3T3-E1 cells via the Wnt/β-catenin signaling, whereas the NK1 

antagonist and DKK1 may weaken the role of SP inducing the differentiation of MC3T3-E1 cells.  

Our data suggests a potential mechanism of nerves involvement in bone repair. 
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Figure 6. Effects of SP, SP + NK1 antagonist, and SP +DKK1 on β-catenin activation in 

MC3T3-E1 cells. Immunofluorescence staining with antibodies of β-catenin. Cells were 

incubated in the presence of SP, SP + NK1 antagonist, SP + DKK1, and the same amount of 

PBS for 4 days, then the β-catenin was detected by the immunostaining method as shown in 

green fluorescence (arrowheads). The nuclei were stained with 4'-6-diamidino-2-phenylindole 

(DAPI) as shown in blue. 

 

Previous studies have established the role of β-catenin as a key element of Wnt/β-catenin signaling 

pathway in control of developmental gene expression programs. Upon activation of the destruction 

complex, phosphorylation of β-catenin by GSK-3 triggers subsequent ubiquitination and degradation 

of β-catenin by the proteasome. This mechanism allows maintaining low level of β-catenin in the 

cytoplasm [15,19]. When the Wnt/β-catenin signaling pathway is activated, the destruction complex is 

inhibited, β-catenin protein accumulates in the cytoplasm and enters the nucleus where it interacts with 

Tcf/Lef transcription factors and contributes to activation of the expression of target genes [25–28].  

In this study we examined the gene and protein expressions of β-catenin after the pretreatment of 

MC3T3-E1 cells with SP, NK1 antagonist + SP, and DKK1 + SP. We found that SP significantly 

increased the gene and protein expressions of β-catenin while NK1 receptor antagonist and DKK1 

inhibited the expression of β-catenin protein, but increased the expression of β-catenin mRNA, so we 

speculate that the amount of β-catenin protein in the cytoplasm may depend mainly on the state of  

the destruction complex, but not mainly on the expression of β-catenin mRNA. As transferring of  

β-catenin into the nuclei is one of the most important steps in the activation of Wnt/β-catenin signaling 

pathway, we investigated the role of SP in promoting the transferring of β-catenin into the nuclei.  

We observed that SP promoted the accumulation and travelling of β-catenin to the nuclei. This may 

allow subsequent complex formation with Tcf/Lef and activation of Wnt target gene expression. 

The role of Tcf7/Lef1 in the Wnt/β-catenin signaling is still controversial. Tcf7 may act as both a 

repressor and an activator while Lef1 might be usually an activator but sometimes a repressor [29–31]. 
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In the dorsal midbrain, Lef1 and Tcf7 were shown to cooperatively activate the expression of the 

Wnt/β-catenin signaling target genes and promote cell proliferation [32]. In line with previous studies, 

we found that treatment of MC3T3-E1 cells with SP (10−8 M) for 4, 7, and 14 days led to increased 

expression of Lef1 and decreased expression of Tcf7. Therefore, we speculate that the cooperation of 

Lef1 and Tcf7 may be required in the process of activation of Wnt/β-catenin signaling induced by SP. 

As Wnt/β-catenin signaling plays an important role in proliferation and differentiation in numerous 

developmental stages as well as adult tissue homeostasis, Wnt target genes have to be context  

specific [33,34]. In this study we investigated the expressions of two Wnt target genes and one 

corresponding protein (c-myc mRNA, cyclin D1 mRNA, and c-myc protein). Our results showed that 

SP remarkably increased the expressions of the two Wnt target genes and the one protein in  

MC3T3-E1 cells, indicating that the targeted genes, c-myc and cyclin D1, may be involved in the 

process of differentiation of MC3T3-E1 cells, which is promoted by the activation of the  

Wnt/β-catenin signaling pathway [35,36]. 

3. Experimental Section  

3.1. Cell Culture 

Murine osteoblastic MC3T3-E1 cells (ATCC, Manassas, VA, USA) were cultured in 5% CO2 

atmosphere at 37 °C in α-MEM (minimum essential medium) containing 10% heat-inactivated  

fetal bovine serum (FBS). The medium was supplemented with 100 U/mL penicillin and 100 μg/mL 

streptomycin. After reaching 80% confluence, cells were passaged with 0.02% trypsin (Gibco,  

Grand Island, NY, USA) and transferred to new culture flasks in a ratio of 1:3. To induce osteogenic 

differentiation culture medium was changed to differentiation medium (α-MEM containing 10 mM  

β-glycerophosphate and 50 μg/mL ascorbic acid). The cell culture was performed in two steps.  

To find optimal concentration for promotion of cellular differentiation, the cells were divided into  

4 groups according to different concentrations of SP (Sigma, S6883, St. Louis, MO, USA): Group 1, 

incubated with SP (10−8 M); Group 2, incubated with SP (10−9 M); Group 3 incubated with SP (10−10 M); 

and group 4, the control group, treated with the same volume of PBS. To determine the effects of SP, 

NK1 antagonist, and DKK1 on the differentiation of MC3T3-E1 cells, cells were divided into  

4 groups: Group A, incubated with SP (10−8 M); Group B, incubated with a mixture of SP and NK1 

antagonist (1 μM, Sigma, CP-96345) [37,38]; Group C, incubated with a mixture of SP and 0.2 μg/mL 

DKK1 (recombinant Human DKK-1, Peprotech, Rocky Hill, CT, USA) [39]; and Group D, the control 

group, added with the same amount of PBS. 

3.2. Alizarin Red Staining and Alkaline Phosphatase Staining 

Medium from the cultures before the shifting to differentiation medium was discarded and the cells 

were fixed in 4% paraformaldehyde for 30 min. After washing three times with ice-cold PBS, cells 

were stained for 5 min with alizarin red (Sigma) and analyzed under a light microscope. 

The alkaline phosphatase (ALP) activity staining was performed with the cells before exposure  

to the differentiation medium. Cells were rinsed once with PBS, fixed in 2% formaldehyde and 

subsequently stained at 37 °C in solution containing naphthol AS-MX phosphate disodium salt, fast 
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red salt (Sigma) and N,N-dimethyl formamide for 30 min or until a yellow color appeared. Cells were 

washed with PBS and photographed using a phase-contrast microscope. The alkaline phosphatase 

activity was assessed as red stains indicating the products of enzyme activity [40]. 

3.3. Quantitative Polymerase Chain Reaction (qPCR) 

Total RNA of the MC3T3-E1 cells from the eight groups (groups 1–4 and groups A–D) at the  

3 time points (4, 7, and 14 days) was extracted using a RNeasy Mini Kit (Qiagen, Valencia, CA, USA) 

according to the manufacturers protocol. After subsequent DNase digestion, 1 μg of RNA was used to 

synthetize 20 μL of cDNA using an iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules,  

CA, USA). Quantitative real time PCR reactions were performed in the ABI prism 7900 real time  

PCR system using the SYBR Green PCR master mix (Applied Biosystems, Foster City, CA, USA). 

Expression in each sample was evaluated in three technical replicates. Sequences of the 

oligonucleotides used in this study are listed in Table 1. Specificity of primer pairs and absence of 

primer dimmers was validated by analysis of the dissociation curves and the agarose gel 

electrophoresis. Comparative CT method was used for data analysis. Expression in each sample was 

normalized to the amount of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA. Data 

represent mean expression from 3 experiments. 

Table 1. Sequences of the primers used in this study. 

Gene Source Sequence Predicted length (bp)

ALP NM_007431 
5'-AACCCAGACACAAGCATTCC-3' 200 
5'-GCCTTTGAGGTTTTTGGTCA-3' 

COL1 NM_007742 
5'-GCCAAGAAGACATCCCTGAA-3' 107 
5'-GCCATTGTGGCAGATACAGA-3' 

OCN NM_007541 
5'-TGACAAAGCCTTCATGTCCA-3' 175 
5'-TTTGTAGGCGGTCTTCAAGC-3' 

RUNX2 NM_009820 
5'-AAGTGCGGTGCAAACTTTCT-3' 175 
5'-ACGCCATAGTCCCTCCTTTT-3' 

C-MYC NM_001177353 
5'-TCCTGTACCTCGTCCGATTC-3' 195 
5'-GGTTTGCCTCTTCTCCACAG-3' 

CCND1 NM_007631 
5'-GCGTACCCTGACACCAATCT-3' 183 
5'-CTCCTCTTCGCACTTCTGCT-3' 

LEF1 NM_010703 
5'-TATGAACAGCGACCCGTACA-3' 132 
5'-TCGTCGCTGTAGGTGATGAG-3' 

TCF7 NM_009331 
5'-ATCCTTGATGCTGGGATCTG-3' 139 
5'-CTTCTCTGCCTTGGGTTCTG-3' 

β-CATENIN NM_007614 
5'-ATGGCTTGGAATGAGACTGC-3' 150 
5'-ATGCTCCATCATAGGGTCCA-3' 

GAPDH NM_008084 
5'-ATTGTCAGCAATGCATCCTG-3' 102 
5'-ATGGACTGTGGTCATGAGCC-3' 

  



Int. J. Mol. Sci. 2014, 15 6237 

 

 

3.4. Protein Extraction and Western Blot 

The cells from groups A–D at indicated time points (4, 7, and 14 days) were used for protein 

extraction. Cells were treated with the lysis buffer (Cell Signaling Technology, Danvers, MA, USA) 

and protein extracts were dissolved in sample buffer containing 50 mM Tris-HCl, 2% SDS, 10% 

glycerol, 100 mM dithiothreitol (pH = 6.80). Proteins were separated by SDS-PAGE in 10% 

polyacrylamide gel and transferred to a nitrocellulose membrane. Blots were decorated with  

anti-β-catenin antibodies and anti-c-myc antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, 

USA). Bands were captured and documented through a CCD system (Imagestation 2000 MM, Kodak, 

Rochester, NY, USA). Blots were stripped and re-probed with anti-tubulin antibodies to demonstrate 

equal loading and to allow normalization of the protein content. Densitometry of the bands was 

performed using Molecular Imaging Software Version 4.0 (Kodak). 

3.5. Immunofluorescence Staining 

The cells from groups A–D at day 4 were fixed (4% paraformaldeyde in PBS, 15 min, room 

temperature), permeabilized (0.25% TritonX100 in PBS, 15 min) and blocked in 1% bovine serum 

albumin (BSA) in poly butylene succinate-co-butylene terephthalate (PBST) for 30 min. After washing 

three times in PBS, cells were incubated overnight with rabbit anti-mouse anti-β-catenin antibodies 

(Santa Cruz Biotechnology) diluted 1:100 in PBST. Cells were washed 3 times with PBS and 

incubated for 1 h with fluorescein isothiocyanate (FITC)-linked rabbit anti-mouse IgG antibody diluted 

1:100 (USCN) and again washed three times in PBS. 4'-6-Diamidino-2-phenylindole (DAPI) was 

added to mark the nuclei. Slides were examined in Fluoview 300 (Olympus, Tokyo, Japan) fluorescent 

microscope and images were acquired [4,41]. 

3.6. Statistical Analysis 

Statistical analyses were performed in SPSS (version 13.0, IBM, Armonk, NY, USA). One-way 

ANOVA test followed by Dunnett (2-tailed t) post hoc test was used to evaluate the statistical 

significance of the differences. Significance was achieved when p < 0.05. Presented error bars indicate 

standard error of the mean (SEM). * is indicative of p < 0.05, ** p < 0.01 and *** p < 0.001. 

4. Conclusions 

In conclusion, this study demonstrates that SP may stimulate the osteogenic differentiation of 

MC3T3-E1 cells and the canonical Wnt signaling may contribute to this process. The role of SP and 

Wnt/β-catenin signaling in osteogenesis should be further and depth studied by detecting more genes 

and proteins, such as GSK-3β, Axin, and APC, to elucidate the role of SP and Wnt/β-catenin signaling 

in bone development and remodeling to improve our understanding of the role of nerves in bone repair. 

Acknowledgments  

This work was supported by National Natural Science of Foundation of China (81171723, 

30872638). We are grateful to Allen P. Liang for revising and editing this manuscript. We also 



Int. J. Mol. Sci. 2014, 15 6238 

 

 

appreciate the technical assistance from Guangdong Province Key Laboratory for Regenerative 

Medicine of Bone and Cartilage and Research Center of Clinical Medicine at Nanfang Hospital. 

Author Contributions 

Gang Mei and Dan Jin conceived the project and wrote the first draft. All authors contributed to the 

analysis and interpretations of date and to the writing of subsequent drafts. All authors have seen and 

approved the final version of the manuscript. All authors read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Bjurholm, A.; Kreicbergs, A.; Brodin, E.; Schultzberg, M. Substance P- and CGRP-immunoreactive 

nerves in bone. Peptides 1988, 9, 165–171. 

2. Lundberg, P.; Lundgren, I.; Mukohyama, H.; Lehenkari, P.P.; Horton, M.A.; Lerner, U.H. 

Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide receptor 

subtypes in mouse calvarial osteoblasts: Presence of VIP-2 receptors and differentiation-induced 

expression of VIP-1 receptors. Endocrinology 2001, 142, 339–347. 

3. Tuo, Y.; Guo, X.; Zhang, X.; Wang, Z.; Zhou, J.; Xia, L.; Zhang, Y.; Wen, J.; Jin, D.  

The biological effects and mechanisms of calcitonin gene-related peptide on human endothelial 

cell. J. Recept. Signal Transduct. Res. 2013, 33, 114–123. 

4. An, Y.S.; Lee, E.; Kang, M.H.; Hong, H.S.; Kim, M.R.; Jang, W.S.; Son, Y.; Yi, J.Y. Substance P 

stimulates the recovery of bone marrow after the irradiation. J. Cell. Physiol. 2011, 226, 1204–1213. 

5. Malkesman, O.; Braw, Y.; Weller, A. Assessment of antidepressant and anxiolytic properties of 

NK1 antagonists and substance P in Wistar Kyoto rats. Physiol. Behav. 2007, 90, 619–625. 

6. Delgado, A.V.; McManus, A.T.; Chambers, J.P. Production of tumor necrosis factor-α, 

interleukin 1-β, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to 

substance P. Neuropeptides 2003, 37, 355–361. 

7. Marolda, R.; Ciotti, M.T.; Matrone, C.; Possenti, R.; Calissano, P.; Cavallaro, S.; Severini, C. 

Substance P activates ADAM9 mRNA expression and induces α-secretase-mediated amyloid 

precursor protein cleavage. Neuropharmacology 2012, 62, 1954–1963. 

8. Goto, T.; Tanaka, T. Tachykinins and tachykinin receptors in bone. Microsc. Res. Tech. 2002, 58, 

91–97. 

9. Goto, T.; Nakao, K.; Gunjigake, K.K.; Kido, M.A.; Kobayashi, S.; Tanaka, T. Substance P 

stimulates late-stage rat osteoblastic bone formation through neurokinin-1 receptors. Neuropeptides 

2007, 41, 25–31. 

10. Shih, C.; Bernard, G.W. Neurogenic substance P stimulates osteogenesis in vitro. Peptides 1997, 

18, 323–326. 

11. Sohn, S.J. Substance P upregulates osteoclastogenesis by activating nuclear factor κB in 

osteoclast precursors. Acta Otolaryngol. 2005, 125, 130–133. 



Int. J. Mol. Sci. 2014, 15 6239 

 

 

12. Wang, L.; Zhao, R.; Shi, X.; Wei, T.; Halloran, B.P.; Clark, D.J.; Jacobs, C.R.; Kingery, W.S. 

Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, 

and resorption activity in vitro. Bone 2009, 45, 309–320. 

13. Kim, S.Y.; Kim, S.; Yun-Choi, H.S.; Jho, E.H. Wnt5a potentiates U46619-induced platelet 

aggregation via the PI3K/Akt pathway. Mol. Cells 2011, 32, 333–336. 

14. Zheng, Q.; Chen, P.; Xu, Z.; Li, F.; Yi, X.P. Expression and redistribution of β-catenin in the 

cardiac myocytes of left ventricle of spontaneously hypertensive rat. J. Mol. Histol. 2013, 44, 

565–573. 

15. Peterson-Nedry, W.; Erdeniz, N.; Kremer, S.; Yu, J.; Baig-Lewis, S.; Wehrli, M. Unexpectedly 

robust assembly of the Axin destruction complex regulates Wnt/Wg signaling in Drosophila as 

revealed by analysis in vivo. Dev. Biol. 2008, 320, 226–241. 

16. Li, J.; Li, J.; Chen, B. Oct4 was a novel target of Wnt signaling pathway. Mol. Cell. Biochem. 

2012, 362, 233–240. 

17. Sun, Y.C. Examination of effects of GSK3β phosphorylation, β-catenin phosphorylation, and  

β-catenin degradation on kinetics of Wnt signaling pathway using computational method.  

Theor. Biol. Med. Model. 2009, doi:10.1186/1742-4682-6-13. 

18. Lee, J.H.; Kim, B.G.; Ahn, J.M.; Park, H.J.; Park, S.K.; Yoo, J.S.; Yates, J.R.; Cho, J.Y. Role of 

PI3K on the regulation of BMP2-induced β-catenin activation in human bone marrow stem cells. 

Bone 2010, 46, 1522–1532. 

19. MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-catenin signaling: Components, mechanisms, and 

diseases. Dev. Cell 2009, 17, 9–26. 

20. Fleury, D.; Vayssiere, B.; Touitou, R.; Gillard, C.; Lebhar, H.; Rawadi, G.; Mollat, P. Expression, 

purification and functional characterization of Wnt signaling co-receptors LRP5 and LRP6. 

Protein Expr. Purif. 2010, 70, 39–47. 

21. Georgiou, K.R.; King, T.J.; Scherer, M.A.; Zhou, H.; Foster, B.K.; Xian, C.J. Attenuated  

Wnt/β-catenin signalling mediates methotrexate chemotherapy-induced bone loss and marrow 

adiposity in rats. Bone 2012, 50, 1223–1233. 

22. Tamura, M.; Sato, M.M.; Nashimoto, M. Regulation of CXCL12 expression by canonical Wnt 

signaling in bone marrow stromal cells. Int. J. Biochem. Cell Biol. 2011, 43, 760–767. 

23. Guo, J.; Liu, M.; Yang, D.; Bouxsein, M.L.; Saito, H.; Galvin, R.J.; Kuhstoss, S.A.; Thomas, C.C.; 

Schipani, E.; Baron, R.; et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated 

stromal cell response and new bone formation. Cell Metab. 2010, 11, 161–171. 

24. Wang, L.; Shi, X.; Zhao, R.; Halloran, B.P.; Clark, D.J.; Jacobs, C.R.; Kingery, W.S.  

Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits 

RANKL induced NF-κB activation, osteoclastogenesis and bone resorption. Bone 2010, 46, 

1369–1379. 

25. Zhang, M.; Yan, Y.; Lim, Y.B.; Tang, D.; Xie, R.; Chen, A.; Tai, P.; Harris, S.E.; Xing, L.;  

Qin, Y.X.; et al. BMP-2 modulates β-catenin signaling through stimulation of Lrp5 expression 

and inhibition of β-TrCP expression in osteoblasts. J. Cell. Biochem. 2009, 108, 896–905. 

26. Lee, E.; Salic, A.; Kruger, R.; Heinrich, R.; Kirschner, M.W. The roles of APC and Axin derived 

from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 2003, 1, e10. 



Int. J. Mol. Sci. 2014, 15 6240 

 

 

27. Kestler, H.A.; Kuhl, M. From individual Wnt pathways towards a Wnt signalling network.  

Philos. Trans. R. Soc. 2008, 363, 1333–1347. 

28. Cho, K.H.; Baek, S.; Sung, M.H. Wnt pathway mutations selected by optimal β-catenin signaling 

for tumorigenesis. FEBS Lett. 2006, 580, 3665–3670. 

29. Hoppler, S.; Kavanagh, C.L. Wnt signalling: Variety at the core. J. Cell Sci. 2007, 120, 385–393. 

30. Lee, J.E.; Wu, S.F.; Goering, L.M.; Dorsky, R.I. Canonical Wnt signaling through Lef1 is 

required for hypothalamic neurogenesis. Development 2006, 133, 4451–4461. 

31. Barolo, S. Transgenic Wnt/TCF pathway reporters: All you need is Lef? Oncogene 2006, 25, 

7505–7511. 

32. Shimizu, N.; Kawakami, K.; Ishitani, T. Visualization and exploration of Tcf/Lef function using a 

highly responsive Wnt/β-catenin signaling-reporter transgenic zebrafish. Dev. Biol. 2012, 370, 

71–85. 

33. Vlad, A.; Rohrs, S.; Klein-Hitpass, L.; Muller, O. The first five years of the Wnt targetome.  

Cell Signal. 2008, 20, 795–802. 

34. Logan, C.Y.; Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell 

Dev. Biol. 2004, 20, 781–810. 

35. Juan, J.; Muraguchi, T.; Iezza, G.; Sears, R.C.; McMahon, M. Diminished WNT → β-catenin → 

c-myc signaling is a barrier for malignant progression of BRAFV600E-induced lung tumors. 

Genes Dev. 2014, 28, 561–575. 

36. Sukhotnik, I.; Roitburt, A.; Pollak, Y.; Dorfman, T.; Matter, I.; Mogilner, J.G.; Bejar, J.; Coran, A.G. 

Wnt/β-catenin signaling cascade down-regulation following massive small bowel resection in a 

rat. Pediatr. Surg. Int. 2014, 30, 173–180. 

37. Ramnath, R.D.; Sun, J.; Adhikari, S.; Bhatia, M. Effect of mitogen-activated protein kinases on 

chemokine synthesis induced by substance P in mouse pancreatic acinar cells. J. Cell. Mol. Med. 

2007, 11, 1326–1341. 

38. Schmidt, P.T.; Rasmussen, T.N.; Holst, J.J. Tachykinins may mediate capsaicin-induced, but not 

vagally induced motility in porcine antrum. Peptides 1997, 18, 1511–1516. 

39. Sharon, N.; Mor, I.; Golan-lev, T.; Fainsod, A.; Benvenisty, N. Molecular and functional 

characterizations of gastrula organizer cells derived from human embryonic stem cells. Stem Cells 

2011, 29, 600–608. 

40. Alcantara, E.H.; Shin, M.Y.; Sohn, H.Y.; Park, Y.M.; Kim, T.; Lim, J.H.; Jeong, H.J.;  

Kwon, S.T.; Kwun, I.S. Diosgenin stimulates osteogenic activity by increasing bone matrix 

protein synthesis and bone-specific transcription factor Runx2 in osteoblastic MC3T3-E1 cells.  

J. Nutr. Biochem. 2011, 22, 1055–1063. 

41. Dong, J.; He, Y.; Zhang, X.; Wang, L.; Sun, T.; Zhang, M.; Liang, Y.; Qi, M. Calcitonin  

gene-related peptide regulates the growth of epidermal stem cells in vitro. Peptides 2010, 31, 

1860–1865. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


